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Recently, the Urnings algorithm (Bolsinova et al., 2022, J. R. Stat. Soc. Ser. C Appl. Statistics,
71, 91) has been proposed that allows for tracking the development of abilities of the
learners and the difficulties of the items in adaptive learning systems. It is a simple and
scalable algorithm which is suited for large-scale applications in which large streams of
data are coming into the system and on-the-fly updating is needed. Compared to
alternatives like the Elo rating system and its extensions, the Urnings rating system allows
the uncertainty of the ratings to be evaluated and accounts for adaptive item selection
which, if not corrected for, may distort the ratings. In this paper we extend the Urnings
algorithm to allow for both between-item and within-item multidimensionality. This
allows for tracking the development of interrelated abilities both at the individual and the
population level. We present formal derivations of the multidimensional Urnings
algorithm, illustrate its properties in simulations, and present an application to data from
an adaptive learning system for primary school mathematics called Math Garden.

I. Introduction

In recent years large-scale personalized learning has become one of the key ambitions of
educational innovation. It is enabled by the development of adaptive learning systems
(ALSs) that are designed to dynamically adjust the level or type of practice and instruction
material based on an individual learner’s ability or skill attainment. Measurement plays an
important role in ALSs, since monitoring the development of learners’ skills is crucial to
adapting the learning and practice material to their level. To optimize feedback,
instructions, and suggested learning material, one needs to have accurate and reliable
information about what the learners do and do not know. However, the adaptive,
dynamic, and large-scale nature of ALSs poses challenges for traditional measurement
models and statistical algorithms, which were not designed to be used in such contexts.
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While traditional measurement models have been extended to allow for dynamic
change in ability (e.g., Embretson, 1991; Wang, Berger, & Burdick, 2013), the resulting
models are increasingly complex, with a growing number of parameters, such that
updating them may be not feasible in real time when large streams of data are coming into
the system. Therefore, alternative lightweight algorithms are needed for dynamically
updating learners’ multiple ability levels on-the-fly. Furthermore, not only learners’
abilities but also the characteristics of the items need to be tracked over time for the
purposes of quality control and for tracking whether the relative item difficulty changes
over time (i.e., item parameter drift; Glas, 2000). We note that this context, also termed
computerized adaptive practice (see, for example, Klinkenberg, Straatemeier, & van der
Maas, 2011), is geared towards learning and is quite different from computerized adaptive
testing (CAT) with a focus on assessment (e.g., Wainer, 2000), which requires a pre-
calibrated item bank and stable item parameters. However, see Veldkamp, Matteucci, and
Eggen (2011) for an approach to using CAT in learning.

There have been relevant recent developments in the field of intelligent tutoring
systems, where a variety of learning models have been constructed that both track ability
and model how learning progresses (e.g., Cen, Koedinger, & Junker, 2006; Corbett &
Anderson, 1994; Pavlik Jr, Cen, & Koedinger, 2009). While promising, a downside of
these models is that they have to make assumptions about how learning progresses,
which in turn may affect the ability of the system to accurately track ability if the chosen
model is misspecified. The required inclusion of a specific learning model may be a
desirable feature when the learners’ developmental paths are well understood, but can
be considered problematic in cases where this knowledge is not available and there is a
notable risk of misspecifying the shape of the learning trajectories. It is, therefore,
desirable and important to have statistical tools that allow practitioners to accurately
track the development of abilities over time without making assumptions about how
these abilities develop (trackers in this context are defined in Brinkhuis & Maris, 2020).
This has the benefit of separating the question of what ability levels respondents have
(i.e., tracking ability) from the question of how these abilities develop (i.e., modelling
learning). With accurate tracking procedures in place, one can carefully consider
different relevant models for describing the observed learning progressions in the
system, for example by considering whether all individuals benefit from certain practice
material.

A promising recent development in the context of obtaining lightweight algorithms for
dynamically tracking ability has been the adaptation of the Elo rating system (Elo, 1978)
for educational purposes (Brinkhuis et al., 2018; Klinkenberg et al., 2011;
Pelanek, 20106). Originally developed for competitive chess, Elo is based on a transparent
and computationally efficient algorithm. It can be applied to learners practising items in
ALSs analogous to players competing each other: If alearner solves an item correctly, then
the learner ‘wins’, while if the response is not correct, the item ‘wins’. When viewed this
way, Elo can be used for tracking the progress of learners and the change in the item
difficulties. The learner’s ability rating (0) and the item’s difficulty rating (8) are updated as
follows:"

! Throughout this manuscript, the term ‘ratings’ is used to indicate either the learner’s ability or item’s difficulty,
and is not used to indicate response choices (e.g., ratings on the Likert scale).
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where X is the observed response accuracy (1 for correct, O for incorrect), the probability
of a correct response (i.e., the expected response accuracy) is based on the Rasch model
(Rasch, 1960), and K is a step-size factor. The updating does not require any complex
computations, which makes the system highly scalable (i.e., very large numbers of
learners and items can be managed by the system).

Though not originally presented as such, the Elo algorithm generates a Markov chain
for every learner and every item; however, it is not known whether this Markov chain has
an invariant distribution (Brinkhuis & Maris, 2020). This makes it difficult to study the
statistical properties of the ratings and to use them for testing scientific hypotheses.
Moreover, the reliability of the ratings is unknown. Alternatives to Elo have been proposed
that allow for some measure of uncertainty of the ratings, such as Glicko (Glickman, 2001)
and TrueSkill (Herbrich, Minka, & Graepel, 2006). In these systems, however, the
measures of uncertainty are based on approximations and do not use invariant
distributions. Another issue with these rating systems is that the adaptive item selection
potentially influences the invariant distribution and has to be corrected for, as described
by Hofman et al. (2020, p. 13), which to our knowledge has not been implemented in the
rating systems presented above.

Recently, the Urnings rating system has been proposed (Bolsinova et al., 2022) as an
alternative to Elo, maintaining the desirable practical properties (simplicity and
scalability) of the latter while addressing its undesirable statistical properties (unknown
reliability and effect of adaptive selection). The Urnings algorithm uses the same model for
the probability correct as in Elo, but the ratings are updated differently. Determining the
probabilities of correct responses is conceptualized as an urn problem, where a rating is
represented by a number of coloured balls in an urn. After each response the ratings are
updated in such a way that their invariant distribution is binomial with the urn size as the
number of trials and the inverse-logit-transformed ability (difficulty) as the probability
parameter, conditional on the total sum of ratings. An important feature of the Urnings
algorithm is that it explicitly corrects for adaptive item selection.

‘While the Urnings rating system combines the benefits of Elo with desirable statistical
properties, in its current form an important limitation prevents it from being optimally
suited for ALSs. The system has currently been developed for dealing with a single ability
dimension, and hence is tied to unidimensional applications. ALSs generally consider a
wide range of abilities with both between- and within-item multidimensionality. Hence,
developing a multidimensional extension of the Urnings algorithm is of importance for
improving its feasibility and practical usefulness of working with ALSs.

In this paper, we propose a multidimensional Urnings rating system. Furthermore, we
propose a modification of the algorithm with a more intuitive updating rule which also
allows for a principled way of accessing model fit. We will present analytical derivations of
the system, show simulation results showcasing its properties, and present an application
to the data of an ALS.
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2. Methods

2.1. Unidimensional Urnings algorithm

We first briefly describe the original Urnings algorithm proposed by Bolsinova
et al. (2022). Under the Rasch model, the response of learner 7 to item j can be
conceptualized as an outcome of the following process: one ball is sampled from an
infinite urn of learner 7 with the proportion of green balls equal to
7; = exp(0;)/(1 + exp(0;)) (with others being red) and another ball is sampled from an
infinite urn of item j with the proportion of green balls equal to
7 = exp(5;)/(1 + exp(5;)) until the balls are of different colour; the colour of the ball
from the learner’s urn determines the outcome: green for correct, red for incorrect. We
can express this algorithmically as follows:

repeat

Y; ~ Bernoulli(x;)

Y; ~ Bernoulli(r;)

return X; =Y; = 1-Y;
For this process the probability of a correct response is

JT,'(I*JTJ') _ exp(giiéj)
in) T (1)~ T+ exp(0-5)

Pr(X;=1)= 3

To track the abilities and difficulties, the modelled process is mimicked by a process
based on tracking urns of finite size. The configurations of these tracking urns are used to
monitor the development of abilities (difficulties). To track the (inverse-logit-transformed)
ability of learner 7 (difficulty of item ), the number of green balls in their tracking urn (with
others being red) is used, which is denoted by R; (R;) and referred to as the ‘Urning’. The
urn size, denoted by 7; (1)), plays the role of a tuning parameter responsible for the bias—
variance trade-off in the urnings, similar to the step-size factor K in Elo. While extensions
of the algorithm with urn sizes changing throughout the activity in the system can be
developed, currently the urn sizes need to be specified at the start for each learner (item)
and stay stable, but might vary across learners and items. The choice of the urn size can be
guided by the desired precision of the urnings (the higher it is, the higher #z should be),
expected level of activity in the system (the higher it is, the higher 7 can be) and the
expected rate of change in the parameters (the higher it is, the smaller # should be).

The urnings are updated after each observation such that their invariant distribution is
a product of binomials with parameters 7; (#;) and 7; (), conditional on their total sum,
when there is no change in the true values. That is, unlike the Elo ratings for which the
invariant distribution is not known, the statistical properties of the urnings are known.
When items are selected randomly,” the Urnings algorithm is as follows. With
replacement, sample one ball from the learner’s tracking urn and one ball from the
item’s tracking urn until their colour is different. Once the condition is met, replace the

2We will return to the issue of adaptivity in Section 2.3.
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sampled balls with the balls matching the observed response with acceptance probability
equal to

R;i(n,—R;) + (n;—R,)R;

& (ny8;) + ()8 ) @

min| 1,

where R; and R; are the current urnings, and R} and RJ* are the proposed values (see
Bolsinova et al., 2022, for more df:tails).3

2.2. Multidimensional Urnings algorithm

Extending the Urnings algorithm to measure multiple dimensions requires the a priori
specification of the structure of the relationship between the items and the abilities (i.e.,
which items relate to which dimensions and what the non-zero weights are equal to).
Similarly to the extension of the Urnings algorithm for a unidimensional model with
unequal weights (Deonovic, Bolsinova, Bechger, & Maris, 2020), here we consider
weights that are positive integers. In a compensatory multidimensional item response
theory model the probability of a correct response is the following:

_exp(X 1 @im (Om—57))
1t exp( Xy jm (Om—0y))

Pr(X;=1) ©))

where wj,, is an integer-valued weight of item j in dimension m, 0;,, is the mth ability of
learner #, and M is the number of dimensions.® This model can be viewed as the
multidimensional extension of the one-parameter logistic model (Verhelst & Glas, 1995),
where integer-valued weights are specified in a unidimensional model. The weights
quantify the strength of the relationship between the ability and the probability of a
correct response. Without any additional prior information one may want to choose same
weights (e.g., equal to 1) for dimensions that are expected to be equally important for
solving an item, and weights of different values for primary and secondary dimensions for
an item (e.g., 2 and 1, respectively).
The model in equation (5) is equivalent to:

(1-m) "I
m

(1—7[].) le;ln?:izm + R]le;[(l_nim)wm ,

Pr(X;=1) = ©)

where W, = Z%:lem, and m;, = exp(0im)/(1 + exp(6;,)). Here each learner is
represented by M urns and the item is represented by a single urn. The conceptualized

3 Note, that throughout the iterations the number of green balls (R;) or the number of red balls (12;—R,) may
become zero, but that does not affect the performance of the algorithm. Such border cases would correspond to
estimates of w; equal to 0 and 1, which are not problematic on the probability scale but would result in improper
estimates on the logit scale (—oo and +o0, respectively), which is one of the reasons why we prefer to work with
the probability scale. However, average urnings, which are almost never equal to 0 or 7; (1)), can be easily
transformed to the more common logit scale.

1We use the parametrization with the difference between ability and difficulty inside the parentheses to keep the
item parameters of the items that load on multiple dimensions on the same scale as the items that load on a single
dimension.
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process behind the response is as follows. Sample w;,, balls from each of the learner’s urns
and W; balls from the item’s urn, until the colours of the W; balls sampled from the
learner’s urns are the same, yet different from the colours of the W balls sampled from the
item’s urn.’

Each learner receives multiple tracking urns, while each item receives only one.
When a learner responds to an item, the learner’s urns for the dimensions with
w;»#0 and the item’s urn are updated. In addition to allowing for multidimension-
ality, we propose a slight modification to the basic algorithm such that it does not
require the step with acceptance probability as in equation (4). Instead of first
sampling balls from the tracking urns and then (potentially) replacing them with the
balls matching the observed response, we first add the balls matching the observed
response to the tracking urns and then sample balls from them. That is, the algorithm
has two steps.

Step 1. Add balls matching the observed response to the tracking urns:

R =R+ W,;(1-Xy). ®

Step 2. Sample wj,, balls (without replacement) from each learner’s urn m and W; balls
(without replacement) from the item’s urn. If the colours of all the balls sampled from the
learner’s urns are equal, yet different from the colours of all the balls sampled from the
item’s urn, remove the sampled balls from the tracking urns. Otherwise return the balls to
the urns and repeat sampling until the condition is satisfied. This can be expressed
algorithmically as follows:
repeat
Y, ~ Hypergeometric (wjm, nim + Wi, R;,), Ym € [1 : M]

m

Y~ Hypergeometric(W', n; + Wj,R;.‘)

until | 3, Y;,~Y; |= W,
return {R;f;: ...,R;;,R;*} = {Ry=Yi1 Ry =Y B - )

where {R:‘l*, . ,R;‘},RJ’.‘*} are the updated urnings. Note that operationally we do not

simulate the whole process in which balls are repeatedly sampled until the condition is
satisfied, but simply simulate the outcome of this process (either ), Y7 = W; and
Y;=0,or >uYi, =0and Y; = W) using the following probability derived from the

samphng process:

>We note that though this process might seem non-compensatory, it generates probabilities under the
compensatory model in equations (5) and (0).
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pr@y;fm =W, Y = o|R;f,R;>

Pr(;”fm =W;Y; = 0|R7’R;)
w; jm—1
L2 ("j—Rf—U> [ DL (R, +0)

W, M 1 W1/, M - '
Hvzjl (nj_R; + 1)) Hl HZHLO (R:fm_v) + Hu:]() (Rj _U) Hm:l zl/”;l (nim _R;'km + y)
m—=

C))

The algorithm ensures that the urnings have known invariant distributions when the
abilities and the difficulties are stable and repeated observations are collected. Theorem 1
states that the distribution of updated urnings is equal to the distribution of the current
urnings. The proof is provided in Appendix A.

Theorem 1. If

n; S n; . e
Hm ( rlm >”:;:Z (1 _ﬂim)n,m im ( r]' ) ﬂ;] (1 _ ”j)nj 7 F condition
Pl'(Ri = ri,Rj = rj) = J ,

VA
a0

where the condition of the indicator function is that, for each m,
Vim + (wjm / W]-)rj = F'ym, Tim is divisible by wj,,, and 7; is divisible by W;; and Z is the
normalizing constant, then

(Ri".R") ~ (Ri ). an

Given the chosen value of r,, equation (10) gives a unique invariant distribution for
the learner repeatedly answering the item, since every state (r,~, rj) which conserves r
can be reached from any other state also satisfying this condition in a finite number
of steps (see Bolsinova et al., 2022, for details on how the invariant distribution
depends r).

Now instead of considering one item-learner pair that repeatedly produces
responses, let us consider an ALS with many learners repeatedly matched to different
items. Here, the joint distribution of all urnings is proportional to the product of
(truncated) binomial distributions with the sums Y R, + Zj (wjm / W]-)Rj being
constant for every m. For the items with W;>1 the corresponding binomial is
truncated since the distribution is non-zero only for 7; divisible by W;. The mean and
variance of these truncated binomials can be derived analytically and for large #n;,,s and
n;s they are very close to those of the corresponding binomials. For the learners the
distributions are not truncated if there are some items with w;,, = 1 in every dimension.
Since r is constant, there is a small negative dependence between the urnings, and the
variance of the binomial gives an upper bound for the actual variance. For each learner
(item) the expected value of R, /7y, R; / ny) is extremely close to m;, (), therefore
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Rim [ Mim R; / n;) can be used as an estimate of n;,, (;r;). Knowing the invariant distribution
of the urnings allows one to quantify the uncertainty of the estimate of w;,, (%;) using
confidence intervals.

2.3. Adaptive item selection
The main feature of ALSs is that the learning materials and practice items are selected for
the learners based on what is known about their ability. Typically, the items are selected
based on the current ratings of the learner and the items in the system. Bolsinova
et al. (2022) and Hofman et al. (2020) demonstrated that not correcting for the adaptive
item selection can have detrimental consequences for the ratings. If the difficulty of
selected items is matched to the learner’s ability, then the variance of the ratings will
artificially increase. This variance inflation means that while the rankings of the
difficulties and abilities are intact, the ratings themselves are affected. As a result, the
predicted probabilities of correct responses are biased (probabilities above (below) .5 are
overestimated (underestimated)), which decreases the quality of future item selection.
To our knowledge the Urnings algorithm is the only one that incorporates a correction
for adaptive item selection.® We apply the same correction here. For every item 7 it should
be known what the probability of being selected for learner j is. Let us denote this
probability by S (Ri, R;, RU )) , which is a function of the current urnings of the learner and

the item and of the urnings of all other items (R\/)).” To correct for adaptivity, the new

values {R}‘*,R]’f*} are accepted with probability

Sy (R;f*, R, R<f>)

12
S5 (&2 By R 2

min | 1,

That is, if selecting item 7 becomes more probable, the proposed values are always
accepted, while otherwise the current values are sometimes retained (for proof and
details, see Bolsinova et al., 2022).

2.4. Reference point for the urnings

To compare the urnings over time we need to keep a clearly interpretable reference point
across time. The total sum of the urnings per dimension is not a very convenient reference
point, because abilities change over time, learners leave the system taking their balls with
them, and new learners enter the system. Therefore, instead of keeping the total sum
constant (Batchelder, Bershad, & Simpson, 1992, pp. 185-186), we propose to keep the
sum of urnings constant for something that is relatively stable over time, namely for the
item pool. While individual items might become relatively more or less difficult, the item
pool as a whole (or a subset of it) can be assumed to be relatively stable and the change in
all the learners and in the individual items can be interpreted in relation to this pool.

®An example of a simple tracker that implements a correction by limiting item selection to specific items can be
found in Brinkhuis and Maris (2010).

7 Note that item selection should be organized in such a way that ergodicity of the Markov chain of the urnings is
not effected. That is, all learners and items should be connected to each other, for example if there is a non-zero
probability that person A answers items B and C, and person D answers items B and E, then A, B, C, D and E are
connected.
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We propose for each dimension to consider the subset of items that load only on this
dimension as the reference subset to ensure that the urnings have a stable reference point.
If the urning of an item from the reference subset needs to be updated upwards or
downwards, this is done only when a different item from this subset needs an update in
the opposite direction, that is, a pairwise update of the item urnings is performed
(Brinkhuis, Bakker, & Maris, 2015, p. 335). The learners’ urnings are updated directly after
the response, while a queue of items from the reference subset needing an upward or
downward update is created that are waiting for another item from the reference subset to
need the opposite update. When such an update is needed, the urning of one item
randomly selected from the queue is updated. In this way the green balls would be
redistributed among the urns in the reference subset and their total number would stay
constant. The urnings of the items outside the reference subsets can be updated without
queuing. With this modification of the algorithm, the distributions of the item urnings in
the reference subset are (truncated) binomial with the constraint on their sum, while the
distributions of the urnings of the learners and of the other items are not constrained.

2.5. Evaluating appropriateness of the item weights
Theorem 2 formulates an important property of the algorithm which can be used to
evaluate model fit (see Appendix B for the proof).

Theorem 2. If the model for Pr (X i= 1) is correctly specified and items are selected

randomly, then for each possible combination of values for {R;fl, ...,R;.‘M,R]’f} the

observed proportion of correct responses is equal to the proportion of updates in which
the balls sampled from the learner’s tracking urn were green:

Pr(Xy = 1Ry =71, .. Ry = ras, R = 1)
= PI'( = 0|R11 =7y, .. R]M VM,Ri* = )
w; m—1
_ Hl/ jl (nf_t_v) Hm Iij ( + U)

_Hl‘;V:jl ("j_t+”)Hm 1me (”m_”)"‘ny:o (t )Hm 1me (Mim—7m + v )
a3

When M > 1, evaluating the match between the observed and expected proportions for
each of the ((n] + WJ-) / W, + I)Hm (n,-m + Wi + 1) possible combinations of urning
values is impractical and difficult to interpret. Therefore, we propose to evaluate the
appropriateness of the item weights by considering each dimension separately. For every

im>

combination of values {r,,,t} for {R* RJ*} we approximate the expected probability

Pr(Y]’f =0|R;, = =rm R} = t) with the proportion of updates with Y = 0 among those

with R}, = r,, and R]* = t and compare it with the corresponding observed proportion of
correct responses.

2.6. Tracking population development

Tracking ability development over time is of interest not only at the individual level, but
also for the population as a whole. Here, one can study how average abilities change over
time, how variances of abilities change, and how relationships between abilities develop.
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Assuming a multivariate normal distribution for the abilities in the population (on the logit
scale), it is straightforward to estimate the parameters of this distribution by considering
the probability of the urnings taking their particular values given the population
parameters:

M Wi exp(6,,) ™
peR = el %) = [T | H(m) e elO e, ()

where { and X are the mean vector and the covariance matrix of the ability distribution. In
Appendix C we describe a Bayesian algorithm for estimating these parameters.®

2.7. Bayesian inference about ability on the individual level

In addition to frequentist inference based on the point estimates and confidence intervals,
one can also obtain posterior distributions of ability of each of the learners in the multiple
dimensions. Unlike the simple estimate R, /n;,, which is based only on the urning of the
learner in the specific dimension 7z, the posterior distribution in each dimension would
be also based on the information about the other dimensions and the population
distribution of ability. The joint posterior of ability in all dimensions is

f0:| R, ..., Ry, 2). as)

Note that this distribution is different at every timepoint, since the urnings of the
persons differ across time and the mean and the covariance matrix are estimated
separately for different timepoints. Given the estimates of the population parameters, one
can obtain samples from the posterior distribution in equation (15) by following Step 1 of
the algorithm used for estimating the population parameters provided in Appendix C.
Using these samples, one can compute the estimates (i.e., posterior means) and create
credible intervals that reflect uncertainty about the parameter values after taking the
urnings in all dimensions and the population distribution into account.

3. Simulation study

To demonstrate the properties of the algorithm we carried out a simulation study
consisting of two parts. We first consider a scenario in which the abilities and difficulties
do not change to demonstrate that the urnings follow their theoretical invariant
distribution and to illustrate how the appropriateness of item weights can be evaluated.
Then we consider a scenario in which abilities do change over time to show how the
algorithm tracks ability development at the individual and population level.

8The probability in equation (14) is proportional to the likelihood of the between-item multidimensional model
with all item difficulties equal to 0 and all discriminations equal to 1. Therefore, any software for estimating
multidimensional item response theory models can be used to estimate the population parameters if appropriate
constraints on the item parameters are placed. However, using the binomial distributions in estimation would be
more efficient.
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Table 1. Item types included in the study: wj;, wj,, w;3 are the weights in the three dimensions

wjl wj'z w]'5
1 0 0
2 0 0
3 0 0
0 1 0
0 2 0
0 3 0
0 0 1
0 0 2
0 0 3
1 1 0
wﬂ wj'z wj3
2 1 0
1 2 0
2 2 0
1 0 1
2 0 1
1 0 2
2 0 2
0 1 1
0 2 1
0 1 2
Wiy Wy Wiz
0 2 2
1 1 1
2 1 1
1 2 1
1 1 2

3.1. Part I: Unchanging abilities and difficulties

3.1.1. Data generation
An ALS with three dimensions, 5,000 learners and 500 items was simulated. The true
values for the abilities on the logit scale were sampled from

1 05 05
Nilo, |os 1 o5
05 05 1

Item difficulties were set equal to the equally spaced quantiles of N(0,1). Both
between-item and within-item multidimensionality was included. Twenty-five different
item types (with 20 items each) were used (see Table 1).

In each of the 10,000 sessions each learner responded to one random item and nine
adaptively selected items (with probabilities proportional to the expected variance of the
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Figure 1. Traceplot of urning values for a single learner in one dimension. The theoretical mean is
indicated by a solid red line. The 2.5th and 97.5th percentiles of the binomial distribution are
indicated by dashed red lines. The distribution of observed urnings across sessions is displayed by
the histogram, overlayed with the theoretical distribution in red dots.

item score).” Random selection was included to check the appropriateness of item
weights. For illustration we consider three different items: with correctly specified
weights (w; = [1,1,0]); with one of the weights too high (w; = [2,1,0] instead of
[1,1,0)); and with one of the weights too low (w; = [1, 1,0] instead of [2, 1,0]).

The urn sizes were set to 20 for the learners and 204 for the items.'® The urn size was
larger for the items because their urnings are updated more often than those of the
learners. For each dimension the items that load only on that dimension were used as the
reference subset.

3.1.2. Results
Figure 1demonstratesforasingle R, thatthe distribution of the urningisindeedvery close
toBinomial(#2;,,, 7, ). The last urning values in each of the 10,000 sessions fluctuate around
the theoretical mean (solid red line) and about 95% of these values lie within the theoretical
bounds (dashed red lines). The observed distribution of the urnings (indicated by the
histogram) hardly deviates from the theoretical distribution (indicated by the red dots).
Figure 2 shows that for all learners in all dimensions the mean and the variance of the
urnings across the sessions are very close to the theoretical values. On the item side (see
Figure 3), this is also the case for the items outside of the reference subsets with correctly

®When computing the expected probability of a correct response, the number of green and the number of red
balls in each urn were increased by 1 to make sure that for none of the item-learner combinations was the
probability of a correct response equal to O or 1.

10 The urn size for the items was chosen such that it is divisible by 1, 2 and 3, which are the possible values for W;.
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Figure 2. Empirical (y-axis) and theoretical (x-axis) means (left) and variances (right) of the urnings
of the learners.
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Figure 3. Empirical (y-axis) and theoretical (x-axis) means (left) and variances (right) of the urnings
of the items. The items indicated in red are the items included in the reference subsets. The items for
which the weights were misspecified are indicated in blue (one of the weights is too large) and green
(one of the weights is too small) triangles.

specified weights (indicated by black dots). As expected, in the reference subsets the
variances of the urnings are smaller than those of the (truncated) binomial distributions due
to the negative dependence between them (see red dots in Figure 3b). For the items with
misspecified weights the means are correctly recovered, but the variances are larger
(smaller) than the theoretical variances when w;; is too high (low) (see the blue and green
triangles in Figure 3b).

Figure 4 demonstrates how the appropriateness of the weights is checked. The rows
and columns represent the three dimensions and the three different items, respectively.
For each combination of R; (x-axis) and R}, (y-axis) the colour represents the observed
proportion of correct responses among the responses with such a combination of R]’.‘ and
R}, (i.e., urning values after the first step of the algorithm) under random item selection.
The combinations for which the expected proportion was significantly smaller (larger)
than the observed proportion are indicated by A (V)."" For the item with correct weights

"!'The significance of the deviation between the observed and expected proportions was tested using the chi-
square test for contingency tables.
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Figure 4. Evaluating appropriateness of item weights. For each of the three items in each of the
three dimensions we consider different possible combinations of the urning values for the item and a
learner after the first step of the algorithm and compare the observed proportion correct among the
responses with such a combination of Rj’f and R},, (indicated by different colours) with the expected

proportion (A (V) indicates that the observed proportion is significantly larger (smaller) than the
expected proportion).

(first column) there are only a few significant deviations and there is no pattern in them.
For the item with ), too large (second column), for 72 = 1 the deviation is positive and
significant for many cells with the observed proportion larger than .5 (V in the red cells),
and vice versa where it is smaller than .5 (A in the blue cells). Hence, the strength of the
relationship between the ability and Pr (X = 1) is overestimated. The opposite pattern
(i.e., V in the blue cells and A in the red cells) is seen for m = 1 for the item with w;, too
small (third column). Here, the relationship between ability and Pr(X; =1) is
underestimated. Similar but weaker patterns are present for the other dimensions, since
all dimensions are correlated and therefore the effect of a misspecification is carried over.

3.2. Part 2: Changing abilities

3.2.1. Data generation

This simulation includes three abilities of individuals that change gradually over time,
while the population ability distribution is multivariate normal (on the logit scale) at each
timepoint. In addition, two specific effects are simulated. First, the variances of ability are
simulated to increase over time, creating a so-called Matthew effect. Second, correlations
increase over time to simulate an increasing positive manifold (e.g., Hofman et al., 2020;
Savi, Marsman, van der Maas, & Maris, 2019). Abilities for 1,000 unique learners at 200
timepoints were generated. Specific details of how the data were generated are provided
in Appendix D.
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Figure 5. Traceplots of the urnings of nine persons (solid lines) with the same underlying pattern of
development of ability (dashed lines) but different level of activity in the ALS (g) and different urn

(h) n =459 =15

(i) n=45,g =45

size (n). The dotted lines indicate the expected bounds for the binomial distribution of the urnings.

The combination of two factors is important for how well development can be tracked:
urn size and how actively the learners use the system. Three levels of activity —low (g = 5
items per timepoint), medium (g = 15) and high (g = 45) — and three urn sizes — small
(n = 5), medium (# = 15) and large (n = 45) — were considered. Nine groups of learners
(matching the combinations of these factors) with the same underlying abilities were

simulated.

From the 500 items 50% had constant difficulty, 25% increased linearly in difficulty by
0.5 on the logit scale from ¢ = 0 to ¢ = 200, and 25% decreased in difficulty by the same
amount. Item difficulties at # = 100 were set to be equal to the equally spaced quantiles of
N(0,1). The same types of items as in Part 1 were used, without any weight
misspecifications. The average item difficulty in each reference subset was constant
and all the change in the individual abilities and difficulties can be interpreted in relation to
these constants. The item urn size was set to 204.

3.2.2. Results
Figure 5 shows the traceplots of the urnings of nine learners (solid lines) with the same
underlying pattern of development of ability (12/(1 + exp(—0))), dashed lines), but with

85UR01] SUOLUWIOD @ATERID) B[ed ! fdde 8L Aq peueA0b a1e SBILE YO (88N J0 S9N 0} ARIGIT BUIIUO AB|IM UO (SUO 1 IPUOD-PUE-SLLBYLIOY" A3 1M ARe.q[ou 1 |UO//SdhL) SUO R PLOD PUE SWie L 8} 885 *[2202/0T/8T] U0 A%Iq1T8UIlUO AB1IM ‘SPURLiRUIRN BURIUR0D Ad 9,22 dSWud/TTTT OT/10p/wod | 1w Aseiq puljuo dnuya/sdsday/sdny woi pepeojumoq °¢ ‘Z20e ‘LTE8rH0Z



768  Maria Bolsinova et al.

-

o

o
£

0.75+

o
N
o

Ability (probability scale)
3
Ability (logit scale)
o

o
o
S
|
IS

0 50 100 150 200 0 50 100 150 200
Timepoint Timepoint

Figure 6. Traceplots for the estimates of ability of one of the learners (with z = 15and g = 15) in
the first dimension and the associated uncertainty. On the left, the results are shown on the
probability scale and are based only on the urnings in the specific dimension (estimate, black line;
95% confidence interval, grey area). On the right, the results are shown on the logit scale and in
addition to the results based only on the urnings in the first dimension (black line and grey area), the
results based on the urnings in all three dimensions and the population distribution are shown
(posterior mean, red line; 95% credible interval, red-grey area).

different levels of activity (g) in the ALS and different urn sizes (n). Generally, when # is
higher than g, the tracelines show a lot of autocorrelation and are lagging behind the
ability development. At the same time, with higher 7 there is less noise in the urnings,
which is expected based on their theoretical bounds (see grey areas).

Figure 6 illustrates how inferences about the individual ability parameters can be
made. For a single person (with # = 15 and g = 15) it shows the estimates of ability in the
first dimension and the uncertainty around them. On the left, the estimates are shown on
the probability scale and are based only on the urnings in that dimension. and the
uncertainty is given by the 95% confidence intervals.'” On the right, the same estimates
are shown on the logit scale (black line and grey area) together with the Bayesian estimates
(red line) and the corresponding uncertainty quantified with the 95% credible intervals
(red-grey area). Bayesian estimation takes not only the values of R;;, but also the urnings in
the other two dimensions and the population ability distribution into account, which
explains the differences between the two types of estimates and their uncertainty: first,
the Bayesian estimates are generally higher because the individual estimates are pooled
upwards to the population mean; and second, the Bayesian intervals are less wide because
they are based on more information.

Table 2 contains the estimates of the bias and root mean squared error (RMSE) of the
individual-level ability on the probability scale. With the positive development of ability,
there is always a negative bias which decreases with g, and is comparable for groups with
the same 7/g. RMSE, which in addition to bias takes variance into account, mainly
depends on urn size (the larger 7 is, the smaller RMSE is).

Figure 7 shows the development of the population parameters for three of the groups.
The algorithm is rather successfully tracking the general development of the parameters.
For the mean, the estimates are lagging behind the actual growth, with the severity of the
lag increasing with 7 (keeping g constant). For the standard deviation and the correlation,

12 The Wilson score interval (Wilson, 1927) with continuity correction (Newcombe, 1998) was used.
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Table 2. Bias and root mean squared error (RMSE) of the individual abilities (on the probability
scale) and of the population parameters (means, standard deviations, and correlations, on the logit
scale) for the nine groups of learners with different urn sizes (7) and levels of activity (g)

Individual ability Means SD Correlations
n g Bias RMSE Bias RMSE Bias RMSE Bias RMSE
5 5 -0.010 0.199 —0.064 0.076 —0.009 0.057 0.003 0.043
15 —0.005 0.198 —0.034 0.046 -0.026 0.061 0.021 0.050
45 -0.005 0.198 —-0.032 0.048 -0.018 0.060 0.012 0.048
15 5 -0.014 0.116 —0.068 0.070 -0.025 0.037 —-0.004 0.021
15 -0.007 0.115 —0.040 0.045 —-0.011 0.028 0.000 0.021
45 —0.006 0.115 -0.035 0.041 —0.004 0.028 —-0.001 0.022
45 5 -0.019 0.070 —-0.097 0.099 -0.025 0.030 —-0.019 0.023
15 —0.009 0.067 —-0.053 0.055 —0.008 0.016 —-0.008 0.015
45 —0.006 0.066 —0.040 0.043 —-0.009 0.017 0.000 0.012
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Figure 7. Traceplot for the estimates of the population parameters for ability (red, mean in
dimension 1; blue, standard deviation in dimension 1; purple, correlation between dimensions 1 and
2) computed separately for groups of learners with the same level of activity, but different urn sizes.
The dashed lines indicate the true development of the population parameters. The coloured areas
indicate the 95% credible intervals for the parameters.

the lag is visible only for the large urn. Furthermore, with larger 7 it takes longer to move
away from the starting values. The noise in the estimates and the width of the credible
intervals decrease with 7. Table 2 includes the bias and RMSE of the population-level
estimates (computed starting from ¢ = 100 to separate the cold-start problem from the
problem of lagging behind). For the means and standard deviations negative bias is present
for all groups, but it increases with 72/g. The RMSE follows the pattern of the bias, as the
effect of variance decreasing with 7 is not sufficient to compensate for the increasing bias.
For the correlations which do not increase as fast, the bias is close to zero for all conditions,
and the RMSE mainly depends on 7.

3.3. Empirical example

The multidimensional urnings algorithm was applied to data from Math Garden, an ALS for
K-12 arithmetics (Brinkhuis et al., 2018; Hofman et al., 2020; Klinkenberg et al., 2011),
including several games (e.g., Brinkhuis, Cordes, & Hofman, 2020). Data on 5,860
frequent users of the system with at least 100 responses in three different games —
Addition, Multiplication and Speedmix — between 1 September 2018 and 31 May 2020
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Figure 8. Evaluating model fit for four types of items. Each dot denotes a combination of R}, R}, , R},
and Rj;: among all responses with a particular combination of urning values the observed (x-axis)
and expected (y-axis) proportion of correct responses are computed.

were selected. In Speedmix children get items that require basic operations to solve, just
as in Addition and Multiplication, but have 8 instead of 20 s to respond. While in Math
Garden addition and multiplication are tracked without taking the addition and
multiplication items from Speedmix into account, here we include these items to track
the addition and multiplication dimensions. We consider three dimensions (addition,
multiplication, and speed) and let the addition and multiplication items from Speedmix
load both on the corresponding substantive dimension and the speed dimension (both
with wj,, = 1). The items from the Addition and Multiplication games only had a weight of
1 for the corresponding substantive dimension.

Figure 8 shows model fit separately for four item types: (a) loading only on addition;
(b) loading on addition and speed; (¢) loading only on multiplication; and (d) loading on
multiplication and speed. Each dot represents a combination of possible values for the
item urning and the three learner urnings after the first step of the algorithm (i.e., R]’f, R,
R}, and R};), and compares the observed and expected proportions of correct responses
among all responses with such a combination of the urning values. For all four item types
the dots follow the diagonal line. For the items loading only on addition or multiplication,
the proportion of correct responses is underestimated where this proportion is relatively
high, which could be an indication of the urnings lagging behind the growth of the
abilities.
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Figure 9. Development of the population parameters over time. The population parameters were
estimated at the end of each 10th day in the data set. The white lines indicate the posterior means of
the parameters, and the coloured areas indicate the bounds of the 95% credible intervals.

First, we track the ability development at the population level. We focus only on
addition and multiplication, because we have a clear reference point only in these
dimensions, while the development of the speed dimension over time is not interpretable
because of the absence of the reference set of items loading only on this dimension.
Figure 9a shows the population means (on the logit scale), while Figure 9b shows the
correlation between the dimensions.'? The means clearly increase over time, with a dip in
the summer holidays. The addition dimension scores higher than the multiplication
dimension, which shows that on average the addition items were easier. The correlation
between the dimensions was around .90 and stable thought the 2-year period.

Second, we track the development of a single learner on both substantive dimensions.
Figures 10a,b show the development of the estimates of ability (on the probability scale)
in the addition and multiplication dimensions (black lines) and the associated uncertainty
quantified by confidence intervals (grey areas). For this person improvement in the
addition dimension was faster than in the multiplication dimension.

4. Discussion

In this paper we provided a modification and an extension of the recently proposed
Urnings algorithm. Given the popularity of multidimensional models, this multidimen-
sional extension of the Urnings algorithm allows for wider applications in ALSs and
inference on items not possible before. Earlier approaches avoided within-item
multidimensionality by implementing multiple unidimensional constructs, possibly
reducing the ecological validity of such applications in that constructs are practised
and tested separately. Using this multidimensional model, more realistic items covering
multiple constructs can be offered and modelled.

Another contribution of our paper is that we consider how abilities can be tracked not
only at the individual, but also at the population level. Knowing the invariant distributions
of the urnings allows us to easily estimate the population parameters (means, standard

*We do not show the development of the variances because variance inflation may be present due to not
correcting for adaptive item selection.
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