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Abstract. We analyse 3-subset difference families of Z2d+1 ⊕Z2d+1 arising as reductions (mod
2d + 1) of particular families of 3-subsets of Z ⊕ Z. The latter structures, namely perfect
d-families, can be viewed as 2-dimensional analogues of difference triangle sets having the
least scope. Indeed, every perfect d-family is a set of base blocks which, under the natural
action of the translation group Z ⊕ Z, cover all edges {(x, y), (x ′, y ′)} such that |x − x ′|, |y −
y ′| ≤ d. In particular, such a family realises a translation invariant (G, K3)-design, where
V (G) = Z ⊕ Z and the edges satisfy the above constraint. For that reason, we regard per-
fect families as part of the hereby defined translation designs, which comprise and slightly
generalise many structures already existing in the literature. The geometric context allows
some suggestive additional definitions. The main result of the paper is the construction of
two infinite classes of d-families. Furthermore, we provide two sporadic examples and show
that a d-family may exist only if d ≡ 0, 3, 8, 11 (mod 12).
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1. Introduction and Basics

The decomposition of a graph into copies isomorphic to a given sub-graph is a
well-known research topic which has been considered – and is still being – by sev-
eral authors. In many cases, the marriage between combinatorics and algebra has
brought about a definitely better understanding of graph decompositions and, on
the other hand, has provided a new, compelling way of looking at some algebraic
structures. The large use of difference families over the years is an emblematic exam-
ple of the above interplay.

Definition 1.1. If S is a subset of an abelian group (H, +), let �S stand for {s −
s′ : s, s′ ∈ S, s �= s′}. Every family F = {Si ⊂ H : i ∈ I, |Si | constant} is called
a difference family if

⋃
i∈I �Si (shortly, �F) is equal to H \ {0} with no repeated

element.

Notice that in the above definition H and I need not be finite. As valuable ref-
erences on difference families with H finite, we cite [1, 4–6]. The following notion
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generalises – to the possibly infinite size – one of the contexts where difference
families are extensively used.

Definition 1.2. Let H, Q, G be respectively an abelian group, a graph whose vertex set
is equal to H , and a sub-graph of Q. If k ∈ H and L is any subgraph of Q, let k + L

denote the graph L′ such that V (L′) = k + V (L) and that {h, h′} ∈ E(L) if and only
if {k + h, k + h′} ∈ E(L′). Finally, let � denote the graph isomorphism relation. A
(Q, H, G)-translation design is a family {Aj : j ∈ J } of sub-graphs of Q satisfying

I ) Aj � G for all j and
⋃

j∈J

E(Aj ) = E(Q) with no repetition.

I I ) For any h ∈ H and j ∈ J, h + Aj = Aj ′ for some j ′.

The above definition implies that h+ ε ∈ E(Q) for all ε ∈ E(Q), h ∈ H . In par-
ticular, Q must be regular. We remark that V (Q) and J may have infinite size. The
next claim provides the – as elementary as basic – recipe for recovering a particular
kind of translation design from a suitable difference family.

Property 1.3. Having denoted the complete graph of order v by Kv, let H be an abe-
lian group and {Aj : j ∈ J } be a (K|H |, H, Kv)-translation design for some v. If
F is a difference family of H such that S ∈ F implies S = V (Aj ) for some j ,
then the families {Aj : j ∈ J } and {h + S : h ∈ H, S ∈ F} coincide. Conversely, if
F = {Si ⊆ H : i ∈ I, |Si | = v ∀i} is a difference family of an abelian group H , then
the family {h + Si : h ∈ H, i ∈ I } is a (K|H |, H, Kv)-translation design.

In keeping with the standard terminology, we call base blocks the elements of
a difference family. The well-known concept of cyclic BIBD (balanced incomplete
block design) is a particular case of Definition 1.2, obtained by setting H = Zu (the
ring of integers (mod u) ), Q = Ku and G = Kv for some suitable u, v. Pioneering
works – as well as more recent findings – related to cyclic BIBD’s are collected in
[4, 5]. Further, we mention [2] as a most recent paper. The weaker notion of Optical
Orthogonal Code (see e.g. [2, 9, 22]) is obtained by dropping the hypothesis Q = Ku

in the above setting. Other classical combinatorial structures, such as for example
cyclic cycle systems (also known as cyclic (Kv, Ck)-designs; see e.g. [3, 7, 8, 11, 13–
21] for cyclic cycle systems or simply cycle systems), are easily definable in terms of
(Q, H, G)-translation designs.

In the present paper we shall focus on the base blocks of some particular (Q, Z⊕
Z, Kv)-translation designs:

Definition 1.4. A set A made up of 3-subsets of Z ⊕ Z is termed a perfect d-family
if �A = [−d, d] × [−d, d] \ {(0, 0)}. If, in addition, every 3-subset generates some
nonproportional differences (thus, it generates precisely 3 mutually nonproportional
differences), A is termed a pure d-family.
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For example, the sets

{(0, 0), (1, 0), (2, 2)}, {(0, 0), (2, 0), (3, 3)}, {(0, 0), (3, 0), (2, 3)},

{(0, 0), (1, 1), (3, 2)}, {(0, 0), (0, −1), (2, −2)}, {(0, 0), (0, −2), (3, −3)},

{(0, 0), (0, −3), (3, −2)}, {(0, 0), (1, −1), (2, −3)}
form a pure 3-family. Instead, an example of 3-subset that generates proportional
differences is {(0, 0), (2, 3), (6, 9)} – here d is at least 9. Every perfect d-family yields
a difference family in Z2d+1 ⊕ Z2d+1. The required base blocks are in fact obtained
by reducing (mod 2d + 1) the elements of every 3-subset. In that sense, perfect
d-families can be viewed as 2-dimensional analogues of difference triangle sets [10]
made up of n 3-subsets and having the least scope [2] subject to n fixed. In details,
a difference triangle set is a family F of n subsets of Z of the same size k, such that
�F is not a multiset. The scope of F is the maximum of �F . If the scope is the
smallest admissible, subject to n and k fixed (thus, if it is equal to k(k − 1)n/2), then
reducing (mod k(k − 1)n + 1) yields a so-termed perfect difference family [2] which
generates a cyclic (k(k −1)n+1, k, 1)-design. In the present 2-dimensional context,
we define the scope of a family F of n 3-subsets as the largest component occurring
in a pair, over all pairs of �F . A little calculation can show that this number is not
smaller than �(√6n + 1 − 1)/2 . As a consequence, a family F is a perfect family

if and only if its scope is equal to (
√

6n + 1 − 1)/2 and �F is not a multiset.
Alternatively, a perfect d-family can be regarded as a set of base blocks for a

(Qd, Z ⊕ Z, K3)-translation design such that

E(Qd) = { {(x, y), (x′, y′)} : |x − x′|, |y − y′| ≤ d , (x, y) �= (x′, y′)} .

In geometrical terms, the ((2d + 1)2 − 1)/6 subsets of a perfect d-family can be
represented as affine triangles, none of which is degenerate if and only if the family
is pure, and whose edges correspond to all possible nonzero vectors (up to the sign)
with integral entries ranging in [−d, d]. Figure 1 deals with the previously defined
3-family.

The necessary condition 3|2d2 + 2d, immediately arising from the above discus-
sion, flows into the stronger

Fig. 1. Geometric interpretation of a pure 3-family
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Proposition 1.5. If a perfect d-family exists, then d ≡ 0, 3, 8, 11 (mod 12).

Proof. For each subset S of the family let us select three pairs (x1, y1), (x2, y2),

(x3, y3), among the six of �S, such that xi ≥ 0 for all i and, if xi = 0 for all i, such that
yi > 0 for all i. Assuming that x2 ≤ x1 ≥ x3 and, if xi = 0 for all i, that y2 < y1 > y3,
a geometrical argument yields with few difficulties (x1, y1) = (x2, y2) + (x3, y3). As
a consequence, the sum of these three pairs is a vector whose entries are even, and
the same property still holds, clearly, when reversing the sign of all negative entries
yi and summing the selected pairs over all the subsets of the family. However, by
summing up all the above pairs in a different fashion, one realises that the result-
ing entries are even if and only if d(d + 1)/2 is even. Indeed, the contribute of
(x, y) is double and hence negligible when xy �= 0; instead, the remaining 2d pairs
{(x, 0), (0, x) : 1 ≤ x ≤ d} must be such that

∑
1 lex≤d x ( = d(d + 1)/2) ) is even.

The constraint on d, just obtained, can be rephrased as d ≡ 0, 3 (mod 4). Now we
observe that the former constraint 3|2d2 + 2d is equivalent to d ≡ 0, 2 (mod 3).
By applying the Chinese Remainder Theorem to the two congruences, we reach the
end of the proof. �

In the next section we exhibit a perfect, not pure, d-family for every d ∈ {12 ·
2n : n ≥ 0}∪{20 ·4n : n ≥ 0}∪{8}. Thus, we settle the existence question for infinitely
many instances of the forms d ≡ 0 and d ≡ 8 (mod 12). Our constructions avail
of Skolem sequences. In the last section we draw some brief conclusions, by also
providing a (so far) sporadic example of pure 8-family.

2. Two Infinite Classes of Perfect d-families

In this section we establish the following results.

Theorem 2.1. For every n ≥ 0 there exists a perfect, not pure, 12 · 2n-family.

Theorem 2.2. For every n ≥ 0 there exists a perfect, not pure, 20 · 4n-family. Further-
more, there exists a perfect, not pure, 8-family.

Before proving the above claims, we introduce two classical notions.

Definition 2.3. Let t be a positive integer. A Skolem sequence of order t is a set of
couples {{ai, bi} : 1 ≤ i ≤ t} such that

⋃
1≤i≤t {ai, bi} = {1, 2, . . . , 2t} and bi −ai = i

for all i. A hooked Skolem sequence of order t is a similar set of couples such that⋃
1≤i≤t {ai, bi} = {1, 2, . . . , 2t − 1, 2t + 1} and bi − ai = i for all i.

For example, the couples {1, 2}, {4, 6}, {5, 8}, {3, 7} and the couples {1, 2}, {3, 5}
realise a Skolem sequence and a hooked Skolem sequence of order 4 and 2 respec-
tively. The following well-known result – a proof of which can be found e.g. in [4] –
is crucial for our purposes.
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Proposition 2.4. A Skolem sequence of order t exists if and only if t ≡ 0, 1 (mod 4).
A hooked Skolem sequence of order t exists if and only if t ≡ 2, 3 (mod 4).

We are now ready for the proof of the two claimed results.

Proof of Theorem 2.1. Let us denote 2n by M. Assuming that every 3-block of the
family contains (0, 0), we describe the family under construction by means of cou-
ples {(x1, y1), (x2, y2)}, instead of terns {(0, 0), (x1, y1), (x2, y2)}. In order to better
explain the idea lying behind the next definitions, we let φ(x, y) stand for (y, −x).
The symbol φ should be interpreted as the 90-degree clockwise rotation of a vector.
To begin with, we introduce the family

A =
⋃

1 ≤ i ≤ 12M − 1
i �= 8M

{{(12M, i), (i, 12M)}, {φ(12M, i), φ(i, 12M)}} .

Clearly,

�A =
⋃

1 ≤ i ≤ 12M − 1
i �= 8M

{(±12M, ±i), (±i, ±12M), (±(12M − i), ±(12M − i))} ,

where the sign choices are assumed to be independent and, therefore, give rise to 12
differences for each i. Let us now consider a Skolem sequence {{ai, bi} : 1 ≤ i ≤ 4M}.
We define

B =
⋃

1≤i≤4M

{{(4M + ai, 0), (4M + bi, 0)}, {φ(4M + ai, 0), φ(4M + bi, 0)}} ,

thus obtaining

�B =
⋃

1≤i≤12M

{(±i, 0), (0, ±i)} .

Then we define

C =
⋃

6M + 1 ≤ j ≤ 12M − 1
12M − j ≤ i ≤ 6M − 1

{{(±i, j), (±j, 12M − 1 − i)}, {φ(±i, j), φ(±j, 12M − 1 − i)}} ,

where the sign choices for each couple are assumed to coincide (thus, only 4 couples
are generated for any fixed j, i). It follows that �C contains the differences

⋃

6M + 1 ≤ j ≤ 12M − 1
12M − j ≤ i ≤ 6M − 1

{(±(j − i), ±(i + j + 1 − 12M)), (±(i + j + 1 − 12M), ±(j − i))}

(for any choice of the ±’s) and the differences related to the edges passing through
(0, 0), which the reader can recover from the definition of C. No further difference
is produced by C. Let us remove from the above family the couples {(±4M, 8M),

(±8M, 8M −1)} and {φ(±4M, 8M), φ(±8M, 8M −1)}. The resulting family, which
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we denote by C̃, is the one actually employed. The lost differences shall be generated
in the end. Now we introduce the families

Dm =
⋃

1≤i≤j≤3 M
m

−1

{{(±m(2i − 1), m(2j + 1)), (±(12M − m(2j + 1)), m(2i − 1))},

{φ(±m(2i − 1), m(2j + 1)), φ(±(12M − m(2j + 1)), m(2i − 1))}} ,

where m ranges over all powers of 2 of the interval [1, M], and the sign choices for
each couple are assumed to coincide. We have that �Dm contains

⋃

1≤i≤j≤3 M
m

−1

{(±(12M − 2m(i + j)), ±2m(j − i + 1)),

(±2m(j − i + 1), ±(12M − 2m(i + j)))}
(for any choice of the ±’s) and, as above, the remaining differences of �Dm corre-
spond to all edges passing through (0, 0).

The next couples will fill the gaps left by the above families. Before defining them,
let us summarise how the already existing couples work. Notice that if any difference
(x, y) with x, y ≥ 0 has been generated, than the same is true more generally for
(±x, ±y) and (±y, ±x). In the following discussion we assume, therefore, that the
differences (x, y) are such that 0 ≤ x ≤ y ≤ 12M. It is easy to see that A and B
generate all the admissible differences (x, y) satisfying either x = 0, or y = 12M,
or x = y, except (4M, 4M), (8M, 12M) and (12M, 12M). Concerning C, the related
differences are characterised either by x �= y �= 12M and x +y ≥ 12M, or by x �= 0,
x + y odd and x + y ≤ 12M − 1, as it can be realised with few difficulties. However,
from these differences we must remove (1, 4M), (4M, 8M), (8M − 1, 8M), as pre-
scribed. Finally, the differences arising from each Dm are precisely those satisfying
x + y ≤ 12M − 2 and either x, y ≡ m (mod 2m) or (x, y ≡ 0 (mod 2m) , x + y �≡ 0
(mod 4m) ). In Fig. 2 we have outlined the case M = 4. The x axis is vertical and the
y entry increases from right to left. The triangle boundary is covered by �A and �B
with the exception of the three diamonds, whereas the interior lines pass through all
points covered by �C. Each vertical line, together with the corresponding oblique
line at the same position from the left, refers to some fixed j and is parametrised
by i. In particular, the two bolder lines refer to j = 44. Dots, circles and squares
are covered by Dm with m = 1, 2, 4 respectively. In particular, the larger dots and
the bolder circles refer to m = 1, i = 2 and to m = 2, i = 2 respectively. Notice
that, besides the six differences removed along the way, the only difference to be still
generated is (2M, 6M). Indeed, �DM does not cover the unique pair of the form
(x = 2M + 4αM, y = 2M + 4βM) subject to x + y ≤ 12M − 2. It easily follows
that the family

Z = {{(±1, 4M), (∓(8M − 1), −8M)}, {φ(±1, 4M), φ(∓(8M − 1), −8M)} ,

{(2M, 6M), (6M, 2M)}, {φ(2M, 6M), φ(6M, 2M)} ,

{(8M, 4M), (−4M, −8M)}, {φ(8M, 4M), φ(−4M, −8M)}}
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Fig. 2. The case M = 4

is what we need to conclude the construction (the diamonds and the heart in Fig. 2
represent the 6+1 last differences). The entire family is, therefore, A ∪ B ∪ C̃ ∪ D1 ∪
D2 ∪ ... ∪ D2t ∪ ... ∪ DM ∪ Z. �

As the proof of the next theorem has much in common with the above proof, we
allow ourselves to provide a more succinct explanation of the techniques employed.

Proof of Theorem 2.2. Let us denote 4n by M. We start with establishing the former
part of the claim. The required sub-families are defined as follows.

A =
⋃

1 ≤ i ≤ 20M − 1
i �= 2

{{(20M, i), (i, 20M)}, {φ(20M, i), φ(i, 20M)}} .

We have that

�A =
⋃

1 ≤ i ≤ 20M − 1
i �= 2

{(±20M, ±i), (±i, ±20M), (±(20M − i), ±(20M − i))} .
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Because (20M − 2) ≡ 6 (mod 12), it follows that (20M − 2)/3 ≡ 2 (mod 4). Let us
denote this last fraction by µ, and choose a hooked Skolem sequence {{ai, bi} : 1 ≤
i ≤ µ}. We define

B =
⋃

1≤i≤µ

{{(µ + ai, 0), (µ + bi, 0)}, {φ(µ + ai, 0), φ(µ + bi, 0)}} ,

thus obtaining

�B =
⋃

1 ≤ i ≤ 20M − 1
i �= 20M − 2

{(±i, 0), (0, ±i)} .

The next family is

C =
⋃

10M + 1 ≤ j ≤ 20M − 1
20M − j ≤ i ≤ 10M − 1

{{(±i, j), (±j, 20M − 1 − i)}, {φ(±i, j), φ(±j, 20M − 1 − i)}} ,

where the sign choices must coincide. Therefore, �C contains the differences
⋃

10M + 1 ≤ j ≤ 20M − 1
20M − j ≤ i ≤ 10M − 1

{(±(j − i), ±(i + j + 1 − 20M)), (±(i + j + 1 − 20M), ±(j − i))}

(for any choice of the ±’s) and the differences related to the edges passing through
(0, 0). In the present proof, some prescribed couples shall be removed from the
family D1 (still to define) rather than from C. We thus proceed with defining

Dm =
⋃

1≤i≤j≤5 M
m

−1

{{(±m(2i − 1), m(2j + 1)), (±(20M − m(2j + 1)), m(2i − 1))},

{φ(±m(2i − 1), m(2j + 1)), φ(±(20M − m(2j + 1)), m(2i − 1))}} ,

where m ranges in {2q : 0 ≤ q ≤ n} and the sign choices for each couple are assumed
to coincide. It follows that �Dm is made up of the set

⋃

1≤i≤j≤5 M
m

−1

{(±(20M − 2m(i + j)), ±2m(j − i + 1)),

(±2m(j − i + 1), ±(20M − 2m(i + j)))}
(for any choice of the ±’s) and of the further differences related to all edges passing
through (0, 0). We turn D1 into D̃1 by removing the couples {(±1, 3), (±(20M −
3), 1)}, {φ(±1, 3), φ(±(20M − 3), 1). Then we add the family

E = {{(±2M, 6M), (±14M, 2M)}, {φ(±2M, 6M), φ(±14M, 2M)} ,

{(±2M, 10M), (±10M, 6M)}, {φ(±2M, 10M), φ(±10M, 6M)}}
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and the final family

Z = {{(0, 20M − 2), (20M, 20M)}, {φ(0, 20M − 2), φ(20M, 20M)} ,

{(20M, −2)(20M − 2, 2 − 20M)}, {φ(20M, −2), φ(20M − 2, 2 − 20M)} ,

{(−2, 20M − 4), (1, 20M − 3)}, {φ(−2, 20M − 4), φ(1, 20M − 3)} ,

{(1, 3 − 20M), (1, 3)}, {φ(1, 3 − 20M), φ(1, 3)}} .

Reasoning as in the above proof, it could be checked that all these sub-families
behave together in the expected way. Consequently, A∪B∪C ∪ D̃1 ∪D2 ∪ ...∪D2t ∪
... ∪ DM ∪ E ∪ Z is the required 20M-family (notice that the ♥ gap of the previous
theorem is replaced by a 6-difference gap, which E completely fills).

The latter claim of the theorem can be regarded as an extension of the former,
by setting M = 2/5 and making the due adaptations. In more details, we define A,
B, C and Z as in the general case. We do not need any further couple (with little
effort, the reader may indeed realise that the current 6-difference gap corresponds
to D1 \ D̃1, where D̃1 is empty). �

3. A Pure Family and Some Remarks

Although we regard Skolem sequence as extremely noble objects, in any context
might they be employed, we must point out that the families B of the previous sec-
tion – arising from Skolem sequences possibly hooked – are the very ones which
prejudice pureness. In order to construct a pure family one conceivably needs to give
up Skolem sequences and other similar structures which, on the contrary, reveal so
useful in the one-dimensional case. Unfortunately, besides the pure 3-family exhib-
ited in the Introduction, we have so far succeeded in constructing no pure d-family
but the following, with d = 8 (as usual, couples replace terns):

F = F0
⋃

φ(F0) , with

F0 = { {(1, 0), (6, 8)}, {(2, 0), (−3, 8)}, {(3, 0), (3, 8)},
{(4, 0), (−4, 4)}, {(5, 0), (7, 8)}, {(6, 0), (−1, 8)}, {(7, 0), (8, 8)},

{(−2, 8), (3, 3)}, {(−4, 8), (2, 2)}, {(−6, 8), (1, 1)},
{(±7, 1), (±6, 7)}, {(±7, 2), (±5, 7)}, {(±7, 3), (±4, 7)},

{(±6, 2), (±5, 6)}, {(±6, 3), (±4, 6)}, {(±5, 3), (±4, 5)}, {(±1, 3), (±5, 1)} } ,

where the ±’s of each couple must coincide. By plotting the absolute values of the
involved differences as already done in the above section, the interior of the result-
ing 48-point triangle is easily seen to be filled up in almost the same way as in
the construction of Theorem 2.2. Instead, the boundary elements are grouped in
a rather peculiar way, which in our opinion seems difficult to generalise (in partic-
ular, thereis no interaction between the boundary and the interior). Also the pure
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3-family defined at the beginning of this paper seems a hard starting point for con-
structing an infinite class, mainly because the amount of information it provides is
quite scanty.

Needless to say, it is highly desirable to settle the existence question for all admis-
sible cases (mod 12), by exhibiting both pure and nonpure families. Some tricky
constructions might be required that possibly avoid the operator φ. Another chal-
lenging problem, of a different nature, might be that of finding an infinite family
Fn of perfect (or pure) dn-families with increasing dn, such that Fn ⊆ Fn+1 for all
n, so as to yield an infinite limit construction and, consequently, a difference family
in Z ⊕ Z. Finally, we emphasise that these questions are not endemic of 3-subsets.
For, it is clear that the above concepts can be extended to cycle systems, polygon
systems and many other combinatorial entities.
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