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A REPRESENTATION THEORY FOR
POLYNOMIAL COFRACTIONALITY
IN VECTOR AUTOREGRESSIVE

MODELS
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We extend the representation theory of the autoregressive model in the fractional
lag operator of Johansen (2008, Econometric Theory 24, 651–676). A recursive al-
gorithm for the characterization of cofractional relations and the corresponding ad-
justment coefficients is given, and it is shown under which condition the solution of
the model is fractional of order d and displays cofractional relations of order d − b
and polynomial cofractional relations of order d −2b, . . . , d − cb ≥ 0 for integer c;
the cofractional relations and the corresponding moving average representation are
characterized in terms of the autoregressive coefficients by the same algorithm. For
c = 1 and c = 2 we find the results of Johansen (2008).

1. INTRODUCTION

Since the papers by Granger and Joyeux (1980) and Engle and Granger (1987) in-
troduced the concepts of fractional processes and fractional cointegration (cofrac-
tionality), the attention of many scholars has been devoted both to testing and
estimating the cointegrating relationships for fractional processes. Examples are
Cheung and Lai (1993), Baillie and Bollerslev (1994), Dueker and Startz (1998),
Kim and Phillips (2001), Marinucci and Robinson (2001), Breitung and Hassler
(2002), Davidson (2002), Velasco (2003), Dittmann (2004), Dolado and Marmol
(2004), Nielsen (2008), Hualde (2006, 2007), among others. For surveys, see
Baillie (1996) and Henry and Zaffaroni (2003). Johansen and Nielsen (2010)
discuss likelihood inference for an autoregressive (AR) model that generates frac-
tionality and cofractionality.
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Based on the idea in Granger (1986) and with the aim of modeling both
the cofractional and polynomial cofractional relations and the adjustment toward
them, Johansen (2008) proposes the following error correction mechanism:

�d Xt = �d−2b(αβ ′Lb Xt −��b Lb Xt )+
k

∑
i=1

�i�
d Li

b Xt + εt , (1.1)

where Xt is p × 1, εt is independent and identically distributed with mean 0 and
positive definite variance � > 0 (denoted by i.i.d.(0,�)), � := 1− L , 0 < 2b ≤
d ∈ R, and

Lb := 1− (1− L)b

is the fractional lag operator. A necessary and sufficient condition on the parame-
ters of the model ensures that the solution of (1.1) is fractional of order d (denoted
by Xt ∈ F(d)) and such that β ′ Xt is of order d −b. Hence, the model allows for
cofractionality, as there exist linear combinations of Xt that are fractional of a
lower order than the process itself. The model also allows for polynomial cofrac-
tionality as β ′ Xt ∈ F(d − b) and �b Xt ∈ F(d − b) can be combined in such a
way that the order of fractionality is reduced to d − 2b, but no further decrement
is possible. The condition, representation, and interpretation of (1.1) are the frac-
tional counterpart of the well-known concepts in the I (2) model for polynomial
cointegration (see Johansen, 1996). This is immediately seen by letting d = 2 and
b = 1 in (1.1) and recognizing the standard model for variables that are integrated
of order two.

It is very unlikely to observe economic series that can be described by processes
that are integrated of order higher than two and in this sense the interest in these
processes is indeed of a more abstract nature (for a study of these processes, see
Johansen, 1988; Stock and Watson, 1993; Gregoir and Laroque, 1993; la Cour,
1998; Gregoir, 1999; Bauer and Wagner, 2007; Franchi, 2007). In the fractional
case things are different, as there is no evident reason why a process of order
d − 2b could be a plausible description of the data whereas one of order d − 3b,
say, would not.

The aim of this paper is to analyze a richer cofractional structure through an
extension of (1.1) that we call the VARd,b,c(k) model for polynomial cofraction-
ality. A recursive algorithm for the characterization of the restrictions on the AR
coefficients that define cofractional relations and the corresponding adjustments
is given, and it is shown under which condition the solution of the model is frac-
tional of order d and displays cofractional relations of order d −b and polynomial
cofractional relations of order d − 2b, . . . , d − cb ≥ 0 for integer c. The cofrac-
tional relations and the corresponding moving average representation are char-
acterized in terms of the AR coefficients by the same algorithm. For c = 1 and
c = 2 we find the results of Johansen (2008). In Franchi and Paruolo (2008) an
extension of the same idea is used to characterize common cyclical features in
stationary vector autoregressive (VAR) models.



REPRESENTATION THEORY FOR POLYNOMIAL COFRACTIONALITY 1203

The following notation is used throughout: a := b and b =: a indicate that
a is defined by b, δi, j is Kronecker’s delta (δi, j is 1 if i = j and 0 otherwise),
and ∑b

h=a · := 0 for b < a. For any p × r matrix γ of full rank r ≤ p, sp(γ )
is the space spanned by the columns of γ ; with γ⊥ of dimension p × p − r we
indicate a basis of the orthogonal complement of sp(γ ), so that γ ′γ⊥ = 0 and
γ ′⊥γ = 0. Furthermore we define γ̄ := γ (γ ′γ )−1, denote with Pγ := γ̄ γ ′ = γ γ̄ ′
the orthogonal projector matrix onto sp(γ ), and let Mγ := I − Pγ = Pγ⊥ be the
orthogonal projector matrix onto sp(γ⊥).

2. DEFINITIONS

The definition of order of fractionality is taken from Johansen (2008).

DEFINITION 2.1. If ∑∞
i=0 ||Ci ||2 < ∞ and C(z) = ∑∞

i=0 Ci zi , |z| < 1 can be
extended to a continuous function on the boundary |z| = 1, we call the linear pro-
cess Xt = C(L)εt fractional of order zero, F(0), if the spectrum at 1 is different
from 0, i.e., if fX (1) = (1/2π)C(1)�C(1)′ 	= 0. For such processes we denote by
F(0)+ the class of asymptotically stationary processes of the form

X+
t =
{

∑t−1
i=0 Ciεt−i t = 1,2, . . .

0 t = 0,−1, . . .
.

If �d+ Xt −μt ∈ F(0)+ for some deterministic function μt that depends on initial
values we say that Xt is fractional of order d and write Xt ∈ F(d).

The notions of cofraction matrix polynomial and polynomially cofractional re-
lations are introduced in the following definition.

DEFINITION 2.2. Let Xt ∈ F(d) and γn(u) := ∑n
i=0 γn,i (1−u)i be such that

γ ′
n(Lb)Xt ∈ F(dn), where dn := d − (n + 1)b and 0 ≤ dn < d. If for any ϕ 	= 0

and any polynomial φ(u) := γn(u)+ (1−u)n+1ψ(u) one has

ϕ′φ′(Lb)Xt ∈ F(dn),

we say that γn(u) is a cofraction matrix polynomial and γ ′
n(Lb)Xt are polynomi-

ally cofractional relations.

Hence, a cofraction matrix polynomial is such that the order of fractionality of
the linear combination γ ′

n,0 Xt +·· ·+γ ′
n,n�nb Xt cannot be reduced either by tak-

ing linear combinations or by including additional powers of �b Xt . We remark
that n in γn(u) is the degree of the cofraction matrix polynomial and because
n = 0 is allowed for in Definition 2.2, cofractionality is included in the previ-
ous definition as a special case. Note that ϕ = 0 is excluded from this definition
because ϕ′φ′(Lb)Xt = 0 is not fractional of any order.

The model we propose in (3.1) in the next section is such that Rp is parti-
tioned into c + 1 mutually orthogonal subspaces, i.e., I = ∑c

i=0 Pβi where βi has
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dimension p ×ri and full column rank and in each sp(βi ) the properties of Xt are
different. That is, γ ′ Xt ∈ F(d) for any γ ∈ sp(βc), and for i = 0, . . . ,c − 1, we
combine β ′

i Xt and powers of �b Xt and define polynomially cofractional relations
of degree c − i −1 in Lb and order of fractionality d − (c − i)b. The coefficients,
the order, and the degree of the cofraction matrix polynomials are all expressed in
terms of the parameters of the VARd,b,c(k) model.

3. THE VARd,b,c (k) MODEL

Consider the VARd,b,c(k) model

�c(L)Xt := �(Lb)�
d−cb Xt = εt , (3.1)

where Xt is p ×1, �(u) is a matrix polynomial of finite degree k in

u := 1− (1− z)b ∈ C (3.2)

such that det�(1) = 0, c > 0 is the order of the pole of �(u)−1 at u = 1, b,d
satisfy 0 < cb ≤ d ∈ R, and εt is i.i.d.(0,�).

For c = 1 and c = 2 the error correction formulation of model (3.1) is found in
Johansen (2008). When the pole of �(u)−1 at u = 1 is of order one, the charac-
teristic function of (3.1) is �1(z) := (1 − z)d−b�(u), and the matrix polynomial
�(u) is reparametrized as

�(u) = (1−u)I +�(1)u − (1−u)
k−1

∑
i=1

�1i u
i , (3.3)

where �(1) = −αβ ′ has reduced rank. When the pole of �(u)−1 at u = 1 is of
order two, the characteristic function of (3.1) is �2(z) := (1 − z)d−2b�(u), and
�(u) is reparametrized as

�(u) = (1−u)2 I +�(1)u +�(1−u)u − (1−u)2
k−2

∑
i=1

�2i u
i , (3.4)

where �(1) = −αβ ′ and α′⊥�β⊥ = ξη′ have reduced rank. Note that the possibil-
ity of reparameterizing �(u) as in (3.3) or (3.4) has nothing to do with the order
of the pole. When the I (1) condition detα′⊥�̇(1)β⊥ 	= 0 holds, the first one pro-
vides the relevant error correction representation, and thus it is chosen in Johansen
(2008). When the pole has order two the relevant error correction formulation is
provided by the second one.

Hence, the representation analysis of (3.1) for c = 1 and c = 2 is found in
Johansen (2008), where it is shown that β ′ Xt ∈F(d −b) are the only cofractional
relations when c = 1. For c = 2, the model displays the polynomial cofractional
relations β ′ Xt + ᾱ′�̇�b Xt ∈ F(d − 2b) and the cofractional relations η′β̄ ′⊥ Xt ∈
F(d −b). Here we characterize the polynomial cofractional relations of (3.1) for
general c.
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The characteristic function of (3.1) is

�c(z) := (1− z)d−cb�(u), |z| ≤ 1, (3.5)

and we assume a unit root in �(u). Then rank�(1) ≤ p − 1, det�(u) =: (1 −
u)m g(u), where m > 0 and g(u) is a scalar polynomial such that g(1) 	= 0; more-
over, adj�(u) =: (1−u)aG(u) where 0 ≤ a < m and the matrix polynomial G(u)
satisfies G(1) 	= 0. The reason is that when rank�(1) < p −1, adj�(1) = 0, and
thus each entry of adj�(u) contains the factor 1 − u. When rank�(1) = p − 1,
adj�(1) 	= 0, and thus a = 0 (see Franchi, 2007). The inverse of �(u) is then
equal to

�(u)−1 = G(u)

(1−u)m−ag(u)
, u 	= {u : det�(u) = 0}, (3.6)

and because G(1) 	= 0 and g(1) 	= 0, this shows that the order of the pole at the
unit root is equal to m −a, i.e., c = m −a > 0.

It then follows (see eqns. (3.2) and (3.6)) that the inverse of the characteristic
function in (3.5) can be written as

�c(z)
−1 = 1

(1− z)d

G(u)

g(u)
, |z| ≤ 1, (3.7)

and this shows that the pole at z = 1 has order d. Under the additional requirement
that the roots of g(u) = 0 are outside Cb := {u ∈ C : |z| ≤ 1} (for the proof that a
necessary and sufficient condition for �(Lb)Xt = εt to be inF(0) is that the roots
of det�(u) = 0 are outside Cb, see Johansen, 2008), this determines the order of
fractionality of the solution of the model, as is shown in Theorem 3.1.

THEOREM 3.1. Let the roots of det�(u) = 0 be either at u = 1 or u /∈ Cb.
Then the solution of (3.1) is fractional of order d, Xt ∈ F(d).

Proof. Because the roots of g(u) are outside Cb there is no z in the closed
unit disk for which 1 − (1 − z)b is equal to a root. Thus the function C(z) :=
G(1−(1−z)b)
g(1−(1−z)b)

is regular on the unit disk and continuous for |z| ≤ 1, and by Lemma

10 in Johansen (2008) its expansion C(z) = ∑∞
n=0 Cnzn, |z| < 1 can be used to

define the stationary process Yt = C(L)εt . The spectrum of Yt at zero is fY (1) =
(1/2π)C(1)�C(1)′, and because C(1) = G(1)

g(1) 	= 0 we have fY (1) 	= 0. Then

�d+ Xt = Y +
t ∈ F(0)+ implies Xt ∈ F(d), and the proof is complete. n

Under the assumption that the roots of det�(u) = 0 are either at z = 1 or
outside Cb, Theorem 3.1 shows that the order of fractionality of the process Xt in
(3.1) is given by the order of the pole of the inverse of its characteristic function
at the unit root, exactly as it is in the univariate case (for the application of the
same idea to the integer case, see Franchi, 2007).

By the same reasoning, the order of fractionality of γ ′
n(Lb)Xt is given by the

order of the pole of γ ′
n(u)�c(z)−1 at z = 1. In the next lemma we state necessary

and sufficient conditions for γn(u) to be a cofraction matrix polynomial.
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LEMMA 3.1. Let G(u) be as in (3.7), γn(u) := ∑n
i=0 γn,i (1−u)i , and φ(u) :=

γn(u)+ (1 − u)n+1ψ(u), where ψ(u) is a matrix polynomial. Then a necessary
and sufficient condition for γn(u) to be a cofraction matrix polynomial is that

γ ′
n(u)G(u) = (1−u)n+1μ′(u),

where μ′(1)+ψ ′(1)G(1) has full row rank.

Proof. (Suff.) If γ ′
n(u)G(u) = (1 − u)n+1μ′(u) where μ′(1)+ψ ′(1)G(1) has

full row rank, then ϕ′φ′(u)G(u) = (1 − u)n+1ϕ′ν′(u) where ν′(1) = μ′(1) +
ψ ′(1)G(1). Hence for any ϕ 	= 0, ϕ′φ′(u)�−1

c (u) has a pole of order dn := d −
(n+1)b at z = 1 so that ϕ′φ′(Lb)Xt ∈F(dn). (Nec.) If γn(u) is a cofraction matrix
polynomial then ϕ′φ′(u)�−1

c (u) has a pole of order dn := d − (n + 1)b at z = 1
for any ϕ 	= 0. This implies (see eqn. (3.7)) φ′(u)G(u) = (1 − u)n+1ν′(u) where
ν′(1) has full row rank, and substituting φ(u) := γn(u) + (1 − u)n+1ψ(u) one
finds γ ′

n(u)G(u) = (1 − u)n+1μ′(u) where μ′(u) := ν′(u) − ψ ′(u)G(u). Hence
μ′(1)+ψ ′(1)G(1) = ν′(1) has full row rank. This completes the proof. n

To characterize the cofractional relations it is thus necessary to understand the
structure of G(u) at u = 1. This is achieved in the next section.

4. THE REDUCED RANK STRUCTURE OF ���(u)

It is well known (see Johansen, 1996) under which restrictions on its coefficients
the matrix polynomial �(u) = ∑k

i=0 �i (1−u)i has an inverse with a pole of order
one or two at u = 1. The order of the pole of �(u)−1 is one if and only if �(1) =
−α0β

′
0 has rank r0 < p and Mα0�1 Mβ0 = −α1β

′
1 has rank r1 = p − r0, where

Mγ := I − Pγ = Pγ⊥ and the square matrices (α0 : α1), (β0 : β1) are nonsingular
with orthogonal blocks. This is called the I (1) condition. The pole has order two
if and only if Mα0�1 Mβ0 = −α1β

′
1 has rank r1 < p−r0 and M(α0:α1)θ2 M(β0:β1) =

−α2β
′
2 has rank r2 = p − r0 − r1, where θ2 := �2 +�1β̄0ᾱ

′
0�1 and the square

matrices (α0 : α1 : α2), (β0 : β1 : β2) are nonsingular with orthogonal blocks. This
is called the I (2) condition.

The characterization of the reduced rank matrices is important because it al-
lows the cofraction matrices and the corresponding adjustment coefficients to be
defined. When the order of the pole is greater than two, the additional reduced
rank restriction M(α0:α1)θ2 M(β0:β1) = −α2β

′
2 of rank r2 < p − r0 − r1 holds, but

the next matrix that would either define an additional orthogonal subspace if c > 3
or stop the iteration if c = 3 is not known. The intuition is that it is of the form
M(α0:α1:α2)θ3 M(β0:β1:β2) = −α3β

′
3 for some θ3 that needs to be found out.

We next present necessary and sufficient conditions on �(u) at u = 1 for its
inverse to have a pole of any given order c > 0 at u = 1. These conditions are
of reduced rank type and are stated in term of matrices αi , βi , and θi, j that are
functions of the AR coefficients �i ; see (4.1) and (4.2) in Section 4.1.

The following notation is employed: whenever we have a p × p reduced rank
matrix π of rank r , say, and we write π = −αβ ′, this is understood to be a rank
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decomposition, i.e., α and β are full rank matrices of dimension p × r , bases of
the column and row spaces, respectively. The matrices α and β are not unique, but
the results do not depend on the particular choice made, as shown in Section 4.2.

4.1. Rank Decompositions

Consider �(u) = ∑k
i=0 �i (1−u)i . We take αi (respectively, βi ) to indicate bases

of column - (respectively, row) spaces of certain matrices derived from �(u),
where (α0 : α1 : · · · : αc) and (β0 : β1 : · · · : βc) are square nonsingular matrices
with orthogonal blocks. The number of blocks is given by the order of the pole of
�(u)−1 at u = 1 and vice versa. To simplify notation, we further define ai := (α0 :
· · · : αi−1) so that one has the partition I = Pai + Mai . For i = 0, we let Ma0 := I
and employ similar notation for bi := (β0 : · · · : βi−1). The matrices αi and βi are
defined by the rank decompositions in (4.2), where θi, j is defined for i = 0, . . . ,c
and j ≥ 1 as follows: θ0, j := �j−1, and for l ≥ 1,

θl, j := θl−1, j+1 + θl−1,1

l−2

∑
h=0

β̄h ᾱ′
hθh+1, j (4.1)

with ∑b
h=a · := 0 for b < a; αi and βi are defined from the rank decompositions

Mai θi,1 Mbi = −αiβ
′
i , (4.2)

where ri := rank Mai θi,1 Mbi satisfies ri < p − ∑i−1
h=0 rh for i < c and rc = p −

∑c−1
h=0 rh . Next we prove the equivalence between the reduced rank restrictions in

(4.2) and the value of c in (3.6).

THEOREM 4.1 (Rank decompositions). Let αi , βi , and θi, j be defined in (4.1)
and (4.2). Then the following conditions are equivalent:

(i) �(u)−1 has a pole of order c at u = 1;

(ii) for 0 ≤ i ≤ n ≤ c, one has

−αiβ
′
i Gn−i + Mai

n−i

∑
h=1

θi+1,hGn−i−h = δn,cg0 Mai (4.3)

and

−Gn−iαiβ
′
i +

n−i

∑
h=1

Gn−i−hθi+1,h Mbi = δn,cg0 Mbi , (4.4)

where δi, j is Kronecker’s delta (δi, j is 1 if i = j and 0 otherwise);

(iii) for i = 0, . . . ,c, one has

Mai θi,1 Mbi = −αiβ
′
i ,
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where αi and βi are p × ri matrices of full column rank ri , with ri <
p −∑i−1

h=0 rh for i < c and rc = p −∑c−1
h=0 rh. Moreover, (α0 : α1 : · · · : αc)

and (β0 : β1 : · · · : βc) are square nonsingular matrices with orthogonal
blocks and

G0 = −g0β̄cᾱ
′
c. (4.5)

Proof. See the Appendix.

The conditions (4.2) are reduced rank conditions for i = 0, . . . ,c − 1, whereas
the terminal condition for i = c is a full rank condition. To see that this is the
case, let ai⊥ and bi⊥ be bases of sp(Mai ) and sp(Mbi ), respectively. Pre- and
postmultiply (4.2) by a′

i⊥ and bi⊥, respectively, to find

a′
i⊥θi,1bi⊥ = −ξiη

′
i ,

where ξi := a′
i⊥αi and ηi := b′

i⊥βi are p − ∑i−1
h=0 rh × ri matrices of full column

rank ri . Hence one has ri < p − ∑i−1
h=0 rh for i < c if and only if a′

i⊥θi,1bi⊥ is
singular and rc = p −∑c−1

h=0 rh if and only if a′
c⊥θc,1bc⊥ is nonsingular. For c = 1

and c = 2 one finds the I (1) and I (2) conditions.
Each iteration defines the orthogonal subspaces sp(ξi ) and sp(ξi⊥); a basis of

the first one is used for constructing αi and part of the second subspace for αi+1
in the next iteration. Smaller and smaller dimensional subspaces are met at any
iteration until the full rank matrix a′

c⊥θc,1bc⊥ is found and no additional subspace
can be defined.

As a consequence of Theorem 4.1 one has the result in Corollary 4.1. This will
be used in Theorem 4.2 to characterize the cofractional relations.

COROLLARY 4.1. Let αi , βi , and θi, j be defined in (4.1) and (4.2); then for
0 ≤ i ≤ s + i ≤ c, one has

β ′
i Gs = ᾱ′

i

s

∑
h=1

θi+1,hGs−h − δi+s,cg0ᾱ
′
i . (4.6)

Proof. Let s := n − i in (4.3) and premultiply by ᾱ′
i . Because ᾱ′

i Mai = ᾱ′
i −

ᾱ′
i Pai = ᾱ′

i one has (4.6). n

Next we discuss whether the conclusions reached in Theorem 4.1 depend on
the choice of αi and βi .

4.2. Uniqueness

We want to show that (4.2) is invariant with respect to choices of αi and βi .
Construct a new basis λi = αiω and μi = βiω

−1′ for some ω full rank so that
Mai θi,1 Mbi = −λiμ

′
i . Then

λ̄i = ᾱiω
−1′ and μ̄i = β̄iω
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imply

μ̄i λ̄
′
i = β̄i ᾱ

′
i ,

and this shows that θi, j in (4.1) is invariant under changes of basis of sp(αi ) and
sp(βi ). Now consider sp(Mai ) = sp(ai⊥) and choose a new basis ψi = ai⊥ω for
some nonsingular ω. Then Pψi = Pai⊥ implies Pψi θi,1 Mbi = Mai θi,1 Mbi , and this
shows that (4.2) is invariant under changes of basis of sp(Mai ). Because the same
holds for sp(Mbi ), the conclusions reached in Theorem 4.1 do not depend on the
particular choices of αi and βi .

4.3. Cofraction Matrix Polynomials

Combining (3.7) with G(u) = G0 + (1− z)b R(u) and (4.5) one has

�c(z)
−1 = − g0β̄cᾱ

′
c

(1− z)d g(u)
+ 1

(1− z)d−b

R(u)

g(u)
.

Hence γ ′�c(z)−1 has a pole of order d at 1 for γ ∈ sp(βc), whereas the pole
has at most order d −b for γ ∈ sp(β0 : · · · : βc−1). It then follows that a cofraction
matrix polynomial γn(u) := ∑n

h=0 γn,h(1 − u)h must satisfy γn,0 = βi for some
i 	= c. The remaining coefficients are defined in Theorem 4.2 using the results of
Corollary 4.1.

THEOREM 4.2 (Cofraction matrix polynomials). Let αi , βi , and θi, j be defined
in (4.1) and (4.2). Then for i = 0, . . . ,c −1,

γ ′
c−i−1(u) := β ′

i − ᾱ′
i

c−i−1

∑
h=1

θi+1,h(1−u)h (4.7)

is a cofraction matrix polynomial, and γ ′
c−i−1(Lb)Xt ∈ F(d − (c − i)b) are the

corresponding polynomially cofractional relations.

Proof. See the Appendix.

Because no reduction in the order of fractionality of γ ′
c−i−1(Lb)Xt can be

achieved either by taking linear combinations or by adding higher order terms
to γc−i−1(u), γ ′

c−i−1(u) in (4.7) is a cofraction matrix polynomial. Note that the
highest reduction in the order of fractionality of Xt is achieved by the transforma-
tion γ ′

c−1(u), which is such that γ ′
c−1(Lb)Xt ∈F(d −cb). Next we show that it is

impossible to achieve higher reductions.

THEOREM 4.3 (Minimality). There is no matrix polynomial ϕ(u) such that
ϕ(1) 	= 0 and ϕ′(Lb)Xt ∈ F(dϕ) where dϕ < d − cb.

Proof. By contradiction. Assume there exists ϕ(u) such that ϕ′(Lb)Xt ∈F(dϕ)
where dϕ < d − cb. This implies that there exist � > c and a matrix polynomial
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ν(u) such that ϕ′(u)�c(z)−1 = ν′(u)
(1−z)d−�bg(u)

where ν(1) 	= 0. Substituting (3.7) in
the last equation one finds

ϕ′(u)G(u) = (1−u)�ν′(u). (4.8)

Postmultiplying both sides of (4.8) by �(u), substituting G(u)�(u) = (1 −
u)cg(u)I , and rearranging terms one has

ν′(u)�(u) = (1−u)c−�g(u)ϕ′(u).

Because � > c and g(1)ϕ′(1) 	= 0, the right-hand side has a pole at 1, which
is a contradiction because ν(u) and �(u) are polynomials. Hence � ≤ c. This
completes the proof. n

Hence γc−1(u) in (4.7) is minimal in the sense that it achieves the highest re-
duction in the order of fractionality by including the minimum number of terms.
One could conjecture that a similar property is shared by every γc−i−1(u) in (4.7)
with respect to ϕ(u) such that ϕ(1) 	= 0 belongs to sp(βi : . . . : βc). A proof of this
statement would require extending (4.3) and (4.4) for c + 1 ≤ n ≤ c + deg g(u),
so that one would be able to fully characterize additional G coefficients, as we do
here only for G0; see (4.5). As Theorem 4.1 is sufficient to prove what we need,
namely, that γc−i−1(u) is a cofraction matrix polynomial, we do not cover this
case here.

5. THE REPRESENTATION THEOREM

The results in Theorems 3.1 and 4.2 are collected in Theorem 5.1.

THEOREM 5.1. Let the roots of det�(u) = 0 be either at u = 1 or u /∈Cb and
let αi , βi , and θi, j be as in (4.1) and (4.2). Then for d ≥ cb > 0, the solution of
(3.1) is the F(d) process

Xt = Cc�
−d+ εt +Cc−1�

−d+b+ εt +·· ·+C1�
−d+(c−1)b
+ εt +�−d+cb+ Yt +μt , (5.1)

where Yt is stationary and μt depends on initial values. The C matrices are

Cc−n =
n

∑
k=0

Gkcn−k, (5.2)

where G(u) and g(u) are defined in (3.6) and cn := 1
n!

(
dn

dun g(u)−1
)∣∣∣

u=1
is a

scalar. For i = 0, . . . ,c −1, one has the polynomial cofractional relations

γ ′
c−i−1(Lb)Xt := β ′

i Xt − ᾱ′
i

c−i−1

∑
k=1

θi+1,k�
kb Xt (5.3)

of order d − (c − i)b. For i = c no cofractionality is present, i.e., β ′
c Xt ∈ F(d).



REPRESENTATION THEORY FOR POLYNOMIAL COFRACTIONALITY 1211

Proof. See the Appendix.

From the moving average representation in (5.1) we see that Xt is composed
of F(d) down to F(d − cb) processes that are generated by cumulating εt and
Yt . Each of the components is loaded into Xt through the corresponding C coef-
ficient, which is a linear combination of the G matrices with scalar coefficients.
Combining (5.2) and (4.5), one finds that Cc = −β̄cᾱ

′
c. Hence one has

β ′
c Xt ∈ F(d).

The other C coefficients are more complicated and not very interesting in them-
selves; what is important is to understand which linear combinations of the pro-
cess and its fractional differences have lower order of fractionality. These are the
polynomial cofractional relations described in (5.3), and they have the following
characteristics:

γ ′
c−1(Lb)Xt := β ′

0 Xt − ᾱ′
0

c−1

∑
k=1

θ1,k�
kb Xt ∈ F(d − cb),

γ ′
c−2(Lb)Xt := β ′

1 Xt − ᾱ′
1

c−2

∑
k=1

θ2,k�
kb Xt ∈ F(d − (c −1)b),

...

γ ′
1(Lb)Xt := β ′

c−2 Xt − ᾱ′
c−2θc−1,1�

b Xt ∈ F(d −2b).

Hence, when the coefficient of Xt is taken to be β0, one can transform the process
in such a way that the order goes from F(d ) to F(d − cb), when it is taken to be
β1 fromF(d) toF(d −(c−1)b), and so on, up to βc−2 for which the transformed
process is inF(d −2b). When one starts with βc−1 only cofractionality is present,
and one has

γ ′
0(Lb)Xt := β ′

c−1 Xt ∈ F(d −b).

We remark that no reduction in the order of fractionality of the polynomial cofrac-
tional relations can be achieved either by taking linear combinations or by adding
higher order terms. Moreover, because sp(β0 : β1 : · · · : βc−1 : βc) =Rp the char-
acterization of the properties of Xt is complete. Note that for c = 1 the result in
Theorem 5.1 specializes into sp(β0 : β1) = Rp,

Xt = C1�
−d+ εt +�−d+b+ Yt +μt ∈ F(d),

β ′
0 Xt ∈ F(d −b) and β ′

1 Xt ∈ F(d).

For c = 2 one has sp(β0 : β1 : β2) = Rp,

Xt = C2�
−d+ εt +C1�

−d+b+ εt +�−d+2b+ Yt +μt ∈ F(d),

β ′
0 Xt + ᾱ′

0�1�
b Xt ∈ F(d −2b),

β ′
1 Xt ∈ F(d −b), and β ′

2 Xt ∈ F(d).

These are found, respectively, in Theorems 8 and 9 in Johansen (2008).
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6. CONCLUSION

We have extended the study of the representation theory of an AR model that
generates fractional, cofractional, and polynomial cofractional processes. The
moving average representation reveals that the solution is composed of differ-
ent fractional processes that can be canceled by specific linear combinations.
The model is a parametric characterization of the fractional counterpart of the
well-known phenomenon of cointegration and allows for modeling both the stable
relations and the adjustment toward them.
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APPENDIX

For the proof of Theorem 4.1 we make repeated use of the following result.

LEMMA 6.1. Let G 	= 0 and assume �G = G� = 0. This implies

(i) � = −αβ ′ with α and β of dimension p × r and full column rank r < p, sp(G) ⊆
sp(β⊥) and sp(G′) ⊆ sp(α⊥);

(ii) if moreover sp(G) ⊆ sp(b) and sp(G′) ⊆ sp(a), then (i) implies sp(G) ⊆ B :=
sp(b) ∩ sp(β⊥) and sp(G′) ⊆ A := sp(a) ∩ sp(α⊥) where, because G 	= 0,
dimA= dimB > 0.

Proof.

(i) Because det� 	= 0 implies G = 0, one has � = −αβ ′ with α and β of dimension
p × r and full column rank r < p, so that sp(G) ⊆ sp(β⊥) and sp(G′) ⊆ sp(α⊥).

(ii) From sp(G) ⊆ sp(b) and (i) one has sp(G) ⊆ B := sp(b) ∩ sp(β⊥), and be-
cause G 	= 0 it must be that B 	= {0} and thus dimB > 0. Similarly one shows
that sp(G′) ⊆A := sp(a)∩ sp(α⊥) and dimA> 0. n

Proof of Theorem 4.1. (i) ⇒ (i i) Assume (3.6). This implies

�(u)G(u) = G(u)�(u) = (1−u)cg(u)I. (A.1)

First we show (4.3). Consider the product �(u)G(u) = ∑N
n=0 An(1 − u)n where N :=

c + deg g(u) and An := ∑n
h=0 �h Gn−h . Note that (A.1) implies An = δn,cg0 I for n =

0, . . . ,c, where δi, j is Kronecker’s delta (δi, j is 1 if i = j and 0 otherwise). Substituting
�0 = −α0β ′

0 and θ1,h = �h one finds An = −α0β ′
0Gn +∑n

h=1 θ1,h Gn−h . Next we show
by induction that for 0 ≤ i ≤ n ≤ c one has

Mai An = −αi β
′
i Gn−i + Mai

n−i

∑
h=1

θi+1,h Gn−i−h . (A.2)
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For i = 0 one has Ma0 := I so that (A.2) holds by definition. Next we assume (A.2) for
any 0 ≤ i ≤ � and show that it holds for i = �+ 1 ≤ n ≤ c. Let s := n − i ≥ 0 and recall
that Ai+s = δi+s,cg0 I for i + s = 0, . . . ,c. This implies ᾱ′

i Ai+s = δi+s,cg0ᾱ′
i for i + s =

0, . . . ,c. Premultiplying (A.2) by ᾱ′
i one has ᾱ′

i Ai+s = −β ′
i Gs + ᾱ′

i ∑s
h=1 θi+1,h Gs−h ,

because ᾱ′
i Mai = ᾱ′

i − ᾱ′
i Pai = ᾱ′

i . Hence

β ′
i Gs = ᾱ′

i

s

∑
h=1

θi+1,h Gs−h − δi+s,cg0ᾱ′
i . (A.3)

Next consider (A.2) for i = �. Premultiply by Ma�+1 and change index in the summation
on the right-hand side to find

Ma�+1 An = Ma�+1θ�+1,1Gn−�−1 + Ma�+1

n−�−1

∑
h=1

θ�+1,h+1Gn−�−1−h =: a +b (say).

Using the projection identity I = Mb�+1 + Pb�+1 , one finds

a = Ma�+1θ�+1,1 Mb�+1 Gn−�−1 + Ma�+1θ�+1,1

�

∑
k=0

β̄kβ ′
k Gn−�−1.

Substituting in the first term from (4.2) and in the second term from (A.3), and interchang-
ing the order of summation in the second term one has

a = −α�+1β ′
�+1Gn−�−1 + Mα�+1

n−�−1

∑
h=1

(θ�+1,1

�

∑
k=0

β̄k ᾱ′
kθk+1,h)Gn−�−1−h

because δn−�−1+k,c = 0 for 0 ≤ k ≤ �. Summing a +b and using (4.1) one finds

Ma�+1 An = −α�+1β ′
�+1Gn−�−1 + Ma�+1

n−�−1

∑
h=1

θ�+2,h Gn−�−1−h .

This shows that (A.2) holds for i = �+1 and completes the proof by induction. Substituting
(A.2) in Mai An = δn,cg0 Mai one has (4.3).

Next we show (4.4). Because g(u) is a scalar polynomial, �(u) and G(u) commute; see
(A.1). Hence one has �′(u)G′(u) = (1−u)cg(u)I , and by transposing the corresponding
(4.3) one finds

−Gn−i β∗,i α
′∗,i +

n−i

∑
h=1

Gn−i−hθ∗
i+1,h Ma∗,i = δn,cg0 Ma∗,i , (A.4)

where α∗,i , β∗,i , and θ∗
i, j are defined by the rank decomposition of �′(u). We observe

that the rank decompositions of �(u) and �′(u) share the same c and the same ranks ri ,
with the interchange of the column and row spaces due to transposition, i.e., β∗,i = αi
and α∗,i = βi for i = 0, . . . ,c. Substituting in (A.4) one finds (4.4), and this completes the
proof.

(i i) ⇒ (i i i) Assume (4.3) and (4.4). First fix n = i = 0 in (4.3) and (4.4) to find
α0β ′

0G0 = G0α0β ′
0 = 0. Hence Lemma 6.1 applies because G0 	= 0, and one has G0 =
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Mb1 G0 Ma1 and r0 < p; see (ii). Next let n = i +1 in (4.3) and (4.4). Premultiply the first
by Mai+1 and postmultiply the second by Mbi+1 to find

Mai+1θi+1,1G0 = δi+1,cg0 Mai+1 (A.5)

and

G0θi+1,1 Mbi+1 = δi+1,cg0 Mbi+1 . (A.6)

We proceed by induction. For i = 0, substituting G0 = Mb1 G0 Ma1 in (A.5) and (A.6)
one has Ma1θ1,1 Mb1 G0 = G0 Ma1θ1,1 Mb1 = 0. Hence Lemma A.1 applies, and one has
(4.2) for i = 1 and G0 = Mb2 G0 Ma2 . Next we assume (4.2) for i = � < c − 1 and show
that the same holds for i = �+ 1 ≤ c − 1. Substitute G0 = Mb�+1 G0 M�+1 derived from
the induction assumption in (A.5) and (A.6) for i = �; one has Ma�+1θ�+1,1 Mb�+1 G0 =
G0 Ma�+1θ�+1,1 Mb�+1 = 0. Hence Lemma A.1 applies, and one has (4.2) for i = � + 1
and G0 = Mb�+2 G0 Ma�+2 . This completes the proof by induction. Next let n = i = c in
(A.5) to find −αcβ

′
cG0 = g0 Mac . Pre- and postmultiplication by ᾱ′

c and αc, respectively,
gives β ′

cG0αc = −g0 I , and one finds G0 = −g0β̄cᾱ
′
c. This shows (4.5). Finally (A.5) for

i = c − 1 implies Pαcθc,1 Pβc = −αcβ
′
c, and one has (4.2) for i = c. This completes the

proof.
(i i i) ⇒ (i) Assume that (4.2) holds for 0 ≤ i ≤ c. Hence (α0 : α1 : · · · : αc) and (β0 :

β1 : · · · : βc) are square nonsingular matrices with orthogonal blocks and G0 = −g0β̄cᾱ
′
c.

For i = 0, (4.2) implies �0 = −α0β ′
0 of rank r0 < p. Hence det�(u) = (1−u)m g(u) for

some m > 0 and g(1) 	= 0 and adj�(u) = (1−u)a G(u) for some 0 ≤ a < m and G(1) 	= 0.
This implies

�(u)G(u) = (1−u)wg(u)I, (A.7)

where w := m − a > 0, G(1) 	= 0, and g(1) 	= 0. We want to show that w = c so that
�(u)−1 = G(u)

(1−u)cg(u) has a pole of order c at 1. By applying the same arguments of the
(i) ⇒ (i i) part of the proof one has

−αi β
′
i Gn−i + Mai

n−i

∑
h=1

θi+1,h Gn−i−h = δn,wg0 Mai . (A.8)

Next we show that w < c and w > c both lead to a contradiction, so that it must be w = c.
Suppose w < c; (A.8) for i = n = w gives −αwβ ′

wG0 = g0 Maw , which is a contradiction
because β ′

wβc = 0. Next suppose w > c; (A.8) implies β ′
i G0 = 0 for i = 0, . . . ,c, which

is a contradiction because G0 	= 0 and (β0 : · · · : βc) is nonsingular. Hence w = c so that
�(u)−1 = G(u)

(1−u)cg(u) has a pole of order c at 1 because G(1) 	= 0 and g(1) 	= 0. This
completes the proof. n

Proof of Theorem 4.2. We want to show that for i = 0, . . . ,c − 1, γc−i−1(u) in (4.7)
satisfies the conditions in Lemma 3.1.

First note that

(1−u)k G(u) =
c−i−1

∑
h=k

Gh−k(1−u)h + (1−u)c−i Rk(u), (A.9)

where

Rk(1) = Gc−i−k . (A.10)
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Next recall that for i = 0, . . . ,c −1, one has β ′
i G0 = 0, see (4.5), and

β ′
i Gh = ᾱ′

i

h

∑
k=1

θi+1,k Gh−k , h = 1, . . . ,c − i −1, (A.11)

see (4.6); hence

β ′
i G(u) =

c−i−1

∑
h=1

β ′
i Gh(1−u)h + (1−u)c−i β ′

i R0(u) =: a +b (say). (A.12)

Substituting (A.11) in a and rearranging terms one finds

c−i−1

∑
h=1

β ′
i Gh(1−u)h = ᾱ′

i

c−i−1

∑
k=1

θi+1,k

c−i−1

∑
h=k

Gh−k(1−u)h . (A.13)

From (A.9) one has ∑c−i−1
h=k Gh−k(1 − u)h = (1 − u)k G(u) − (1 − u)c−i Rk(u). Hence

(A.13) becomes

c−i−1

∑
h=1

β ′
i Gh(1−u)h = ᾱ′

i

c−i−1

∑
k=1

θi+1,k(1−u)k G(u)− (1−u)c−i ᾱ′
i

c−i−1

∑
k=1

θi+1,k Rk(u),

and (A.12) is rewritten as

β ′
i G(u) = ᾱ′

i

c−i−1

∑
k=1

θi+1,k(1−u)k G(u)+ (1−u)c−i μ′
i (u),

where

μ′
i (u) := β ′

i R0(u)− ᾱ′
i

c−i−1

∑
k=1

θi+1,k Rk(u).

By collecting the terms that multiply G(u) on the left-hand side we write

γ ′
c−i−1(u)G(u) = (1−u)c−i μ′

i (u), (A.14)

where γ ′
c−i−1(u) := β ′

i − ᾱ′
i ∑c−i−1

k=1 θi+1,k(1−u)k .
Next we show that μ′

i (1) + ψ ′G0 has full row rank for any ψ 	= 0. Using (A.10) one
finds

μ′
i (1) = β ′

i Gc−i − ᾱ′
i

c−i−1

∑
k=1

θi+1,k Gc−i−k .

Substituting β ′
i Gc−i = ᾱ′

i ∑c−i
h=1 θi+1,h Gc−i−h − g0ᾱ′

i derived from (4.6) for s = c − i ,
one has

μ′
i (1) = ᾱ′

i θi+1,c−i G0 − g0ᾱ′
i . (A.15)

Because G0αi = 0 for 0 ≤ i ≤ c − 1 (see eqn. (4.5)), one has (μ′
i (1)+ψ ′G0)αi = −g0 I .

This shows that μ′
i (1)+ψ ′G0 has full row rank for any ψ 	= 0 so that Lemma 3.1 applies.
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Hence, for i = 0, . . . ,c − 1, γc−i−1(u) in (4.7) is a cofraction matrix polynomial. This
completes the proof. n

Proof of Theorem 5.1. The inverse of the characteristic function of (3.1) is

�c(z)
−1 = 1

(1− z)d
G(u)

g(u)
.

Because g(1) 	= 0, we can expand G(u)
g(u) in 0 < |1−u| < δ, for some δ > 0, as

G(u)

g(u)
=

∞
∑

n=0
Bn(1−u)n,

where

Bn :=
n

∑
k=0

Gkcn−k and cn := 1

n!

(
dn

dun g(u)−1
)∣∣∣∣

u=1
.

Substituting u = 1− (1− z)b we then have

�c(z)
−1 = Cc

(1− z)d + Cc−1

(1− z)d−b +·· ·+ C1

(1− z)d−(c−1)b
+ (1− z)cb−d F(z),

where Cc−n := Bn for n = 0, . . . ,c. This shows (5.2).
Because the roots of g(u) are outside Cb there is no z in the closed unit disk for which

1 − (1 − z)b is equal to a root. Thus F(z) is regular on the unit disk and continuous for
|z| ≤ 1, and by Lemma 10 in Johansen (2008) its expansion F(z) = ∑∞

n=0 Fnzn, |z| < 1
can be used to define the stationary process Yt = F(L)εt . The application of the operator
�c(L)−1+ to the equation �c(L)Xt = εt gives the result in (5.1), and Xt ∈ F(d) follows

from Cc = G(1)
g(1) 	= 0.

By Theorem 4.2, the function

hi (u) := (1− z)d−(c−i)bγ ′
c−i−1(u)�c(z)

−1 = μ′
i (u)

g(u)

has poles at the roots of g(u) and no singularity at u = 1, and it is such that hi (1) 	= 0.
Because the roots of g(u) are outside Cb there is no z in the closed unit disk for which
1− (1− z)b is equal to a root. Thus the compound function

fi (z) := hi (1− (1− z)b)

is regular on the unit disk, continuous for |z| ≤ 1, and such that fi (1) = hi (1) 	= 0. Hence
the coefficients of the expansion fi (z) = ∑∞

n=0 fn zn, |z| < 1 can be used to define theF(0)
process fi (L)εt (see Johansen, 2008, Lem. 1.). Then we write

�
d−(c−i)b
+ γ ′

c−i−1(Lb)Xt = fi (L)+εt ∈ F(0)+
so that

γ ′
c−i−1(Lb)Xt ∈ F(d − (c − i)b)

immediately follows. This completes the proof. n


