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Recently, the Urnings algorithm (Bolsinova et al., 2022, J. R. Stat. Soc. Ser. C Appl. Statistics,

71, 91) has been proposed that allows for tracking the development of abilities of the

learners and the difficulties of the items in adaptive learning systems. It is a simple and

scalable algorithm which is suited for large-scale applications in which large streams of

data are coming into the system and on-the-fly updating is needed. Compared to

alternatives like the Elo rating system and its extensions, the Urnings rating system allows

the uncertainty of the ratings to be evaluated and accounts for adaptive item selection

which, if not corrected for, may distort the ratings. In this paper we extend the Urnings

algorithm to allow for both between-item and within-item multidimensionality. This

allows for tracking the development of interrelated abilities both at the individual and the

population level. We present formal derivations of the multidimensional Urnings

algorithm, illustrate its properties in simulations, and present an application to data from

an adaptive learning system for primary school mathematics called Math Garden.

1. Introduction

In recent years large-scale personalized learning has become one of the key ambitions of

educational innovation. It is enabled by the development of adaptive learning systems

(ALSs) that are designed to dynamically adjust the level or type of practice and instruction

material based on an individual learner’s ability or skill attainment. Measurement plays an

important role in ALSs, since monitoring the development of learners’ skills is crucial to

adapting the learning and practice material to their level. To optimize feedback,

instructions, and suggested learning material, one needs to have accurate and reliable

information about what the learners do and do not know. However, the adaptive,
dynamic, and large-scale nature of ALSs poses challenges for traditional measurement

models and statistical algorithms, which were not designed to be used in such contexts.
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While traditional measurement models have been extended to allow for dynamic

change in ability (e.g., Embretson, 1991; Wang, Berger, & Burdick, 2013), the resulting

models are increasingly complex, with a growing number of parameters, such that

updating themmay be not feasible in real timewhen large streams of data are coming into
the system. Therefore, alternative lightweight algorithms are needed for dynamically

updating learners’ multiple ability levels on-the-fly. Furthermore, not only learners’

abilities but also the characteristics of the items need to be tracked over time for the

purposes of quality control and for tracking whether the relative item difficulty changes

over time (i.e., item parameter drift; Glas, 2000). We note that this context, also termed

computerized adaptive practice (see, for example, Klinkenberg, Straatemeier, & van der

Maas, 2011), is geared towards learning and is quite different from computerized adaptive

testing (CAT) with a focus on assessment (e.g., Wainer, 2000), which requires a pre-
calibrated item bank and stable item parameters. However, see Veldkamp, Matteucci, and

Eggen (2011) for an approach to using CAT in learning.

There have been relevant recent developments in the field of intelligent tutoring

systems, where a variety of learning models have been constructed that both track ability

and model how learning progresses (e.g., Cen, Koedinger, & Junker, 2006; Corbett &

Anderson, 1994; Pavlik Jr, Cen, & Koedinger, 2009). While promising, a downside of

these models is that they have to make assumptions about how learning progresses,

which in turn may affect the ability of the system to accurately track ability if the chosen
model is misspecified. The required inclusion of a specific learning model may be a

desirable feature when the learners’ developmental paths are well understood, but can

be considered problematic in cases where this knowledge is not available and there is a

notable risk of misspecifying the shape of the learning trajectories. It is, therefore,

desirable and important to have statistical tools that allow practitioners to accurately

track the development of abilities over time without making assumptions about how

these abilities develop (trackers in this context are defined in Brinkhuis & Maris, 2020).

This has the benefit of separating the question of what ability levels respondents have
(i.e., tracking ability) from the question of how these abilities develop (i.e., modelling

learning). With accurate tracking procedures in place, one can carefully consider

different relevant models for describing the observed learning progressions in the

system, for example by considering whether all individuals benefit from certain practice

material.

Apromising recent development in the context of obtaining lightweight algorithms for

dynamically tracking ability has been the adaptation of the Elo rating system (Elo, 1978)

for educational purposes (Brinkhuis et al., 2018; Klinkenberg et al., 2011;
Pelánek, 2016). Originally developed for competitive chess, Elo is based on a transparent

and computationally efficient algorithm. It can be applied to learners practising items in

ALSs analogous to players competing each other: If a learner solves an item correctly, then

the learner ‘wins’, while if the response is not correct, the item ‘wins’. When viewed this

way, Elo can be used for tracking the progress of learners and the change in the item

difficulties. The learner’s ability rating (θ) and the item’s difficulty rating (δ) are updated as
follows:1

1 Throughout this manuscript, the term ‘ratings’ is used to indicate either the learner’s ability or item’s difficulty,
and is not used to indicate response choices (e.g., ratings on the Likert scale).
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θupdated ¼ θcurrent þ K X� exp θcurrent�δcurrentð Þ
1þ exp θcurrent�δcurrentð Þ

� �
, (1)

δupdated ¼ δcurrent�K X� exp θcurrent�δcurrentð Þ
1þ exp θcurrent�δcurrentð Þ

� �
, (2)

whereX is the observed response accuracy (1 for correct, 0 for incorrect), the probability

of a correct response (i.e., the expected response accuracy) is based on the Rasch model

(Rasch, 1960), and K is a step-size factor. The updating does not require any complex

computations, which makes the system highly scalable (i.e., very large numbers of

learners and items can be managed by the system).

Though not originally presented as such, the Elo algorithm generates a Markov chain

for every learner and every item; however, it is not knownwhether this Markov chain has
an invariant distribution (Brinkhuis & Maris, 2020). This makes it difficult to study the

statistical properties of the ratings and to use them for testing scientific hypotheses.

Moreover, the reliability of the ratings is unknown. Alternatives to Elo have beenproposed

that allow for somemeasure of uncertainty of the ratings, such asGlicko (Glickman, 2001)

and TrueSkill (Herbrich, Minka, & Graepel, 2006). In these systems, however, the

measures of uncertainty are based on approximations and do not use invariant

distributions. Another issue with these rating systems is that the adaptive item selection

potentially influences the invariant distribution and has to be corrected for, as described
by Hofman et al. (2020, p. 13), which to our knowledge has not been implemented in the

rating systems presented above.

Recently, the Urnings rating system has been proposed (Bolsinova et al., 2022) as an

alternative to Elo, maintaining the desirable practical properties (simplicity and

scalability) of the latter while addressing its undesirable statistical properties (unknown

reliability and effect of adaptive selection). TheUrnings algorithmuses the samemodel for

the probability correct as in Elo, but the ratings are updated differently. Determining the

probabilities of correct responses is conceptualized as an urn problem, where a rating is
represented by a number of coloured balls in an urn. After each response the ratings are

updated in such a way that their invariant distribution is binomial with the urn size as the

number of trials and the inverse-logit-transformed ability (difficulty) as the probability

parameter, conditional on the total sum of ratings. An important feature of the Urnings

algorithm is that it explicitly corrects for adaptive item selection.

While the Urnings rating system combines the benefits of Elo with desirable statistical

properties, in its current form an important limitation prevents it from being optimally

suited for ALSs. The system has currently been developed for dealing with a single ability
dimension, and hence is tied to unidimensional applications. ALSs generally consider a

wide range of abilities with both between- and within-item multidimensionality. Hence,

developing a multidimensional extension of the Urnings algorithm is of importance for

improving its feasibility and practical usefulness of working with ALSs.

In this paper, we propose a multidimensional Urnings rating system. Furthermore, we

propose a modification of the algorithm with a more intuitive updating rule which also

allows for a principledway of accessingmodel fit.Wewill present analytical derivations of

the system, show simulation results showcasing its properties, and present an application
to the data of an ALS.

Tracking a multitude of abilities 755
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2. Methods

2.1. Unidimensional Urnings algorithm
We first briefly describe the original Urnings algorithm proposed by Bolsinova

et al. (2022). Under the Rasch model, the response of learner i to item j can be

conceptualized as an outcome of the following process: one ball is sampled from an

infinite urn of learner i with the proportion of green balls equal to

πi ¼ exp θið Þ= 1þ exp θið Þð Þ (with others being red) and another ball is sampled from an

infinite urn of item j with the proportion of green balls equal to

πj ¼ exp δj
� �

= 1þ exp δj
� �� �

until the balls are of different colour; the colour of the ball

from the learner’s urn determines the outcome: green for correct, red for incorrect. We
can express this algorithmically as follows:

repeat

Y i ∼ Bernoulli πið Þ

Y j ∼ Bernoulli πj
� �

until Y i≠Y j

return Xij ¼ Y i ¼ 1�Y j

For this process the probability of a correct response is

Pr Xij ¼ 1
� � ¼ πi 1�πj

� �
πi 1�πj
� �þ πj 1�πið Þ ¼

exp θi�δj
� �

1þ exp θi�δj
� � : (3)

To track the abilities and difficulties, the modelled process is mimicked by a process

based on tracking urns of finite size. The configurations of these tracking urns are used to

monitor thedevelopment of abilities (difficulties). To track the (inverse-logit-transformed)

ability of learner i (difficulty of item j), the number of green balls in their tracking urn (with

others being red) is used, which is denoted by Ri (Rj) and referred to as the ‘Urning’. The

urn size, denoted by ni (nj), plays the role of a tuning parameter responsible for the bias–
variance trade-off in the urnings, similar to the step-size factor K in Elo. While extensions
of the algorithm with urn sizes changing throughout the activity in the system can be

developed, currently the urn sizes need to be specified at the start for each learner (item)

and stay stable, butmight vary across learners and items. The choice of the urn size can be

guided by the desired precision of the urnings (the higher it is, the higher n should be),

expected level of activity in the system (the higher it is, the higher n can be) and the

expected rate of change in the parameters (the higher it is, the smaller n should be).

The urnings are updated after each observation such that their invariant distribution is

a product of binomials with parameters ni (nj) and πi (πj), conditional on their total sum,

when there is no change in the true values. That is, unlike the Elo ratings for which the

invariant distribution is not known, the statistical properties of the urnings are known.

When items are selected randomly,2 the Urnings algorithm is as follows. With

replacement, sample one ball from the learner’s tracking urn and one ball from the

item’s tracking urn until their colour is different. Once the condition is met, replace the

2We will return to the issue of adaptivity in Section 2.3.
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sampled balls with the balls matching the observed responsewith acceptance probability

equal to

min 1,
Ri nj�Rj

� �þ ni�Rið ÞRj

R�
i nj�R�

j

� �
þ ni�R�

i

� �
R�
j

0
@

1
A, (4)

where Ri and Rj are the current urnings, and R�
i and R�

j are the proposed values (see

Bolsinova et al., 2022, for more details).3

2.2. Multidimensional Urnings algorithm

Extending the Urnings algorithm to measure multiple dimensions requires the a priori

specification of the structure of the relationship between the items and the abilities (i.e.,

which items relate to which dimensions and what the non-zero weights are equal to).
Similarly to the extension of the Urnings algorithm for a unidimensional model with

unequal weights (Deonovic, Bolsinova, Bechger, & Maris, 2020), here we consider

weights that are positive integers. In a compensatory multidimensional item response

theory model the probability of a correct response is the following:

Pr Xij ¼ 1
� � ¼ exp ∑M

m¼1wjm θim�δj
� �� �

1þ exp ∑M

m¼1wjm θim�δj
� �� � , (5)

where wjm is an integer-valued weight of item j in dimensionm, θim is themth ability of

learner i, and M is the number of dimensions.4 This model can be viewed as the

multidimensional extension of the one-parameter logistic model (Verhelst & Glas, 1995),

where integer-valued weights are specified in a unidimensional model. The weights

quantify the strength of the relationship between the ability and the probability of a
correct response.Without any additional prior information onemaywant to choose same

weights (e.g., equal to 1) for dimensions that are expected to be equally important for

solving an item, andweights of different values for primary and secondary dimensions for

an item (e.g., 2 and 1, respectively).

The model in equation (5) is equivalent to:

Pr Xij ¼ 1
� � ¼

1�πj
� �Wj

Q
m
πwjm

im

1�πj
� �Wj

Q
k

πwjm

im þ πWj

j

Q
k

1�πimð Þwjm
, (6)

where Wj ¼ ∑M

m¼1wjm, and πim ¼ exp θimð Þ= 1þ exp θimð Þð Þ. Here each learner is

represented by M urns and the item is represented by a single urn. The conceptualized

3Note, that throughout the iterations the number of green balls (Ri) or the number of red balls (ni�Ri) may
become zero, but that does not affect the performance of the algorithm. Such border cases would correspond to
estimates of πi equal to 0 and 1, which are not problematic on the probability scale but would result in improper
estimates on the logit scale (�∞ andþ∞, respectively), which is one of the reasons whywe prefer to workwith
the probability scale. However, average urnings, which are almost never equal to 0 or ni (nj), can be easily
transformed to the more common logit scale.
4Weuse the parametrizationwith the difference between ability anddifficulty inside the parentheses to keep the
item parameters of the items that load onmultiple dimensions on the same scale as the items that load on a single
dimension.
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process behind the response is as follows. Samplewjm balls fromeach of the learner’s urns

and Wj balls from the item’s urn, until the colours of the Wj balls sampled from the

learner’s urns are the same, yet different from the colours of theWj balls sampled from the

item’s urn.5

Each learner receives multiple tracking urns, while each item receives only one.

When a learner responds to an item, the learner’s urns for the dimensions with

wjm≠0 and the item’s urn are updated. In addition to allowing for multidimension-

ality, we propose a slight modification to the basic algorithm such that it does not

require the step with acceptance probability as in equation (4). Instead of first

sampling balls from the tracking urns and then (potentially) replacing them with the

balls matching the observed response, we first add the balls matching the observed

response to the tracking urns and then sample balls from them. That is, the algorithm
has two steps.

Step 1. Add balls matching the observed response to the tracking urns:

R�
im ¼ Rim þwjmXij, 8m∈ 1 : M½ �, (7)

R�
j ¼ Rj þWj 1�Xij

� �
: (8)

Step 2. Sample wjm balls (without replacement) from each learner’s urn m andWj balls

(without replacement) from the item’s urn. If the colours of all the balls sampled from the
learner’s urns are equal, yet different from the colours of all the balls sampled from the

item’s urn, remove the sampled balls from the tracking urns. Otherwise return the balls to

the urns and repeat sampling until the condition is satisfied. This can be expressed

algorithmically as follows:

repeat

Y �
im ∼ Hypergeometric wjm,nim þwjm,R

�
im

� �
, 8m∈ 1 : M½ �

Y �
j ∼ Hypergeometric Wj,nj þWj,R

�
j

� �

until j ∑mY
�
im�Y �

j j¼ Wj

return R��
i1 , . . . ,R

��
iM ,R

��
j

n o
¼ R�

i1�Y �
i1, . . . ,R

�
iM�Y �

iM ,R
�
j�Y �

j

n o

where R��
i1 , . . . ,R

��
iM ,R

��
j

n o
are the updated urnings. Note that operationally we do not

simulate the whole process in which balls are repeatedly sampled until the condition is

satisfied, but simply simulate the outcome of this process (either ∑mY
�
im ¼ Wj and

Y �
j ¼ 0, or ∑mY

�
im ¼ 0 and Y �

j ¼ Wj) using the following probability derived from the

sampling process:

5We note that though this process might seem non-compensatory, it generates probabilities under the
compensatory model in equations (5) and (6).
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Pr ∑
m
Y �

im ¼ Wj,Y
�
j ¼ 0 jR�

i ,R
�
j

� �

Pr ∑
m
Y �

im ¼ Wj,Y
�
j ¼ 0 jR�

i ,R
�
j

� �

¼
QWj

ν¼1 nj�R�
j�v

� �QM
m¼1

Qwjm�1
ν¼0 R�

im þ v
� �

QWj

ν¼1 nj�R�
j þ v

� � QM
m¼1

Qwjm�1
ν¼0 R�

im�v
� �þQWj�1

ν¼0 R�
j�v

� �QM
m¼1

Qwjm

ν¼1 nim�R�
im þ v

� � :

(9)

The algorithm ensures that the urnings have known invariant distributions when the

abilities and the difficulties are stable and repeated observations are collected. Theorem 1

states that the distribution of updated urnings is equal to the distribution of the current

urnings. The proof is provided in Appendix A.

Theorem 1. If

Pr Ri ¼ ri,Rj ¼ rj
� � ¼

Q
m

nim

rim

� �
πrimim 1�πimð Þnim�rim

nj

rj

� �
π
rj
j 1�πj
� �nj�rjIcondition

Z
,

(10)

where the condition of the indicator function is that, for each m,

rim þ wjm=Wj

� �
rj ¼ rþm, rim is divisible by wjm, and rj is divisible by Wj; and Z is the

normalizing constant, then

R��
i ,R��

j

� �
∼ Ri,Rj

� �
: (11)

Given the chosen value of rþ, equation (10) gives a unique invariant distribution for

the learner repeatedly answering the item, since every state ri, rj
� �

which conserves rþ
can be reached from any other state also satisfying this condition in a finite number

of steps (see Bolsinova et al., 2022, for details on how the invariant distribution

depends rþ).
Now instead of considering one item–learner pair that repeatedly produces

responses, let us consider an ALS with many learners repeatedly matched to different

items. Here, the joint distribution of all urnings is proportional to the product of
(truncated) binomial distributions with the sums ∑iRim þ∑j wjm=Wj

� �
Rj being

constant for every m. For the items with Wj > 1 the corresponding binomial is

truncated since the distribution is non-zero only for rj divisible by Wj. The mean and

variance of these truncated binomials can be derived analytically and for large nims and

njs they are very close to those of the corresponding binomials. For the learners the

distributions are not truncated if there are some items with wjm ¼ 1 in every dimension.

Since rþ is constant, there is a small negative dependence between the urnings, and the

variance of the binomial gives an upper bound for the actual variance. For each learner
(item) the expected value of Rim=nim (Rj=nj) is extremely close to πim (πj), therefore

Tracking a multitude of abilities 759
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Rim=nim (Rj=nj) can be used as an estimate of πim (πj). Knowing the invariant distribution

of the urnings allows one to quantify the uncertainty of the estimate of πim (πj) using
confidence intervals.

2.3. Adaptive item selection

The main feature of ALSs is that the learning materials and practice items are selected for

the learners based on what is known about their ability. Typically, the items are selected

based on the current ratings of the learner and the items in the system. Bolsinova

et al. (2022) and Hofman et al. (2020) demonstrated that not correcting for the adaptive

item selection can have detrimental consequences for the ratings. If the difficulty of

selected items is matched to the learner’s ability, then the variance of the ratings will
artificially increase. This variance inflation means that while the rankings of the

difficulties and abilities are intact, the ratings themselves are affected. As a result, the

predicted probabilities of correct responses are biased (probabilities above (below) .5 are

overestimated (underestimated)), which decreases the quality of future item selection.

To our knowledge the Urnings algorithm is the only one that incorporates a correction

for adaptive item selection.6We apply the same correction here. For every item i it should

be known what the probability of being selected for learner j is. Let us denote this

probability by Sij Ri,Rj,R
jð Þ� �
, which is a function of the current urnings of the learner and

the item and of the urnings of all other items (R jð Þ).7 To correct for adaptivity, the new

values R��
i ,R��

j

n o
are accepted with probability

min 1,
Sij R��

i ,R��
j ,R jð Þ

� �
Sij Ri,Rj,R

jð Þ� �
0
@

1
A: (12)

That is, if selecting item i becomes more probable, the proposed values are always

accepted, while otherwise the current values are sometimes retained (for proof and

details, see Bolsinova et al., 2022).

2.4. Reference point for the urnings

To compare the urnings over timewe need to keep a clearly interpretable reference point

across time. The total sumof the urnings per dimension is not a very convenient reference

point, because abilities change over time, learners leave the system taking their balls with

them, and new learners enter the system. Therefore, instead of keeping the total sum

constant (Batchelder, Bershad, & Simpson, 1992, pp. 185–186), we propose to keep the

sum of urnings constant for something that is relatively stable over time, namely for the
item pool. While individual items might become relatively more or less difficult, the item

pool as a whole (or a subset of it) can be assumed to be relatively stable and the change in

all the learners and in the individual items can be interpreted in relation to this pool.

6 An example of a simple tracker that implements a correction by limiting item selection to specific items can be
found in Brinkhuis and Maris (2010).
7Note that item selection should be organized in such away that ergodicity of the Markov chain of the urnings is
not effected. That is, all learners and items should be connected to each other, for example if there is a non-zero
probability that person A answers items B and C, and person D answers items B and E, then A, B, C, D and E are
connected.
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We propose for each dimension to consider the subset of items that load only on this

dimension as the reference subset to ensure that the urnings have a stable reference point.

If the urning of an item from the reference subset needs to be updated upwards or

downwards, this is done only when a different item from this subset needs an update in
the opposite direction, that is, a pairwise update of the item urnings is performed

(Brinkhuis, Bakker,&Maris, 2015, p. 335). The learners’ urnings are updated directly after

the response, while a queue of items from the reference subset needing an upward or

downward update is created that arewaiting for another item from the reference subset to

need the opposite update. When such an update is needed, the urning of one item

randomly selected from the queue is updated. In this way the green balls would be

redistributed among the urns in the reference subset and their total number would stay

constant. The urnings of the items outside the reference subsets can be updated without
queuing. With this modification of the algorithm, the distributions of the item urnings in

the reference subset are (truncated) binomial with the constraint on their sum, while the

distributions of the urnings of the learners and of the other items are not constrained.

2.5. Evaluating appropriateness of the item weights

Theorem 2 formulates an important property of the algorithm which can be used to

evaluate model fit (see Appendix B for the proof).
Theorem 2. If the model for Pr Xij ¼ 1

� �
is correctly specified and items are selected

randomly, then for each possible combination of values for R�
i1, . . . ,R

�
iM ,R

�
j

n o
the

observed proportion of correct responses is equal to the proportion of updates in which

the balls sampled from the learner’s tracking urn were green:

Pr Xij ¼ 1jR�
i1 ¼ r1, . . . ,R

�
jM ¼ rM ,R

�
j ¼ t

� �

¼ Pr Y �
j ¼ 0jR�

i1 ¼ r1, . . . ,R
�
jM ¼ rM ,R

�
j ¼ t

� �

¼
QWj

ν¼1 nj�t�v
� �QM

m¼1

Qwjm�1
ν¼0 rm þ vð ÞQWj

ν¼1 nj�t þ v
� �QM

m¼1

Qwjm�1
ν¼0 rm�vð Þ þQWj�1

ν¼0 t�vð ÞQM
m¼1

Qwjm

ν¼1 nim�rm þ vð Þ
:

(13)

When M> 1, evaluating the match between the observed and expected proportions for

each of the nj þWj

� �
=Wj þ 1

� �Q
m nim þwjm þ 1
� �

possible combinations of urning

values is impractical and difficult to interpret. Therefore, we propose to evaluate the
appropriateness of the itemweights by considering each dimension separately. For every

combination of values rm, tf g for R�
im,R

�
j

n o
we approximate the expected probability

Pr Y �
j ¼ 0 jR�

im ¼ rm,R
�
j ¼ t

� �
with the proportion of updates with Y �

j ¼ 0 among those

with R�
im ¼ rm andR�

j ¼ t and compare it with the corresponding observed proportion of

correct responses.

2.6. Tracking population development

Tracking ability development over time is of interest not only at the individual level, but

also for the population as a whole. Here, one can study how average abilities change over

time, how variances of abilities change, and how relationships between abilities develop.
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Assuming amultivariate normal distribution for the abilities in the population (on the logit

scale), it is straightforward to estimate the parameters of this distribution by considering

the probability of the urnings taking their particular values given the population

parameters:

Pr R ¼ r jμ,Σð Þ ¼
Y
i

Z YM
m¼1

nim

rim

� �
exp θmð Þrim

1þ exp θmð Þð Þnim
g θjμ,Σð Þdθ, (14)

where { andΣ are themean vector and the covariancematrix of the ability distribution. In

Appendix C we describe a Bayesian algorithm for estimating these parameters.8

2.7. Bayesian inference about ability on the individual level

In addition to frequentist inference based on the point estimates and confidence intervals,

one can also obtain posterior distributions of ability of each of the learners in the multiple
dimensions. Unlike the simple estimate Rim=nim which is based only on the urning of the

learner in the specific dimension m, the posterior distribution in each dimension would

be also based on the information about the other dimensions and the population

distribution of ability. The joint posterior of ability in all dimensions is

f θi jRi1, . . . ,RiM , μ,Σð Þ: (15)

Note that this distribution is different at every timepoint, since the urnings of the
persons differ across time and the mean and the covariance matrix are estimated

separately for different timepoints. Given the estimates of the population parameters, one

can obtain samples from the posterior distribution in equation (15) by following Step 1 of

the algorithm used for estimating the population parameters provided in Appendix C.

Using these samples, one can compute the estimates (i.e., posterior means) and create

credible intervals that reflect uncertainty about the parameter values after taking the

urnings in all dimensions and the population distribution into account.

3. Simulation study

To demonstrate the properties of the algorithm we carried out a simulation study

consisting of two parts. We first consider a scenario in which the abilities and difficulties

do not change to demonstrate that the urnings follow their theoretical invariant

distribution and to illustrate how the appropriateness of item weights can be evaluated.
Then we consider a scenario in which abilities do change over time to show how the

algorithm tracks ability development at the individual and population level.

8 The probability in equation (14) is proportional to the likelihood of the between-itemmultidimensional model
with all item difficulties equal to 0 and all discriminations equal to 1. Therefore, any software for estimating
multidimensional item response theorymodels can be used to estimate the population parameters if appropriate
constraints on the itemparameters are placed. However, using the binomial distributions in estimationwould be
more efficient.
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3.1. Part 1: Unchanging abilities and difficulties

3.1.1. Data generation

An ALS with three dimensions, 5,000 learners and 500 items was simulated. The true
values for the abilities on the logit scale were sampled from

N3 0,

1 0:5 0:5

0:5 1 0:5

0:5 0:5 1

2
64

3
75

0
B@

1
CA:

Item difficulties were set equal to the equally spaced quantiles of N 0, 1ð Þ. Both
between-item and within-item multidimensionality was included. Twenty-five different

item types (with 20 items each) were used (see Table 1).

In each of the 10,000 sessions each learner responded to one random item and nine
adaptively selected items (with probabilities proportional to the expected variance of the

Table 1. Item types included in the study: wj1,wj2,wj3 are the weights in the three dimensions

wj1 wj2 wj3

1 0 0

2 0 0

3 0 0

0 1 0

0 2 0

0 3 0

0 0 1

0 0 2

0 0 3

1 1 0

wj1 wj2 wj3

2 1 0

1 2 0

2 2 0

1 0 1

2 0 1

1 0 2

2 0 2

0 1 1

0 2 1

0 1 2

wj1 wj2 wj3

0 2 2

1 1 1

2 1 1

1 2 1

1 1 2
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item score).9 Random selection was included to check the appropriateness of item

weights. For illustration we consider three different items: with correctly specified

weights (wj ¼ 1, 1, 0½ �); with one of the weights too high (wj ¼ 2, 1, 0½ � instead of

1, 1, 0½ �); and with one of the weights too low (wj ¼ 1, 1, 0½ � instead of 2, 1, 0½ �).
The urn sizes were set to 20 for the learners and 204 for the items.10 The urn size was

larger for the items because their urnings are updated more often than those of the

learners. For each dimension the items that load only on that dimension were used as the

reference subset.

3.1.2. Results

Figure 1demonstrates forasingleRim that thedistributionof theurning is indeedveryclose

toBinomial nim, πimð Þ.The lasturningvalues ineachof the10,000sessionsfluctuatearound
the theoreticalmean (solid red line) andabout95%of these values liewithin the theoretical

bounds (dashed red lines). The observed distribution of the urnings (indicated by the

histogram) hardly deviates from the theoretical distribution (indicated by the red dots).
Figure 2 shows that for all learners in all dimensions the mean and the variance of the

urnings across the sessions are very close to the theoretical values. On the item side (see

Figure 3), this is also the case for the items outside of the reference subsets with correctly

0

5

10

15

20

0 2500 5000 7500 10000
Session

U
rn

in
gs

Figure 1. Traceplot of urning values for a single learner in one dimension. The theoretical mean is

indicated by a solid red line. The 2.5th and 97.5th percentiles of the binomial distribution are

indicated by dashed red lines. The distribution of observed urnings across sessions is displayed by

the histogram, overlayed with the theoretical distribution in red dots.

9When computing the expected probability of a correct response, the number of green and the number of red
balls in each urn were increased by 1 to make sure that for none of the item–learner combinations was the
probability of a correct response equal to 0 or 1.
10 The urn size for the itemswas chosen such that it is divisible by 1, 2 and 3,which are the possible values forWj .
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specified weights (indicated by black dots). As expected, in the reference subsets the

variancesof theurningsaresmaller than thoseof the (truncated)binomialdistributionsdue

to the negative dependence between them (see red dots in Figure 3b). For the items with

misspecified weights the means are correctly recovered, but the variances are larger

(smaller) than the theoretical varianceswhenwj1 is too high (low) (see the blue and green
triangles in Figure 3b).

Figure 4 demonstrates how the appropriateness of the weights is checked. The rows

and columns represent the three dimensions and the three different items, respectively.

For each combination of R�
j (x-axis) and R�

im (y-axis) the colour represents the observed

proportion of correct responses among the responses with such a combination of R�
j and

R�
im (i.e., urning values after the first step of the algorithm) under random item selection.

The combinations for which the expected proportion was significantly smaller (larger)

than the observed proportion are indicated byΔ (r).11 For the itemwith correct weights

0

5

10

15

20

0 5 10 15 20
Theoretical mean
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Figure 2. Empirical (y-axis) and theoretical (x-axis)means (left) and variances (right) of the urnings

of the learners.
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Figure 3. Empirical (y-axis) and theoretical (x-axis)means (left) and variances (right) of the urnings

of the items. The items indicated in red are the items included in the reference subsets. The items for

which theweightsweremisspecified are indicated in blue (one of theweights is too large) and green

(one of the weights is too small) triangles.

11 The significance of the deviation between the observed and expected proportions was tested using the chi-
square test for contingency tables.
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(first column) there are only a few significant deviations and there is no pattern in them.
For the item with wj1 too large (second column), form ¼ 1 the deviation is positive and

significant for many cells with the observed proportion larger than .5 (r in the red cells),

and vice versawhere it is smaller than .5 (Δ in the blue cells). Hence, the strength of the

relationship between the ability and Pr Xij ¼ 1
� �

is overestimated. The opposite pattern

(i.e.,r in the blue cells and Δ in the red cells) is seen form ¼ 1 for the item withwj1 too

small (third column). Here, the relationship between ability and Pr Xij ¼ 1
� �

is

underestimated. Similar but weaker patterns are present for the other dimensions, since

all dimensions are correlated and therefore the effect of a misspecification is carried over.

3.2. Part 2: Changing abilities

3.2.1. Data generation

This simulation includes three abilities of individuals that change gradually over time,

while the population ability distribution is multivariate normal (on the logit scale) at each

timepoint. In addition, two specific effects are simulated. First, the variances of ability are

simulated to increase over time, creating a so-called Matthew effect. Second, correlations

increase over time to simulate an increasing positive manifold (e.g., Hofman et al., 2020;

Savi, Marsman, van der Maas, & Maris, 2019). Abilities for 1,000 unique learners at 200

timepoints were generated. Specific details of how the data were generated are provided
in Appendix D.

Item: 1 Item: 2 Item: 3

D
im

ension: 1
D

im
ension: 2

D
im

ension: 3

90 100 110 120 130 140 60 75 90 105 120 90 100 110 120 130 140

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

Rj
*

R
ik*

0.00

0.25

0.50

0.75

1.00
Observed proportion

Sig. differences

Obs. < Exp.

Obs. > Exp.

Figure 4. Evaluating appropriateness of item weights. For each of the three items in each of the

three dimensionsweconsider different possible combinations of the urning values for the itemand a

learner after the first step of the algorithm and compare the observed proportion correct among the

responseswith such a combination ofR�
j andR

�
im (indicated by different colours) with the expected

proportion (Δ (r) indicates that the observed proportion is significantly larger (smaller) than the

expected proportion).
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The combinationof two factors is important for howwell development canbe tracked:
urn size and how actively the learners use the system. Three levels of activity – low (g ¼ 5

items per timepoint), medium (g ¼ 15) and high (g ¼ 45) – and three urn sizes – small

(n ¼ 5), medium (n ¼ 15) and large (n ¼ 45) –were considered. Nine groups of learners

(matching the combinations of these factors) with the same underlying abilities were

simulated.

From the 500 items 50% had constant difficulty, 25% increased linearly in difficulty by

0.5 on the logit scale from t ¼ 0 to t ¼ 200, and 25% decreased in difficulty by the same

amount. Item difficulties at t ¼ 100were set to be equal to the equally spaced quantiles of
N 0, 1ð Þ. The same types of items as in Part 1 were used, without any weight

misspecifications. The average item difficulty in each reference subset was constant

and all the change in the individual abilities anddifficulties canbe interpreted in relation to

these constants. The item urn size was set to 204.

3.2.2. Results

Figure 5 shows the traceplots of the urnings of nine learners (solid lines) with the same
underlying pattern of development of ability (n= 1þ exp �θð Þð Þ), dashed lines), but with
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Figure 5. Traceplots of theurnings of ninepersons (solid lines)with the sameunderlyingpattern of

development of ability (dashed lines) but different level of activity in the ALS (g) and different urn

size (n). The dotted lines indicate the expected bounds for the binomial distribution of the urnings.

Tracking a multitude of abilities 767

 20448317, 2022, 3, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12276 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [18/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



different levels of activity (g) in the ALS and different urn sizes (n). Generally, when n is

higher than g, the tracelines show a lot of autocorrelation and are lagging behind the

ability development. At the same time, with higher n there is less noise in the urnings,

which is expected based on their theoretical bounds (see grey areas).

Figure 6 illustrates how inferences about the individual ability parameters can be
made. For a single person (with n ¼ 15 and g ¼ 15) it shows the estimates of ability in the

first dimension and the uncertainty around them. On the left, the estimates are shown on

the probability scale and are based only on the urnings in that dimension. and the

uncertainty is given by the 95% confidence intervals.12 On the right, the same estimates

are shownon the logit scale (black line and grey area) togetherwith theBayesian estimates

(red line) and the corresponding uncertainty quantified with the 95% credible intervals

(red-grey area). Bayesian estimation takes not only the values ofRi1, but also the urnings in

the other two dimensions and the population ability distribution into account, which
explains the differences between the two types of estimates and their uncertainty: first,

the Bayesian estimates are generally higher because the individual estimates are pooled

upwards to the populationmean; and second, the Bayesian intervals are lesswide because

they are based on more information.

Table 2 contains the estimates of the bias and root mean squared error (RMSE) of the

individual-level ability on the probability scale. With the positive development of ability,

there is always a negative bias which decreases with g, and is comparable for groups with

the same n=g. RMSE, which in addition to bias takes variance into account, mainly
depends on urn size (the larger n is, the smaller RMSE is).

Figure 7 shows the development of the population parameters for three of the groups.

The algorithm is rather successfully tracking the general development of the parameters.

For the mean, the estimates are lagging behind the actual growth, with the severity of the

lag increasingwith n (keeping g constant). For the standard deviation and the correlation,
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Figure 6. Traceplots for the estimates of ability of one of the learners (with n ¼ 15 and g ¼ 15) in

the first dimension and the associated uncertainty. On the left, the results are shown on the

probability scale and are based only on the urnings in the specific dimension (estimate, black line;

95% confidence interval, grey area). On the right, the results are shown on the logit scale and in

addition to the results based only on the urnings in the first dimension (black line and grey area), the

results based on the urnings in all three dimensions and the population distribution are shown

(posterior mean, red line; 95% credible interval, red-grey area).

12 The Wilson score interval (Wilson, 1927) with continuity correction (Newcombe, 1998) was used.
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the lag is visible only for the large urn. Furthermore, with larger n it takes longer to move
away from the starting values. The noise in the estimates and the width of the credible

intervals decrease with n. Table 2 includes the bias and RMSE of the population-level

estimates (computed starting from t ¼ 100 to separate the cold-start problem from the

problemof lagging behind). For themeans and standard deviations negative bias is present

for all groups, but it increases with n=g. The RMSE follows the pattern of the bias, as the

effect of variance decreasingwithn is not sufficient to compensate for the increasing bias.

For the correlationswhich donot increase as fast, the bias is close to zero for all conditions,

and the RMSE mainly depends on n.

3.3. Empirical example

Themultidimensional urnings algorithmwas applied to data fromMathGarden, an ALS for

K–12 arithmetics (Brinkhuis et al., 2018; Hofman et al., 2020; Klinkenberg et al., 2011),

including several games (e.g., Brinkhuis, Cordes, & Hofman, 2020). Data on 5,860

frequent users of the system with at least 100 responses in three different games –
Addition, Multiplication and Speedmix – between 1 September 2018 and 31 May 2020
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Figure 7. Traceplot for the estimates of the population parameters for ability (red, mean in

dimension 1; blue, standard deviation in dimension 1; purple, correlation betweendimensions 1 and

2) computed separately for groups of learners with the same level of activity, but different urn sizes.

The dashed lines indicate the true development of the population parameters. The coloured areas

indicate the 95% credible intervals for the parameters.

Table 2. Bias and root mean squared error (RMSE) of the individual abilities (on the probability

scale) and of the population parameters (means, standard deviations, and correlations, on the logit

scale) for the nine groups of learners with different urn sizes (n) and levels of activity (g)

n g

Individual ability Means SD Correlations

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

5 5 −0.010 0.199 −0.064 0.076 −0.009 0.057 0.003 0.043

15 −0.005 0.198 −0.034 0.046 −0.026 0.061 0.021 0.050

45 −0.005 0.198 −0.032 0.048 −0.018 0.060 0.012 0.048

15 5 −0.014 0.116 −0.068 0.070 −0.025 0.037 −0.004 0.021

15 −0.007 0.115 −0.040 0.045 −0.011 0.028 0.000 0.021

45 −0.006 0.115 −0.035 0.041 −0.004 0.028 −0.001 0.022

45 5 −0.019 0.070 −0.097 0.099 −0.025 0.030 −0.019 0.023

15 −0.009 0.067 −0.053 0.055 −0.008 0.016 −0.008 0.015

45 −0.006 0.066 −0.040 0.043 −0.009 0.017 0.000 0.012
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were selected. In Speedmix children get items that require basic operations to solve, just

as in Addition and Multiplication, but have 8 instead of 20 s to respond. While in Math

Garden addition and multiplication are tracked without taking the addition and

multiplication items from Speedmix into account, here we include these items to track

the addition and multiplication dimensions. We consider three dimensions (addition,
multiplication, and speed) and let the addition and multiplication items from Speedmix

load both on the corresponding substantive dimension and the speed dimension (both

withwjm ¼ 1). The items from the Addition andMultiplication games only had aweight of

1 for the corresponding substantive dimension.

Figure 8 shows model fit separately for four item types: (a) loading only on addition;

(b) loading on addition and speed; (c) loading only on multiplication; and (d) loading on

multiplication and speed. Each dot represents a combination of possible values for the

item urning and the three learner urnings after the first step of the algorithm (i.e., R�
j , R

�
i1,

R�
i2 and R�

i3), and compares the observed and expected proportions of correct responses

among all responses with such a combination of the urning values. For all four item types

the dots follow the diagonal line. For the items loading only on addition or multiplication,

the proportion of correct responses is underestimated where this proportion is relatively

high, which could be an indication of the urnings lagging behind the growth of the

abilities.
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Figure 8. Evaluatingmodel fit for four types of items. Each dot denotes a combination ofR�
j ,R

�
i1,R

�
i2

and R�
i3: among all responses with a particular combination of urning values the observed (x-axis)

and expected (y-axis) proportion of correct responses are computed.
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First, we track the ability development at the population level. We focus only on

addition and multiplication, because we have a clear reference point only in these

dimensions, while the development of the speed dimension over time is not interpretable

because of the absence of the reference set of items loading only on this dimension.

Figure 9a shows the population means (on the logit scale), while Figure 9b shows the

correlation between the dimensions.13 Themeans clearly increase over time,with a dip in

the summer holidays. The addition dimension scores higher than the multiplication

dimension, which shows that on average the addition items were easier. The correlation
between the dimensions was around .90 and stable thought the 2-year period.

Second, we track the development of a single learner on both substantive dimensions.

Figures 10a,b show the development of the estimates of ability (on the probability scale)

in the addition andmultiplication dimensions (black lines) and the associated uncertainty

quantified by confidence intervals (grey areas). For this person improvement in the

addition dimension was faster than in the multiplication dimension.

4. Discussion

In this paper we provided a modification and an extension of the recently proposed

Urnings algorithm. Given the popularity of multidimensional models, this multidimen-

sional extension of the Urnings algorithm allows for wider applications in ALSs and

inference on items not possible before. Earlier approaches avoided within-item

multidimensionality by implementing multiple unidimensional constructs, possibly
reducing the ecological validity of such applications in that constructs are practised

and tested separately. Using this multidimensional model, more realistic items covering

multiple constructs can be offered and modelled.

Another contribution of our paper is that we consider how abilities can be tracked not

only at the individual, but also at the population level. Knowing the invariant distributions

of the urnings allows us to easily estimate the population parameters (means, standard
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Figure 9. Development of the population parameters over time. The population parameters were

estimated at the end of each 10th day in the data set. Thewhite lines indicate the posterior means of

the parameters, and the coloured areas indicate the bounds of the 95% credible intervals.

13We do not show the development of the variances because variance inflation may be present due to not
correcting for adaptive item selection.
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deviations, and correlations) at any timepoint and evaluate whether they change over

time. Importantly, the correlations between the different dimensions are not attenuated

due tomeasurement error, since the uncertainty in the urnings is taken into accountwhen
estimating them.

For the development to be interpretable over time in a particular dimension, there

needs to be a reference point that is kept constant. In this paper we propose to use the

subset of items that load only on the particular dimension as a reference set. If such a set is

not available, as was the case for the speed dimension in the empirical example,

development of the abilities over time cannot be consistently interpreted. Another

important condition for the proper application of the algorithm is correcting for the

adaptive item selection. That is, retroactive fitting of the algorithm can only be used for
illustrative purposes, as in the empirical example, because some of the results, especially

in terms of the development of the population variances, cannot be trusted as the actual

development cannot be separated from the potential inflation of the urnings’ variance due

to not correcting for adaptivity. Thus the algorithm should be built into an ALS such that

adaptive selection is based on the urnings and corrected for.

A principled method for evaluating item fit has been developed, a result which can be

used more broadly for other fit analyses. For example, by combining data from a specific

group rather than the whole population, one can test for differential item functioning.
Evaluating person fit is also possible when combining the data on all items for a specific

learner.

One of the limitations of the current approach is that itemweights need to be specified

a priori and need to be integer. Though these weight estimates are needed to start, they

can be further corrected based on the data. Extending the procedure that we proposed,

the appropriateness of the weights can also be monitored continuously to detect any

potential changes in the behaviour of the items.

Currently, the sizes of the urns in themodel are chosenapriori. Smaller urn sizes allow
for tracking developments rather quick and coarsely, larger urn sizes allow for more

precise measurements yet more responses and little development of ability. Ideally, the

algorithm should include a mechanism for changing the urn size based on the change in

the behaviour of the learner in the system – for example, to include the frequency of

practice, the rate of ability growth and the presence of periods of inactivity as factors for

optimizing urn sizes. Such a mechanism is especially of interest in dealing with cold starts

of new users, as the influence of the acceptance probability as well as the influence of the
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Figure 10. Development of addition and multiplication abilities for a single person.
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paired update procedure are negligible in large-scale systems. In chess ratings, a pragmatic

approach is to start with large step sizes (smaller urns) for beginners, and adapt these later

to smaller step sizes (bigger urns). A heuristic working reasonably well in the simulation

study is setting the urn size the same as the (expected) number of responses per
timepoint, which is similar to the heuristic proposed by Elo (1978, pp. 41–42).
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Appendix A:

Proof of Theorem 1

There are four possible ways in which R��
i ,R��

j

� �
can be in state r, tð Þ:

Pr R��
i ¼ r,R��

j ¼ t

� �

¼ Pr Ri ¼ r,Rj ¼ t
� �

Pr Xij ¼ 1
� �

Pr Y �
j ¼ 0 jR�

i ¼ r þwj,R
�
j ¼ t

� �

þPr Ri ¼ r,Rj ¼ t
� �

Pr Xij ¼ 0
� �

Pr Y �
j ¼ Wj jR�

i ¼ r,R�
j ¼ t þWj

� �

þPr R�
i ¼ r þwj,Rj ¼ t�Wj

� �
Pr Xij ¼ 0
� �

Pr Y �
j ¼ 0 jR�

i ¼ r þwj,R
�
j ¼ t

� �

þPr R�
i ¼ r�wj,Rj ¼ t þWj

� �
Pr Xij ¼ 1
� �

Pr Y �
j ¼ Wj jR�

i ¼ r,R�
j ¼ t þWj

� �
:

(16)

From the process of sampling balls in the second step of the algorithm one can derive

that

Pr Y �
j ¼ 0jR�

i ¼ r,R�
j ¼ t

� �

¼
QWj

v¼1 nj�t�v
� �QM

m¼1

Qwjm�1
v¼0 rm þ vð ÞQWj

v¼1 nj�t þ v
� �QM

m¼1

Qwjm�1
v¼0 rm�vð Þ þQWj�1

v¼0 t�vð ÞQM
m¼1

Qwjm

v¼1 nim�rm þ vð Þ
, (17)

with an analogous expression for Pr Y �
j ¼ Wj jR�

i ¼ r,R�
j ¼ t þWj

� �
.

Using the binomial identities

n

s�w

� �
¼

Qw�1
v¼0 s�vð ÞQw

v¼1 n�sþ vð Þ
n

s

� �
, (18)
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n

sþw

� �
¼

Qw�1
v¼0 n�s�vð ÞQw
v¼1 sþ vð Þ

n

s

� �
, (19)

together with equations (6) and (17), we can show that

Pr Ri ¼ r þwj,Rj ¼ t�Wj

� �
Pr Xij ¼ 0
� �

Pr Y �
j ¼ 0 jR�

i ¼ r þwj,R
�
j ¼ t

� �

¼ Pr Ri ¼ r,Rj ¼ t
� �

Pr Xij ¼ 1
� �

Pr Y �
j ¼ Wj jR�

i ¼ r þwj,R
�
j ¼ t

� �
,

(20)

from which it follows that the sum of the first and the third element in equation (16) is

equal to Pr Ri ¼ r,Rj ¼ t
� �

Pr Xij ¼ 1
� �

. Analogously, it can be shown that the sum of the
second and the fourth elements in equation (16) is equal to

Pr Ri ¼ r,Rj ¼ t
� �

Pr Xij ¼ 0
� �

. Therefore

Pr R��
i ¼ r,R��

j ¼ t

� �
¼ Pr Ri ¼ r,Rj ¼ t

� �
Pr Xij ¼ 1
� �þ Pr Ri ¼ r,Rj ¼ t

� �
Pr Xij ¼ 0
� �

¼ Pr Ri ¼ r,Rj ¼ t
� �

,

(21)

which completes the proof.

Appendix B:

Proof of Theorem 2

There are two possible ways for R�
i ,R

�
j

n o
to take values r, tf g: from state r�wj, t

� 	
with

the correct response and from state r, t�Wj

� 	
with the incorrect response. Therefore,

conditional on R�
i ,R

�
j

n o
being equal to r, tf g, the probability of a correct response is:

Pr Xij ¼ 1 jR�
i ¼ r,R�

j ¼ t

� �

¼ Pr Ri ¼ r�wj,Rj ¼ t
� �

Pr Xij ¼ 1
� �

Pr Ri ¼ r�wj,Rj ¼ t
� �

Pr Xij ¼ 1
� �þ Pr Ri ¼ r,Rj ¼ t�Wj

� �
Pr Xij ¼ 0
� � : (22)

Using the binomial identity from equation (14) and dividing both the numerator and

the denominator by

Q
k

nim

rm

� �
πrmim 1�πimð Þnþwjm�rm

nj

t

� �
πtj 1�πj
� �njþWj�t

Q
mπ

wjm

im 1�πj
� �Wj þQ

m 1�πimð ÞwimπWj

j

� �QWj

v¼1 nj�t þ v
� �QM

m¼1

Qwjm

v¼1 nim�rm þ vð Þ
,

(23)

we obtain the probability
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QWj

v¼1 nj�t�v
� �QM

m¼1

Qwjm�1
v¼0 rm þ vð ÞQWj

v¼1 nj�t þ v
� �QM

m¼1

Qwjm�1
v¼0 rm�vð Þ þQWj�1

v¼0 t�vð ÞQM
m¼1

Qwjm

v¼1 nim�rm þ vð Þ
, (24)

which completes the proof.

Appendix C:

Estimation of population parameters

The population parameters μ andΣ of the distribution of ability (on the logit scale) can be

estimated using a Gibbs sampler in which parameters are sampled from their full

conditional distributions to obtain samples from the joint posterior p μ,Σ jRð Þ. We

propose to use an improper prior for {: p μð Þ / 1, and a semi-conjugate low-informative

prior Σ, that is, an inverse-Wishart distribution with an identity matrix as the scale

parameter and the prior degrees of freedom equal to M þ 2. To simplify the conditional

posterior data augmentation is used: we sample from p θ,μ,Σ jRð Þ instead of p μ,Σ jRð Þ.
Below are the steps of the algorithm.

Step 1. For each learner i in each dimension m, sample θim from

p θim jθi mð Þ,μ,Σ,Rim

� �
, where θi mð Þ are the abilities of learner i in all dimensions except

m. Note that, conditional on θi mð Þ, θim is independent of the urnings in all dimensions

other than m. To sample from this distribution the single variable exchange algorithm

(Marsman, Maris, Bechger, & Glas, 2017) is used. First sample a candidate value θ� from
the conditional distribution of the multivariate normal NM μ,Σð Þ given the values of θi mð Þ,
then using this value simulate R� ∼ Binomial nim, 1= 1þ exp �θ�ð Þð Þð Þ. The probability of
accepting θ� as a new value for θim is min 1, exp θ��θimð Þ Rim�R�ð Þð Þð Þ:.

Step2. Sample { fromp μ jθ,Σð Þ. Note that, conditional on θ, { is independent ofR. This
distribution is a multivariate normal with the sample mean vector of θ as the mean vector

and 1
N
Σ as the covariance matrix, where N is the sample size.

Step 3. Sample Σ from p Σjθ, μð Þ: Note, that conditional on θ, Σ is independent of R.
This distribution is an inverse-Wishart distribution with the scale parameter equal to

IM þ∑i θ�μð Þ θ�μð ÞT and N þM þ 2 degrees of freedom.

Appendix D:

Details of data generation for Part 2 of the simulation study
To generate a pattern of development with increasing means, standard deviations and

correlations, we used a rather simple growth model. First, for each person i, we sampled

two latent variables ηi,Δif g from a bivariate normal distribution with mean vector 0, 1ð Þ,
standard deviations equal to

ffiffiffiffiffiffiffi
0:5

p
and 0.3, and correlation of .8 (i.e., more able students

are learning faster). Second, the ‘general’ ability of each person at timepoint t ∈ 0 : 200½ �
was computed using a linear growth model

ηit ¼ ηi þ
t�100

100
Δi:

That is, the growth model is parameterized in such a way that η is the general ability at
timepoint 100, and Δ is the difference in ability between timepoints 0 and 100, and
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between timepoints 100 and 200. Third, each of the three abilities measured in the

learning system were generated: θimt ¼ ηit þ ϵmi, ϵmi ∼ N 0, 0:5ð Þ, for all m∈ 1 : 3½ �. For
simplicity, the unique component of each ability was generated to be stable across time.
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