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Abstract

We propose a latent Markov model to simoultaneously model two
longitudinal binary outcomes. The model does not assume normality
of the random effects and allows the subject-specific parameters to
evolve over time. Its usefulness is demonstrated on an original study
on the effects of parathyroidectomy on targeting recommended levels
of serum calcium and phosphate in dialysis patients with secondary
hyperparathyroidism. We illustrate the clinical implications of our
empirical analysis and the methodological issues related to modeling
multivariate longitudinal categorical outcomes in general.
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1 Introduction

The recently introduced K/DOQI guidelines (1) indicate safe ranges for
serum levels of different nutrients. These ranges have affected the man-
agement of mineral metabolism in uremic patients, who are more likely to
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fail targeting serum calcium (Ca) and serum phosphate (P), see for instance
(2).

Despite drug terapies, many patients suffer from unresponsive secondary
hyperparathyroidism, which requires surgery. Surgery is expected to be cu-
rative.

Our research question is how much surgery is able to allow patients accom-
plish the recommended K/DOQI ranges. A recent study (3) demonstrated
that the K/DOQI ranges are expected to be targeted only in the short term,
thereby questioning the efficacy of surgery for unresponsive secondary hyper-
parathyroidism.

Along these lines, in this study we aim at evaluating if patients submitted
to parathyroidectomy actually target optimal serum levels of Ca and P. As a
consequence, we need to analyze data in which two outcomes were measured
simoultaneosly over different time occasions.

When observing more than one outcome simoultaneously, a common ap-
proach, especially in longitudinal studies, is to fit a model separately on each
one. We argue in this work that this practice may be flawed at least in two
respects: (i) it does model dependence among outcomes, and direct effects
one outcome can have on another and (ii) it is inefficient since it does not
take into account possible dependence among the outcomes.

Another common practice is to model longitudinal data using mixed-
effects models in which the random intercepts are time-constant and assumed
to arise from a Normal distribution. While we believe these two latter as-
sumptions may be sensible in many applications, we argue they may be some-
times restrictive, leading to biased regression estimates and hence possibly
flawed conclusions. We will demonstrate both assumptions are restrictive
for the data at hand, concluding that the researcher should routinelly check
the normality and time-constant assumptions for the random intercepts, and
possibly use models which bypass them.

In order to provide efficient, informative and less biased estimates we
introduce a multivariate mixed-effects model based on a latent Markov het-
erogeneity structure. The subject-specific parameters change over time and
there is no normality assumption. The model is a special case of a class
of models recently proposed in (4), and will be tailored to fitting simoulta-
neously the two binary outcomes (within/outside ranges for each nutrient).
The same data is analyzed by (3), but two separate models are used there.

The scope of this paper is then threefold: firstly, we outline a latent
Markov model which can be used to fit multivariate marginal longitudinal
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logit models on two binary outcomes, allowing for non-informative dropout
which is ubiquitous in longitudinal studies. Secondly, we develop an orig-
inal application on a study on levels of serum calcium and phosphate in
dialysis patients who underwent PTX for unresponsive secondary hyper-
parathyroidism. Finally, we use the application to demonstrate the need
of using multivariate models when more than one measured variable should
be deemed as an outcome; and the need of checking the common assump-
tions of normality and time-constancy of random effects, both of which will
be rejected for our data.

The rest of the paper is as follows: in the next section we describe the
motivating example and briefly argument why the common approaches may
not be suitable for the data at hand. We describe our proposed model in
Section 3 and detail issues about random effects in Section 3.1. Section
4 shows the results on K/DOQI data and compares our model with more
common approaches. We conclude in Section 5 with a brief discussion.

2 Data

Recently issued K/DOQI ranges recommend the following levels for serum
calcium and phosphate:

8.5mg/dl ≤ Ca ≤ 9.5mg/dl

3.5mg/dl ≤ P ≤ 5.5mg/dl

Between 2000 and 2005 a total of 77 dialysis patients, referred to our
hospital from several dialysis units, received a parathyroid surgery. For every
patient the existence of very high PTH levels (>800 pg/ml) together with
hypercalcemia and hyperphosphatemia or a condition of unresponsiveness to
current medical management were the criteria for surgical intervention.

Three different types of parathyroidectomy were performed: total (all
isolated glands) in 36 patients; subtotal (three glands and 5/6th of the fourth)
in 8, and total plus forearm auto-transplantation in 33. After surgery patients
were summoned on a regular basis in order to check the biochemical and
clinical outcomes.

We recorded biochemical assays one month, and one, three and five years
after surgery. Daily adjustments in the therapy of secondary hyperparathy-
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roidism, according to the levels of Ca, P and PTH, were left to the single
nephrologist responsible for each patient.

Data were firstly analyzed by (3).
We can define the two binary response variables as:

• Calcium: equal to 1 if serum calcium is within K/DOQI ranges, 0
otherwise

• Phosphate: equal to 1 if serum phosphate is within K/DOQI ranges, 0
otherwise

We only have recorded two covariates, measuring sex and age of the pa-
tient at time of PTX. We had 38 males, 29 females, aged 54 ± 12 years.
Other covariates were not included into the present analysis because of clear
insignificance at the outset.

In Figure 1 we show boxplots, one for each time occasion, of observed
levels of Ca, with red lines indicating the K/DOQI thresholds. Figure 2
shows the same for P.

From the figures it can be seen that Ca levels tend to grow after PTX,
with more than 50% subjects above the upper threshold after 1, 3 and 5
years. For P the medians stay within the threshold after surgery, even if
this does not happen for the third quartile. Further, many subjects are
outside the thresholds at all time points and there are few subjects who fail to
target the recommended ranges because they are below the lower thresholds.
Hypoparathyroidism is a well known risk associated with PTX.

Follow-up data are available for all patients after one month, while those
checked after 1, 3 and 5 years are respectively 72, 47 and 27. Some patients
have not yet reached all the temporal end-points (n = 24), while others have
been censored due to renal transplantation (n = 5) or death (n = 9). Five
cases are lost in the follow-up for unknown reasons.

It could be argued that drop-out is informative at least for the n = 14
censored cases. We have for the time being excluded a significant effect
of these drop-outs by fitting models with a categorical variable indicating
reason of drop-out, both the univariate and multivariate analyses; and also
including a general dummy variable for possibly informative drop-outs. In
all cases we recorded very large p-values (in all cases, p > 0.8), indicating a
possibly negligible effect.
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Figure 1: Boxplot of observed Serum Calcium levels after PTX. The red lines
indicate the K/DOQI thresholds

3 Methods

To formalize, let n denote the number of subjects. Each subject has been
observed for a number of times, say Ti, i = 1, . . . , n. For subject i at time
t we have two binary outcomes Y 1it and Y 2it. The vectors Y 1i and Y 2i

contain the repeated measures of the categorial outcomes for subject j.
A very common modeling approach would fit a logistic model with random

effects separately on each outcome. Formally, the Yit outcome would be

5



Figure 2: Boxplot of observed Serum Phosphate levels after PTX. The red
lines indicate the K/DOQI thresholds

modeled as

log
P (Yit = 1|X it)

P (Yit = 0|X it)
= αi + β′X it, (1)

where β is a vector of logistic regression coefficients,X it is a vector of possibly
time-dependent covariates for the i-th subject at time t, and αi ∼ N(0, σ2);
i = 1, . . . , n, t = 1, . . . , Ti. For a review of such models, see for instance (5).

There are different approaches in the literature for simoultaneously fitting
two binary outcomes, which are mostly generalizations of model (1). For
instance, see (6) or (7).

We prefer to use a different approach since we question the normality
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assumption for the random effects, and the assumption that they are time-
fixed. We prefer to allow for subject and time specific intercepts αit. See (8)
for a thorough discussion of this topic.

The model we propose is based on two logits and one log-odds ratio:

log
p(y1it = 1|αit,xit,yi,t−1)

p(y1it = 0|αit,xit,yi,t−1)
= α1it + x′itβ1 + y′i,t−1γ1

log
p(y2it = 1|αit,xit,yi,t−1)

p(y2it = 0|αit,xit,yi,t−1)
= α2it + x′itβ2 + y′i,t−1γ2

log
p(y1it = 1, y2it = 1|αit,xit,yi,t−1)

p(y1it = 1, y2it = 0|αit,xit,yi,t−1)
+

+ log
p(y1it = 0, y2it = 0|αit,xit,yi,t−1)

p(y1it = 0, y2it = 1|αit,xit,yi,t−1)
= φ

We denote with αhit a subject and time specific random intercept and
with βh a vector of regression parameters for the h-th response variable,
h = 1, 2. The log-odds ratio is denoted with φ.

We further introduce two vectors of regression parameters γh which are
used to estimate the direct effect, adjusted for the covariates, of experiment-
ing the event at the previous time on the probability of experimenting the
event at current time. This is known as state dependence.

A full account of the model and a description in full generality (i.e., for
arbitrary number of arbitrary categorical outcomes) can be found in (4).
The main difference with (4) is that they use a closed panel assumption that
Ti = T ∀i.

We stress that, even if our notation suggests so, not necessarily the same
covariates must be used on each marginal logit. This is a particularly useful
feature of our marginal logit parameterization since it can be expected in gen-
eral applications that different covariates have significant effects on different
outcomes, even if they may be related. Refer to (4) for further discussion.

Finally, it is straightforward to check that modelling the outcomes with
two marginal logits and the log-odds does not impose any restriction on the
joint distribution.

3.1 Random effects

The random intercepts αhit are commonly assumed to arise from a normal
distribution, possibly with an autoregressive structure to model change over
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time. In this work we prefer to use a Markov process, which avoids the
questionable normality assumption and provides more information at the
interpretation stage. Hence, assuming there are k latent states, the random
effects model can be summarized with the initial and transition probabilities
p(αi1 = ξc) = λc(yi0,xi0) and p(αit = ξd|αi,t−1 = ξc) = πcd, where we
use a logit parameterization to allow the initial probabilities to depend on a
baseline and covariates.

For each i and t, the random parameter vector αit is assumed to arise
from a discrete distribution with k support points, which are denoted by ξc,
c = 1, . . . , k. The k support points can be thought of being latent intercepts,
which are estimated together with the other model parameters.

For fixed k, the model is then fully described by the regression parameters,
the k latent intercepts and the mixing distributions P (αit = ξc), c = 1, . . . , k.
In order to allow the intercepts to evolve over time, i.e., to allow subjects to
move from a latent state (identified by ξc) to another, we assume a latent
Markov structure. The Markov assumption is that αit is independent of αiv,
v < t− 1, conditionally on αi,t−1. This assumption is seldom restrictive and
is used to limit the number of free parameters.

Summarizing, for each i, the random parameter vectors {αi1, . . . ,αiT}
are assumed to follow unobservable first-order Markov chains with

• initial probabilities P (αi1 = ξc) = λc(yi0,xi0), c = 1, . . . , k

• transition probabilities P (αit = ξc|αi,t−1 = ξd) = πcd; c, d = 1, . . . , k

The initial probabilities are allowed to depend on baseline outcomes and
covariates through a logit parameterization. Parameters for this further logit
model and latent transition matrix Π = {πcd, c, d = 1, . . . , k} are estimated
together with β, γ, φ and ξ.

We give no details here on model fitting.
Refer to (4) for a description of an Expectation-Maximization (EM) al-

gorithm for deriving the maximum likelihood estimates for the model.
At the E-step, we make use of forward and backward recursions adapted

from the hidden Markov literature, see also (9).
At the M-step, we mostly set up ad-hoc Fisher-scoring iterations.

8



4 Results

We fit our model to the data about serum calcium (Y1) and phosphate (Y2).
Levels at baseline are used to model initial probabilities of the latent trait.

In order to select the number of states we use the Akaike Information
Criterion (AIC) (10). We repeatedly fit the model for different values of k,
and select the model minimizing AIC. We end up selecting a model with
k = 2 latent states. Table 1 shows the estimated β, γ and φ parameters, an
asterisk indicating significance at 5% level.

Effect logit logit log-odds
fertility employment ratio

intercept α1it α2it -0.055
t = 1y -0.97 -1.06 -
t = 3y -0.63 -1.75* -
t = 5y -1.08 -2.13* -
age/100 0.01 -0.41 -
sex(Male) -0.52 -0.31 -
lagged calcium 1.20* 0.59* -
lagged phosphate 0.23 1.00* -

Table 1: Regression estimates for the proposed model fit on K/DOQI data.
An asterisk indicates significance at 5% level.

The strong negative trend has been observed also by (3), and has shed
doubts over parathyroidectomy as a therapeutic tool for secondary hyper-
parathyroidism.

The state dependence estimators reveal that, after adjusting for possible
confounders, both calcium and phosphate are likely to stay within the ranges
once they have been targeted. Most importantly, it is better to target cal-
cium (for instance, through subscription of vitamin D) since this significantly
raises the probability that phosphate is targeted in the near future. State
dependence of calcium on phosphate had not been unveiled in (3), and may
help refining clinical treatment of hyperparathyroidism.

We conclude this section demonstrating the need, at least for the data at
hand, of allowing for time-varying subject-specific parameters and for relax-
ing the normality assumption. To do so, we fit a model with Normal random
effects, and then a model with time-constant subject specific parameters.
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The latter model is fit by constraining the hidden transition matrix to be
diagonal, and corresponds to a latent class model. We perform a likelihood
ratio tests, using results from (4) to evaluate significance. Both models are
rejected with p < 0.001, indicating that time-constant random effects may
be restrictive and that a Gaussian distribution may not adequately model
the random effects.

Finally, in order to convince the reader about necessity of simoultaneous
modeling of joint outcomes, we compare the predictive performance of the
simoultaneous and of the separate models. To do so, we use 10-fold cross-
validation. We randomly choose a test set of 10 subjects, fit the model on
the remaining subjects, and use the fitted model to predict the outcomes
of the 10 subjects. We repeat the operation one hundred times, each time
randomly choosing a set of 10 subjects for validation.

The result of this cross-validation experiment are as follows: when one
uses the joint model, the cross-validated misclassification estimate for the
joint outcomes is 0.11, with a 95% confidence interval (0.06-0.20). When
separate models are fit on each of the two outcomes, the misclassification
estimate raises to 0.39, with a 95% confidence interval (0.28-0.45). This
happens even if the parameter for log-odds is not significant.

5 Discussion

We have illustrated a latent Markov model for two longitudinal binary out-
comes. Matlab code for fitting the model is available from the web page
http://afarcome.interfree.it/codemarglong.zip. The proposed model
allows the subject specific parameters to change over time. The common
assumption that the subject-specific parameters are time-constant is partic-
ularly at risk when the time horizon is large, like in the proposed motivating
example. In that case, it is very likely that unobserved factors contributing
to overdispersion have changed over time. The proposed model also relaxes
the normality assumption for the random effects. It could be argued that
normality assumption is bypassed at the price of assuming a discrete latent
distribution, but it is well known that any smooth enough continuous density
can be well approximated by a finite mixture of masses. Simulations in (4)
hint in a more general framework that when the random effects are actually
Normal, there is a very small bias in approximating the Normal distribution
by a finite mixture. On the other hand, it is natural to expect that when
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the random effects are far from being Normal, a large bias can be expected
in assuming normality.

The rejection of normality and the need for time varying random effects
for the data at hand issue a warning to applied statisticians. Both assump-
tions should be checked when analyzing longitudinal binary data. A possible
alternative if any of the two fails is to use our proposed model. The model
can be easily adapted to the case of time-constant random effects by con-
straining the latent transition matrix to be diagonal, thereby only bypassing
the normality assumption.

With respect to our application, we can confirm that in the long term
(3-5 years) a tendency toward a loss of control of serum levels of P and
Ca exists. This phenomenon of disease recurrence, e.g. (11) and references
therein, underlines the importance of medical surveillance and treatment. Af-
ter carefully re-analyzing data from (3) with a more suitable simoultaneous
model for the two outcomes of main interest, we can confirm that parathy-
roid surgery may not represent an optimal therapeutic tool for targeting the
recommended ranges for Ca and P.

Acknowledgements: This study was partially supported by EIEF re-
search grant “Advances in non-linear panel models with socio-economic ap-
plications”.

References

[1] National Kidney Foundation. K/DOQI clinical practice guidelines: Bone
metabolism and disease in chronic kidney disease. American Journal of
Kidney Diseases 2003; 42:S1–S201.

[2] Young E, Akiba T, Albert J, McCarthy J, Kerr P, Mendelssohn D,
Jadoul M. Magnitude and impact of abnormal mineral metabolism in
hemodialysis patients in the dialysis outcomes and practice patterns
study (DOPPS). American Journal of Kidney Diseases 2004; 44:34–38.

[3] Mazzaferro S, Pasquali M, Farcomeni A, Vestri A, Filippini A, Romani
AM, Barresi G, Pugliese F. Parathyroidectomy as a therapeutic tool for
targeting the recommended NKF-K/DOQI ranges for serum calcium,
phosphate and parathyroid hormone in dialysis patients. Nephrology
Dialysis Transplantation 2008; 23:2319–2323.

11



[4] Bartolucci F, Farcomeni A. A multivariate extension of the dynamic
logit model for longitudinal data based on a latent Markov hetero-
geneity structure. Journal of the American Statistical Association 2009;
104:816–831.

[5] Pendergast J, Gange SJ, Lindstrom M, Newton MA, Palta M, Fisher
MR. A survey of methods for analyzing clustered binary response data.
International Statistical Review 1996; 64:89–118.

[6] Ten Have TR, Morabia A. Mixed effects models with bivariate and uni-
variate association parameters for longitudinal bivariate binary response
data. Biometrics 1999; 55:85–93.

[7] Todem D, Kim K, Lesaffre E. Latent-variable models for longitudi-
nal data with bivariate ordinal outcomes. Statistics in Medicine 2007;
26:1034–1054.

[8] Hsiao C. Analysis of Panel Data. Cambridge University Press: New
York, 2005.

[9] MacDonald IL, Zucchini W. Hidden Markov and other Models for
Discrete-Valued Time Series. Chapman and Hall: London, 1997.

[10] Akaike H. Information theory as an extension of the maximum likeli-
hood principle. Second International symposium on information theory,
Petrov BN, F C (eds.), Akademiai Kiado: Budapest, 1973; 267–281.

[11] Tominaga Y, Katayama A, Sato T, Matsuoka S, Goto N, Haba T, Hibi Y,
Numano M, Ichimori T, Uchida K. Re-operation is frequently required
when parathyroid glands remain after initial parathyroidectomy for ad-
vanced secondary hyperparathyroidism in uraemic patients. Nephrology
Dialisis and Transplantation 2003; 18:65–70.

12


