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ABSTRACT. Controlling the false discovery rate (FDR) is a powerful approach to multiple testing,
with procedures developed with applications in many areas. Dependence among the test statistics
is a common problem, and many attempts have been made to extend the procedures. In this paper,
we show that a certain degree of dependence is allowed among the test statistics, when the number
of tests is large, with no need for any correction. We then suggest a way to conservatively estimate
the proportion of false nulls, both under dependence and independence, and discuss the advantages
of using such estimators when controlling the FDR.
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1. Introduction and motivation

Multiple testing methods that control the false discovery rate (FDR) have recently received
much attention, following the seminal paper of Benjamini & Hochberg (1995). The main
advantage of controlling the FDR in multiple testing is that this allows to achieve good
power even when testing many (often thousands of) hypotheses. This happens in many
modern applications, for instance, in bioinformatics.

While procedures controlling the FDR were designed initially for independent test statis-
tics, it is actually more common to work with dependent test statistics. For instance, in DNA
microarray analysis, the test statistics are a function of gene expression levels, and genes are
dependent by their intrinsic nature.

Many efforts have been made to generalize the methods under dependence (Yekutieli &
Benjamini, 1999; Benjamini & Yekutieli, 2001; Pollard & van der Laan, 2002; Sarkar, 2002;
Storey, 2003, etc.); by verifying procedures developed under independence of test statistics to
work under certain dependence conditions, estimation of the joint distribution, resampling
methods.

In this paper, we argue that a certain degree of dependence is allowed among the test sta-
tistics, when the number of tests is large, with no need for any correction to the standard
methods. We also provide asymptotic distributional results for the quantities of interest.

More in detail, we will consider the case of totally ordered test statistics, and show that
the FDR is asymptotically (with the number of tests) controlled under conditions of weak
dependence. Applications that possibly satisfy such assumptions include financial and bio-
logical time series, and problems in change-point modelling (e.g. in sequential analysis). More-
over, we show simulations of the case of weakly dependent test statistics that are not totally
ordered, and see that still a correction is not needed. We will use our results to suggest a
direct and new approach to microarray time-course data analysis, from which motivation for
this work arise. Time course microarray data arise when repeated measures on gene expres-
sions are taken over time; and the interest is in the time-dependent behaviour of the genes.

Secondly, we will discuss suitable estimators for the proportion of false nulls among the
hypotheses, both under dependence and independence. Such estimators can be used to boost
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power of many multiple testing procedures. As we will point out, they also are of interest
in conservatively estimating the weight of an unknown component in a mixture model; with
applications in cosmology.

This paper is organized as follows: in section 1.1 we will review some background on FDR
and multiple testing in general. In section 2, we will review the main assumptions made on
the dependence among the test statistics. Section 3 provides asymptotic distributional results
on the quantities of interest, and gives sufficient conditions on the dependence that lead to
asymptotic control of the FDR if the test statistics are totally ordered. To actually do this, a
robust estimator for the number of false null hypotheses is needed. We suggest two estimators
that seem to be satisfactory in section 4.

1.1. Background

Consider a multiple testing situation in which m tests are being performed. Suppose M, of
the m hypotheses are true, and M, are false. Table 1 shows the possible outcomes. R denotes
the number of rejections. N;;, with i,j € {0, 1}, is the number of H; accepted when H; is true.
Note that Ny and Ny give the actual number of errors, respectively, the number of Type I
(false-positive) and II (false-negative) errors.

In the single test setting, one controls the probability of a false rejection. In the multiple
tests setting, this is likely to lead to an explosion of the number of false-positive errors. Atten-
tion should be shifted from the single test to the performance on the whole set of tests, by
bounding a function of Ny, the number of false-positive errors. Such functions are referred
to as Type I error rates. A variety of possible Type I error rates have been proposed (see,
e.g. Benjamini & Hochberg, 1995; Dudoit et al., 2004; Lehmann & Romano, 2005; Sarkar,
2005). From a practical point of view, one still wants to get a sufficiently small Ny, while
rejecting the maximum number of hypotheses, thus minimizing the number of false-negative
errors.

A popular error measure is the FDR, proposed in Benjamini & Hochberg (1995). Define
the false discovery proportion (FDP) to be the proportion of erroneously rejected hypotheses:

FDP:{@ it R>0 (1)
0 if R=0.

Benjamini & Hochberg (1995) define the FDR as:
FDR = E(FDP). (@)

False discovery rate is motivated by modern applications, in which the number of tests is
very large; and justified by the idea that any researcher is prepared to accept a high number
of false rejections when a high number of rejections is made. This leads to a more liberal
control on the number of false positives, and a much lower number of false negatives; with
respect to procedures controlling more classical Type I error rates like the family-wise error
rate (FWER) (Pr(Nyjo>0). The FDR control provides also a weak control of the FWER, in
the sense that if all the null hypotheses are true, FDR and FWER are equal.

Table 1. Outcomes in testing m hypotheses

Hj not rejected Hy rejected Total
H() true NO\O Nl\() M()
H() false NOU Nl\l M]
Total m—R R m
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It is common in the multiple testing literature to refer to testing of a simple hypothesis
by means of significance levels, i.e. p-values. After the p-values are ordered, the problem of
controlling any error measure reduces to fixing a cut-off 7" such that the error rate is at most
equal to a pre-specified o €[0, 1] when rejecting all the hypotheses corresponding to p; <T'. To
simplify the exposure, we will say ‘reject p; such that ...’ to mean ‘reject the null hypotheses
for which p; is such that ...".

Let the unknown proportion of false nulls M;/m be denoted by a. We review now two
procedures to control the FDR:

BH: reject p; < Ty, where Tpy is sup{z: G(t)=t/oc}, where o is the desired upper bound
for the FDR and G(¢)= Um3_ 1, <, is the empirical distribution of the p-values.
Plug-in: Reject p; < Tp;, where Tp; is sup{¢: G(Z)=(1 —a)t/a}, and 4 is any estimator of a.

The BH procedure was proposed in Benjamini & Hochberg (1995) The plug-in procedure

was proposed in Genovese & Wasserman (2002) and independently in Benjamini & Hochberg

(2000). Genovese & Wasserman (2002) show that it asymptotically controls the FDR and is

more powerful than the BH procedure. An estimator for a is proposed in Storey (2002), and

defined as:

G(10) — 1o
1-— to

A3)

a=

for some 7y € (0, 1). For a discussion of the role of d and other possible estimators, see section 4.

False discovery rate controlling procedures possess desirable asymptotic properties, in
the sense that with mild conditions on the distribution of the p-values under the alternative
hypothesis it can be proved that the number of rejections is asymptotically strictly bounded
below by zero, if there exists at least one false null (Genovese & Wasserman, 2002).

Note that in multiple testing literature it is natural to think about asymptotics is in m, i.e.
to have an increasing number of tests (and possibly fixed number of observations) (see, e.g.
Finner & Roters, 2002, and references therein).

BH and plug-in, as many other procedures, are distribution free. They provide Type I error
rate (namely, FDR) control without any assumption on the unknown distribution of p; when
H, is false. They only rely on the assumption of independence and the fact that p; | Hy is uni-
formly distributed on the interval [0, 1].

Genovese & Wasserman (2002) and independently Sarkar (2004) also introduce the false-
negatives rate (FNR), a Type II error rate defined as the dual of the FDR.

Benjamini & Hochberg (1997) and Genovese et al. (2007) describe algorithms that allow
to control the FDR when a weight is assigned to each null hypothesis. This allows to control
the propensity of rejection for certain hypotheses, and is useful if one has prior informa-
tion on them. For instance, it is well known that in functional magnetic resonance imaging
experiments false nulls are likely to be clustered. Genovese & Wasserman (2004b) put FDR
control under the stochastic process framework we will exploit in this paper, introduce esti-
mators for a, suggest ways to build confidence thresholds for the FDP and prove asymptotic
results, providing some limiting distributions. In this paper, we show how such limiting dis-
tributions change under dependence. We also provide the asymptotic distribution of the FDP
for the BH and plug-in procedure, which was not derived in Genovese & Wasserman (2004b),
and to our knowledge is a novel result also under independence.

1.1.1. Dependent test statistics
Many authors deal with FDR control under dependence of the test statistics. Benjamini &
Yekutieli (2001), prove that the BH procedure can never control the FDR at level higher than
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ay it 1/i. Hence, taking into account a factor of ) ;- 1/i will lead to control of the FDR
under arbitrary dependence. Note that this is rather conservative. They also prove that, under
conditions of positive regression dependency on the subset (PRDS) of true nulls, the BH pro-
cedure still controls the FDR at level o. The condition of PRDS introduced in Benjamini &
Yekutieli (2001) is as follows: for any increasing set D and for each i in the set of true nulls,
let Pr(X € D| X;=x) be non-decreasing in x, where X is the vector of m random variables
associate with the test statistics. Recall that a set is said to be increasing if for any x € D
and y > x, y€ D. Distributions satisfying this property include multivariate normal distribu-
tions with positive correlations, all unidimensional latent variable distributions, and few other
cases. Sarkar (2002) also extends the results of Benjamini & Yekutieli (2001) by generalizing
their results to a whole class of step-up/step-down procedures to control the FDR.

The conditions of weak dependence we will give are not completely overlapping with the
PRDS condition.

Storey et al. (2004b) show several theorems that require almost sure pointwise convergence
of the empirical distributions of the subsequence of p-values for which the null is true and
the subsequence of p-values for which the alternative hypothesis is true. They argue that this
may be true also under dependence; and in fact Bickel (2004) shows a process with long-range
correlations that satisfies the conditions of Storey et al. (2004b).

Yekutieli & Benjamini (1999) and Pollard & van der Lann (2002) propose resampling-based
procedures to control the FDR when the test statistics are correlated.

2. Assumptions on the dependence

In this section, we summarize the main assumptions we will make on the dependence through-
out the paper. In the first part, we will use some of such concepts to prove weak convergence
of opportune random sequences, which will imply asymptotic FDR control. For a detailed
discussion on the convergence of dependent random sequences, for instance, see Wu (2004).

2.1. Association

Definition 1 (Association)
A vector of random variables X1, ..., X, is associated if cov[g;(X1,..., X,), g2(X1,..., X,)] >0,
for all monotonically coordinate-wise non-decreasing functions g, and gs.

Positive association is introduced in Esary et al. (1967). Kumar & Proschan (1983) intro-
duce the dual concept, negative association, simply putting the reverse inequality in the defi-
nition. A review of the main ideas and examples are given in Tong (1980).

Main properties of (positively) associated random variables are:

P <ﬁ{X,~ < Zi}> >IIP(X; <z)

i=1

and similarly

P<ﬂ{X,—>zi}>2HP(X,->zi), for z;€R, i=1,...,n.

i=1

Moreover, it is straightforward to prove that E[[] X;]> ][] E[X;]. If n=2 the statement fol-
lows from the definition. If n>2, suppose the statement is true for n — 1 random variables.
Then,
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E [H X,-] =cov <X,,, HIX> +E[X,]E

i=1

n—1
I

i=1

i)

i=1

> E[X,]E > [ Etxa,

where we used the inductive hypothesis at the last step. If the random variables are negatively
associated, all the inequalities hold reversed.

As stated in Benjamini & Yekutieli (2001), PRDS condition is very similar but not com-
pletely overlapping with association. For a review of many such general conditions on depen-
dence, see Lehmann (1966).

Multivariate normal random variables with all positive correlations are associated. Inde-
pendent random variables are both positively and negatively associated.

Multivariate exponential random variables, as defined in Marshall & Olkin (1967), are
always associated.

Multivariate normal random variables are negatively associated when the extra diagonal
elements of the variance/covariance matrix are all non-positive. Multinomial, multivariate
hypergeometric, Dirichlet random variables are always negatively associated (for other
examples, refer to Kumar & Proschan, 1983).

Other applications include testing on the parameters of monotone latent variable models:
suppose X is assumed to be the marginal distribution of some (X, U), with the elements
of X conditionally independent on U =wu and stochastically monotone in u. Then positive
association holds (Sarkar & Chang, 1997).

A similar setting is in multivariate modelling with random effects, in which there is one
underlying common random effect inducing a positive association (see Alf6 & Trovato, 2004,
and references therein).

Cases of interest in which multiple testing procedures valid under negative association
should be used also include multiple tests on ranks and any case in which the joint distribu-
tion of the test statistics is a permutation distribution (Kumar & Proschan, 1983).

2.2. Mixing

The concept of (unidimensional) mixing is used to describe how fast the dependence between
random variables in a sequence decreases to zero as the lag between them increases.

Main references on mixing are Doukan (1994) and Billingsley (1999). Many different
notions of mixing («-, -, p-mixing) are reviewed in Doukan (1994). We will use conditions
only on the a-mixing coefficients:

Definition 2 (x-mixing)
The kth a-mixing coefficient is defined as:

a(k)=sup{| P(E\)P(E>) — P(E\ N Ey) | :
J
E e M, Eye M) 4)
where M., is the a—algebra generated by {p,,...,p;}.

Conditions are in the form a(k)— 0, usually at a specific rate (see Arcones & Yu, 2000),
to provide limit theorems.
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Mixing is a general condition on dependence, often used in time-series analysis. Mixing
conditions are usually implied by less general, more easily proved, conditions; like m-
dependence. A sequence of random variables is m-dependent of order & when X; is indepen-
dent of X;,, for any i. For other equivalent conditions, see Bradley (1993).

3. Asymptotic control of the FDR under dependence

Let {p;}ienr be a random sequence of p-values from tests: in this section, we assume that the
test statistics are totally ordered, and we denote with H; the indicator of the ith hypothesis
to be false. Let Pr(p; <t| H;=1)~ F(t), where F(t)+#1.

We show that what is needed to obtain asymptotic control is just a little more than the
convergence of the empirical process of the p-values, so we will make use of many condi-
tions on the dependence among the random variables under which it is known that such
process converges. We denote with U the uniform distribution, and assume p; | H;=0~ U,
while p; | H;=1~F, where F is arbitrary on [0, 1]; and p; ~ G marginally.

We show that under such conditions for the sequence of p-values, the plug-in procedure
(with a good estimator of a) is able to control the FDR at the desired level «. This is a
generalization of some of the results of Genovese & Wasserman (2004b). We will assume
for the time being that M;/m converges to a.

We will prove our main results under any of the following conditions:

1. If the p-values are independent (Genovese & Wasserman, 2004b).

2. If a(k) are the mixing coefficients of the p-values, there exists § >0 such that a(k)< Ck—37°
for some constant C, and the vector (p;);>| is stationary.

3. If (pj)j>1 is stationary, associated and Y, k'*2*°cov(p;, px) <+ oo for some 6>0.

4. If (p;);>1 is stationary and ), a(k) <+ oo.

5. If (pj);>1 is stationary, associated and

+ 00

> [P <s5.pc < 1) — G(5)G(1)] <+ o0

k=2
If My=m (as in the notation of Table 1), Yu (1993) proves in a different setting that this
is equivalent to > cov'3(py, pr) <+ .

6. If the test statistics (7'(X;));>; form a stationary sequence of normal random variables
with short-range dependence, i.e. such that > |cov(T(X)), T(X,))| <oo or equivalently if
the corresponding p-values are such that

+00
S P <tpe<i)— G (1) <+oo  for any 1€(0,1).
k=2

Note that condition 4 is more general than condition 2. Note also that, in case the test

statistics are actually normal, condition 5 is exactly equivalent to condition 6 under asso-

ciation. A further generalization would be given by considering long-range dependence. This
would require a completely different approach, and is then grounds for possible further work.
First, note that the FDP can be seen as a stochastic process indexed by the threshold #:

2 (I —H)ly,<p
> Lipi<n (0 1{1h<t))’
note in fact that (1 — H;)1y, <, is one if and only if H;=0 and p; <¢, i.e. if the ith hypoth-
esis has been rejected while being true. I'(¢) is a stochastic process as, for each fixed 7 €[0, 1],
I'(¢) is a random variable. If ¢ is a fixed cut-off (i.e. we actually reject p; <¢), then I'(¢) is the
realized FDP, the proportion of false rejections.

I'()= ®)
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As also Genovese & Wasserman (2004b) note, the cut-offs 7" are usually random, which
implies the non-trivial problem of evaluating a stochastic process at a random point:

One of the essential difficulties in studying a procedure 7 is that I'(7T') is the evaluation
of the stochastic process I'(-) at a random variable 7. Both depend on the observed data,
and in general they are correlated. In particular, if () estimates FDR(r) for each fixed
£, it does not follow that Q(T') estimates well FDR(T) at a random 7. The stochastic
process point of view provides a suitable framework for addressing this problem.

Technical details related to this problem are described in the proofs in appendix, when needed.
We will take the approach used by Genovese & Wasserman (2004b) at first, and then directly
work with the stochastic process evaluated at the random point. This will provide an easier
proof of the results of Genovese & Wasserman (2004b), together with the asymptotic distribu-
tion of I'(7") under independence, which has not been derived yet. We will use this approach
also to provide the asymptotic distribution of I'(7") under assumptions (2-6).

We are now ready to state our main result: if the dependence decreases fast enough, then
the BH and plug-in procedures remain valid without any modification. First, we prove FDR
is controlled if the quantity « is known. Then we extend the results to the case in which a
conservative estimator is used.

Theorem 1
Let {p;}ien be a random sequence of p-values from tests. Let H; be the indicator of the ith
hypothesis to be false. Let Pr(p; <t|H;=1)~ F(t), where F(t)#t. Assume any of the specified
conditions (1-6) holds. Assume the quantity a is known.

Then, E[I(Tp;)|=0a+o0(1), where T'(t) is the FDP for threshold t and Tp; is the plug-in
threshold with d:=a.

The results are distribution free: they do not depend on the true F(-). Note that the assump-
tion that the p-values under the alternative are all equally distributed is a condition that is
unlikely to be ever satisfied. Nevertheless, as F(-) is almost completely unspecified one may
think of F(-) as an alternative-specific mixture, like: F(f)= [Pr(pi <t|Hx=1,0)dM(0). In
this sense each py; | Hy =1 has a specific distribution, sharing a functional form with the other
alternative p-values, but with a subject-specific parameter vector (e.g. the mean and variance)
sampled from a certain, unspecified, M (). This is likely to be satisfied in many real appli-
cations, and parallels the idea of hypothesis-specific mixture used to define G(z).

Note that in almost all cases F(¢) will be stochastically smaller than UJ[0, 1]. If it was not
so, it would be more likely to observe high p-values under the alternative than under the null.
Nevertheless, the theorem is true for any F+# U. In case U is stochastically smaller than F,
there still is FDR control; even if the number of rejections will very likely be equal to zero.

Note moreover that our results are valid only as the number of tests grows; while the results
of Benjamini & Yekutieli (2001) are valid for any number of tests, and that the conditions
imposed are slightly different.

For a proof of the theorem refer to the appendix A. The proof shows also our distribu-
tional results. We summarize two of them in the following corollary.

Corollary 1
Let Q(t)=(1—a)t/G(t) and p,(k)=Pr(p, <s,pi <t|H, =i, H,=Jj). We have that: \/m(T'(t) —
Q(1)) converges weakly to a centred Gaussian process with covariance kernel K(s, t) given by:
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a(l—a)
GG (1)
P

M IEN)

[(1—a)stF(sAt)+aF(s)F(t)(sA1)]

+ 00
[@FSF ()Y [pook) — (1 —ay’st]

k=2

+ 00
—a(l=a)sF(1) Y [py (k) — (1 —a)saF(1)]

k=2

+o0
—a(l—=a)tF(s) Y [pi(k) — (1 —a)taF (s)]

k=2

+o00
+(1—a)sty_[py(k)—a*F(s)F(1)]. (6)

k=2

This implies that T(f) converges in probability to Q(t). Moreover, /m(Tp; — Q' (ar))
converges in distribution to an N(0, V'), with

= 260 (%)~ G(Q7' (%)
GO (N(Q'(Q7 (@)

202 :z_i(P(pl <O (@ pe <0 (@) — A0 (2)))
GO )OO )P

This implies that Tp;, the deciding point, converges in probability to Q™' («).

+

The convergence of Tp; to O~ '(«) is particularly interesting, as the latter is the deciding
point we would set if we exactly knew the marginal distribution G(-) and the quantity a.
We now prove that the plug-in method is asymptotically valid under conditions (1-6):

Corollary 2

Let ay €0, a] and let a be a consistent estimator of ay. Let the conditions in Theorem 1 hold.
Then the plug-in method will asymptotically control the FDR at o level. If a:=0, so that ay:=0,
then the result holds for the BH method.

Proof. Proof will follow from theorem 1 and same reasoning as Theorem 5.2 in Genovese
& Wasserman (2004b).

Note that if @y =0, then the results hold for the BH method.

We are now ready to provide the asymptotic distribution of the stochastic process I'(¢)
evaluated at the random point 7'. That is, we provide the distribution of the FDP obtained
for the BH and plug-in procedure, under independence (condition 1) and dependence (con-
ditions 2-6). A proof is given in appendix C.

Theorem 2

Let D be a fixed point in (0, 1) and suppose T is any random point in (0, 1) such that T54D.
Suppose any of the assumptions (1-6) holds. Then, \/m(I'(T)— Q(D)) converges in distribution
to an N(0, K(D, D)), where K(s,t) is defined in (6) and Q(t)=(1 —a)t/G().

The previous theorem is of interest for proving asymptotic control of the FDR for any
multiple testing procedure. What is needed is just the convergence of the deciding point T
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and conditions (1-6). Moreover, the results can be used to provide asymptotic confidence
intervals for the error measure under the assumptions (1-6), as long as a suitable estimate
of K(D, D) is provided. This can be carried out through an estimate of the distribution of p;
when H, is false, like the one proposed in Genovese & Wasserman (2004b).

Theorem 3

Suppose a is known, and Tpy is the plug-in threshold with a:=a. Suppose any of the assump-
tions (1-6) holds. Then, \/m(I'(T) — &) converges in distribution to an N(0, K(Q~ (), 0~ ())),
where K(s,t) is defined in (6).

Proof. From theorem 1 we know that T EA O~ !(«). We can now apply theorem 2 to obtain
the thesis.

By looking at appendix A, it can be seen that I'(T) and Q(T), rescaled, converge to nor-
mal random variables with the same mean but different variance. It is straightforward to
provide asymptotic distributional results for the FDR of the plug-in procedure applied with
any consistent estimator of ay €[0,a], and those are omitted for brevity. In all cases, as seen,
asymptotic control of the FDR is achieved.

3.1. General weak dependence assumptions

Doukhan & Louhichi (1999) and then Nze et al. (2002) define a more general framework for
weak dependence, which includes processes that satisfy mixing and association conditions,
together with cases in which these two properties fail to hold, like Bernoulli shifts driven by
discrete innovations. They define the set £, ={h:/ is Lipschitz, | ||, <1}, and they define a
weakly dependent sequence {X,},cnr to satisfy

| CoVh(Xiy oy Xi) k(X Xi) | <000y u,v),  i=1,2,

where k and /& are in £, 6, is a sequence of numbers decreasing to zero, r=j; —i,, and
W (h, k,u,v) =max(Lip(h), Lip(k))(u+v), Y,(h, k,u,v)=Lip(h)Lip(k) min(u, v); where Lip(h)
is the Lipschitz dimension of 4. It is apparent that this is a definition similar to the one
of mixing processes.

Conditions of weak dependence can be given for the same results of theorem 1 to hold:

Theorem 4

If ¥, function is used and 0,= O(r=>=") or \, function is used and 0,= O(r~">>="), then the
empirical process weakly convergences in D[0, 1] to a centred Gaussian process indexed in [0, 1].
The covariance kernel of \/ﬁ(a'(t) —G(1)) is

+ 00
Ke(s,0)=2 ZCOV(IPIS» 1p<o)-
k=0

Generalization of the covariance kernels of the quantities of interest is straightforward and
omitted for brevity. A proof is given in the appendix B.

Note that the covariance kernel Kg(s, ) reduces to the corresponding covariance kernel
defined in appendix A under conditions (1-6).
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Fig. 1. False discovery rate for BH method, normal random variables with cov(X;;, Xy )=

exp(f% d((i,)),(i’,j"))), 1000 iterations, a random proportion of 1 —a random variables have a zero
mean, the remaining have a non-zero mean sampled from uniform on (0, 5).

3.2. Simulations

In this section, we will simulate a case of normal random variables which are not totally
ordered, and see that the results of theorem 1 still hold.

We will now suppose to have normal random variables X\y,..., X,,, scattered on a qua-
dratic grid. We will use a simplified version of a kernel commonly used in spatial statistics:

1
COV(A/{'/G ‘le’j’) =e&Xp (_ ;d((l"])a (i,sj/))>5 (7)

where d(-,-) is the opportune euclidean distance function and 7 is just a tuning parameter.
The higher 7, the more slowly decaying the correlation. We will then assign a proportion of
a test statistics to a mean generated as a random uniform between zero and five, and the rest
to a zero mean.

Figure 1 shows the average FDR obtained by applying the BH method. Figure 2 shows
the average FDR obtained using the plug-in method. In both figures and all the following
the ‘threshold’ is the nominal level at which the FDR is to be controlled, which is always
(1 — a)a if the BH method is used, and « if the plug-in method is used. In all cases o was
taken equal to 0.05.

As long as the parameter 7 is small, the methods control sharply the FDR (as in the in-
dependent case). When the parameter 7 gets too big, dependence does not decrease fast
enough and BH method becomes overly conservative, while the plug-in method violates the
threshold. This behaviour is more and more evident as t increases (other simulations not
shown).

In a certain sense, it is happening what the theorem states: if the dependence is
weak enough (compared with m), then the procedures will not be affected. When the depen-
dence becomes stronger (compared with m: the violation of the threshold is more critical for
smaller m), something can happen.
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Fig. 2. False discovery rate for plug-in method, normal random variables with cov(X;;, Xy j)=

exp(f% d((i,)),(i’,j))), 1000 iterations, a random proportion of 1 —a random variables have a zero
mean, the remaining have a non-zero mean sampled from uniform on (0, 5). Storey’s estimator used
for a.

Although, it is promising that the effect on BH is to overprotect against violation of the
threshold. This means that the hypotheses of theorem 1 are only sufficient. Note that all the
simulated random variables satisfy the PRDS condition of Benjamini & Yekutieli (2001).

On the other hand, the plug-in method violates the threshold and gets bigger than « when
7 is high. It can be shown that this problem is determined by the estimator of a used. The
other classical estimators, like the one in Swanepoel (1999) or the one in Woodroofe & Sun
(1999), are also seen to break down under dependence. Simulations of the other estimators
are not shown for reasons of space. We will propose in the next section estimators for a that
do not seem to break down under dependence, and show they lead to control of the FDR.

Moreover, simulations suggest that the asymptotic results, for mild dependence, are
achieved for small values of m (m=100 seems to be, in fact, enough).

Finally, we simulate the normal random variables Xy, ..., X,,, with a different covariance
kernel, defined as:

co(X;. Xop) =exp (TG00 ) s} (@ 0. ®)

Note that such random variables are not PRDS. Figures 3 and 4 show the average FDR
obtained applying the BH and plug-in methods. Even if the test statistics are not PRDS, the
same considerations as before can be given.

In the previous section, we proved that under wide hypotheses on the dependence of the
test statistics the BH method remains valid. This section gives an illustration of this be-
haviour through simulations. On the other hand, the same results were proved for the plug-in
procedure with a suitable estimator for a. The simulations show that the common estimator
used for « is not robust under dependence. An explicit proposal for a suitable estimator will
be given in section 4.
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Fig. 3. False discovery rate for BH method, normal random variables with cor(X; ;, Xy y)=
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variables have a zero mean, the remaining have a non-zero mean sampled from uniform on (0, 5).
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Fig. 4. False discovery rate for plug-in method, normal random variables with cor(X; ;, Xy )=

exp(f% d((i,)), (i’,j'))cos(% d((i,)),(i’,]"))), 1000 iterations, a random proportion of 1 —a random
variables have a zero mean, the remaining have a non-zero mean sampled from uniform on (0, 5).

Storey’s estimator used for a.

3.3. Applications

Totally ordered test statistics satisfying any of the assumptions (1-6) arise in general when
applying multiple testing methods to stationary time series. We define a vector to be
totally ordered whenever there is a natural total ordering of its elements, that is, whenever any
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two elements can be put in a relationship of ordering. For instance, test statistics that arise
through time are totally ordered (they arise one after another) while statistics arising through
space are only partially ordered. Often there is no ordering of the vector of test statistics (e.g.
in DNA microarrays, one test statistic arises for each gene and there is no natural ordering
of the genes).

Assumptions (1-6) are implied by other (more strict) conditions, like m-dependence.
Gaussian processes with covariance decreasing to 0 satisfy them, together with strictly
stationary autoregressive integrated moving average models, block-dependent random vari-
ables with bounded block dimension.

Other cases in which any of the assumptions (1-6) may be valid are in cases in which there
is an ‘increasing domain asymptotics’, a common concept in spatial statistics. In such cases,
it may be safe to assume that the dependence among test statistics getting further and further
fades fast enough.

Among the other possibilities, there are outlier detection and change-point tests in time
series. We briefly describe now a direct application to time-course microarray data.

DNA microarrays are a recent technology that allow to measure the expression levels of
thousands of genes at a time. The primary goal is usually to identify genes that are differen-
tially (over or under) expressed among two or more biological conditions. The main output
of a microarray experiment is a list of genes that are suspected to be related with the bio-
logical condition of interest. There are many detailed reviews of the methodology and
problems: Amaratunga & Cabrera (2004), Parmigiani ez al. (2003), Brown & Botstein (1999),
Duggan et al. (1999). Dudoit et al. (2003) discuss the use of multiple testing methods in
this context. DNA time-course microarrays are a specific kind of microarray experiments, in
which the expression level of the genes is monitored over time. Thereby, the recorded expres-
sion levels of a single gene form a time series. Interest may be in finding periodicity in the
behaviour of the genes (as in Whitfield ez al., 2002), or in finding which genes at which time
points are differentially expressed. We will focus on this second task. For simplicity, here
we assume without loss of generality that each of a set of G genes is analysed at T time
points. DNA time-course data are usually treated with a modelling approach, as in Storey
et al. (2004a) or Wichert et al. (2004). While a modelling approach is usually optimal, as it
estimates the dependence in the time-series data and uses it to get to a better fit; it may be
desirable for the researcher to directly test on genes, at given time points, since it is obviously
easier and faster. Using the results of theorem 1 we can select lists of which genes were differ-
entially regulated for each given time point. In fact, the expression levels for each gene can be
assumed to be a weakly dependent time series. Given that, it is reasonable to assume that the
expression level of a single gene is more dependent with the expression of the same gene at a
given different time point than with the expression of any different gene at the different time
point, so weak dependence characterizes the dependency structure. Hence, an FDR control-
ling procedure can be applied to the G x T test statistics arising from the G x T recorded
gene expressions, and then the discoveries can be put into separate lists grouped by time
point.

4. Estimating the proportion of false nulls

A good estimator for a can improve the BH method in terms of power, leading to the plug-in
method. Many other procedures can benefit from a good estimator of a. For instance, it is
well known that, if M, were known, rejection of p; <a/M, would yield control of FWER at
level a.. Of course, one may not have either strong or weak control in this way. See Hochberg
& Tambhane (1987) for a discussion. Here, we propose the estimate M, =m(1 — d). Note that
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in many procedures m is used as a strongly conservative estimate of My, that is ¢:=0 (as in
the BH procedure or the standard Bonferroni correction).

Then, a good estimator 4 is one that underestimates the true proportion «, although get-
ting as close as possible to the upper bound. It is straightforward to see, in fact, that d>a
may lead to loss of control of the FDR.

For this reason, we will consider estimators that are conservative with high probability:
P(@<a)>1-—uay, for oy small. A similar approach is taken in Meinshausen & Rice (2005),
who derive conservative estimators for the quantity ¢ under independence. As an aside, note
that such estimators are of interest by themselves, providing a conservative statement about
the weight of a component in a mixture (here, the component is p; | H;). This has application
for instance in cosmology, where high energy photon arrival times are recorded. Each arrival
time is either noise (hence, a uniform arrival time) or signal, a pulsed radiation. Arrival time
of the pulsed radiation is distributed according to an unknown density. More formally, let
f(x)=(1—a)gi(x)+ ag(x), where g,(-) is a known density, and ¢(-) is an unknown density.
The proportion of pulsed radiation (on the number of arrival times), a, describes the strength
of the pulsed signal, and is of interest to cosmologists. The use of a conservative estimator
for a allows not to over estimate the strength of the pulsed signal with high probability. See
Swanepoel (1999) and references therein for a detailed discussion of the problem.

Estimators for @ are derived in Swanepoel (1999), Woodroofe & Sun (1999), Storey (2002),
Genovese & Wasserman (2004a) and Meinshausen & Rice (2005). As also Meinshausen &
Rice (2005) note, the conservative property of many of them may be lost under independence.

We derive here estimators that are conservative with high probability, under independence.
We then argue by simulations that one of them is conservative also under dependence.

In this and the following sections we do not assume that the test statistics are totally
ordered, and no asymptotics is involved: the results are valid for any value of m.

4.1. Estimator based on a confidence interval

If the test statistics are independent, let ¢, = /log(2/o;)/2m. Define

_ [ inf,(1—G(s)+&m)
My=mx*min ((1—3)31 >
and let
a=(1— Mlm). ©)

To prove this is a conservative estimator, we will just need to prove that A, is an upper
bound for M, with high probability for any m. We will use the Dvoretzky—Kiefer—Wolfowitz—
Massart (DKWM) inequality:

Theorem 5 (Dvoretzky et al., 1956; Massart, 1990)

Let Xi,..., X, be a sequence of independent identically distributed random variables. Let F(z)
be the CDF of X\, and F(z) the empirical distribution of the sequence X.,...,X,. Then,
Pr{sup..r |F(z)— F(z)| >&} <2e.

We are now ready to prove that the proposed estimator is conservative:
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Theorem 6
If the test statistics are independent the estimator a defined in (9) is such that Pr(a<a)>1—a,.

Proof. This estimator is based on the fact that

a> Gls)—s (10)
1—s

for any s € (0, 1), as easily seen by looking at the definition of G(-). By theorem 5, Pr(l —a <
Milm)>1—a.

This directly provides a 1 —o; confidence interval for a: [d, 1].

Note that, while the estimator is conservative with high probability for any value of m, as
m gets bigger and bigger the confidence bound provided by DKWM inequality gets smaller
and smaller; leading to more powerful procedures.

4.2. Iterative estimators

The ‘iterative plug-in method’, which we will describe in this section, seems to be robust with
respect to dependence. As we need to estimate M, the number of false nulls, we thought the
most natural estimator was the number of rejected hypotheses. The proportion « is then esti-
mated iteratively as the proportion of rejected nulls in the previous plug-in step; till a does
not change in two subsequent iterations, with a BH method at the first iteration (i.e. the first
estimator is always set to 0):

1. Let Ry :=0.

2. At the ith iteration, apply plug-in method with 4; = R;_;/m, and reject R; hypotheses. Let
(3[+1 =R,«/m.

3. Iterate until R; | and R; are equal. Reject R; hypotheses.

It is straightforward to prove that the number of iterations is finite: there are only m+1
possible values for d. Then, the random variable given by the difference between the current
and the previous estimate is discrete and puts a non-null probability mass at 0, which is our
stopping rule. Let us stress that such estimator does not possess any theoretical property, in
particular it is not guaranteed to lead to FDR control in the plug-in method.

A similar estimator was independently derived in Benjamini et al. (2004). They prove,
under independence, that if the process is stopped after just a single iteration, the estimator
is in fact conservative. They also suggest an iterative estimator similar to our proposal, and
note that, as in our case, this kind of estimators possess an interesting internal coherence
property: the number of hypotheses one rejects is also the number of hypotheses believed to
be false. Here we suggest by the simulation in the next section that such estimators are worth
to be considered when dealing with dependent test statistics.

4.3. Simulation of the plug-in method

Table 2 compares the plug-in method with different (conservative) estimators for a. CI stands
for our DKWM confidence interval estimator, with different choices of a;. Note that if ¢ —0
we get back the BH procedure. We compare the estimators with the two-step Benjamini ez al.
(2004) estimator, in the usual simulation setting under independence, for different values of
m and a. It can be seen that, when m is small the CI estimators compare well with the two-
step estimator; while they outperform it when m is big. This is due to the fact that the length
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Table 2. False-negative rate (false discovery rate) for the plug-in method with different estimators for a

a

0.1

0.5

0.9

m

=100
BH(CI(0; — 0))
Benjamini et al. (2004)

0.0583 (0.0472)
0.0580 (0.0493)

0.304 (0.0243)
0.290 (0.0356)

0.777 (0.0054)
0.736 (0.0116)

CI(oy =0.01) 0.0583 (0.0475) 0.293 (0.0327) 0.742 (0.0109)
CI(o =0.05) 0.0582 (0.0477) 0.291 (0.0346) 0.736 (0.0118)
CI(o =0.1) 0.0582 (0.0477) 0.290 (0.0354) 0.734 (0.0123)

m=1600

BH(CI(o; — 0))
Benjamini et al. (2004)

0.0593 (0.0447)
0.0589 (0.0466)

0.308 (0.0250)
0.293 (0.0350)

0.780 (0.0049)
0.742 (0.0114)

CI(oy =0.01) 0.0589 (0.0464) 0.289 (0.0388) 0.722 (0.0161)
CI(o; =0.05) 0.0589 (0.0467) 0.288 (0.0396) 0.719 (0.0168)
CI(o =0.1) 0.0588 (0.0469) 0.287 (0.0400) 0.717 (0.0173)

m=100,000

BH(CI(o; — 0))
Benjamini et al. (2004)

0.0594 (0.0450)
0.0590 (0.0472)

0.308 (0.0250)
0.293 (0.0351)

0.781 (0.0050)
0.743 (0.0113)

CI(oy =0.01) 0.0588 (0.0488) 0.283 (0.0433) 0.698 (0.0222)
CI(o; =0.05) 0.0588 (0.0488) 0.283 (0.0435) 0.696 (0.0227)
CI(o; =0.1) 0.0588 (0.0489) 0.283 (0.0437) 0.695 (0.0230)
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Fig. 5. False discovery rate for plug-in method, normal random variables with cov(X; ;, Xy y)=
exp(f% d((i,)), (i, ")), 1000 iterations, a random proportion of 1 —a random variables have a zero
mean, the remaining have a non-zero mean sampled from uniform on (0, 5). Iterative estimator used
for a.

of the confidence interval is infinitesimal with m. The CI estimator is easily seen to converge
with m to the Storey (2002) estimator, which is powerful even if not necessarily conservative.
Finally, the choice of o; does not seem to be of much influence to the performance of the
plug-in procedure.

We then turn to dependent test statistics. In Fig. 5 the results of the plug-in procedure
with the iterative estimator are shown, with ay =0, for multivariate normal random variables
with variance kernel given by (7). The average number of steps was always between 2 and 7.
Note that this procedure manages to control the FDR at level 5% when the correlation is
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Table 3. False-negative rate (false discovery rate) for different methods, multivariate normal random
variables with covariance defined in (7)

T 50 20 10 2
BH 0.0575 (0.0204) 0.0563 (0.0239) 0.0583 (0.0253) 0.0570 (0.0378)
Iterative 0.0572 (0.0254) 0.0557 (0.0346) 0.0577 (0.0324) 0.0567 (0.0402)
BY 0.0683 (0.0016) 0.0667 (0.0062) 0.0690 (0.0043) 0.0680 (0.0078)
Stor. 0.0453 (0.2825) 0.0473 (0.2227) 0.0524 (0.1666) 0.0550 (0.0706)
CI (0 =0.05) 0.0546 (0.1123) 0.0532 (0.0991) 0.0564 (0.0735) 0.0569 (0.0558)

Table 4. False-negative rate (false discovery rate) for different methods, multivariate
variables with covariance defined in (7)

normal random

T 1.67 1.25 1 0.83
BH 0.0590 (0.0432) 0.0582 (0.0435) 0.0584 (0.0432) 0.0577 (0.0438)
Tterative 0.0587 (0.0460) 0.0579 (0.0483) 0.0581 (0.0479) 0.0574 (0.0486)
BY 0.0695 (0.0074) 0.0692 (0.0104) 0.0691 (0.0094) 0.0688 (0.0101)
Stor. 0.0572 (0.0678) 0.0568 (0.0631) 0.0574 (0.0599) 0.0568 (0.0496)
CI (01, =0.05) 0.0587 (0.0470) 0.0580 (0.0497) 0.0581 (0.0448) 0.0587 (0.0447)

very strong (robustness), while it behaves just like the old one-step procedure when the cor-
relation is weak (it just seems to be a little bit more conservative). If we compare Fig. 5 with
Fig. 2, we can appreciate the robustness of iterative estimators. The same could be seen with
many other possible choices of the parameter 7.

Finally, Tables 3 and 4 show the average FNR (FDR) obtained with different procedures,
applied to a grid of m=100 dependent normals with simplified exponential covariance struc-
ture defined in (7). Recall that the FNR is a Type II error rate, hence the lower the FNR
the higher the power.

BH stands for the classical method of Benjamini & Hochberg (1995), Iterative stands for
the plug-in method applied with the iterative estimator, BY for the classical method in which
the level « is divided by ) ., 1/i, as suggested in Benjamini & Yekutieli (2001). Stor. stands
for plug-in method with Storey’s estimator in (3).

It is seen that plug-in with Storey’s estimator brings unacceptably high FDR, which are
still over level o in many cases if one uses our CI estimator (designed for independent test
statistics). On the other hand, FDR is controlled when using the iterative estimator proposed
in previous section.

Note that early stopping (e.g. at the second step) of the iterations yields a more conserva-
tive procedure, so any early stopping would have given FDR control as well.
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Appendix A
Proof of theorem 1

We will make use of the following lemmas. Let Ag(1) =3 (1 — H))1y,, <y and Aj(1) =3 Hi1y,, <4y
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Lemma 1
Let G(1)= Um3y~ 1, < be asymptotically equicontinuous. Then A;(t),j=0,1 will be too.

Proof. ¥(s, 1) € R* we have that | A;(£) — Aj(s)| < |G — G(s)|.
This is easily seen. For instance, let WLOG ¢>s and j=1. We have that

1 1
p D Hllp< — i<yl < p D i<y = Lip<al:

as H; can either be 0 or 1.
Hence we can prove the asymptotic equicontinuity of A;(7) by applying the definition:

lim sup Pr*(sup sup |A;(¢) — A;(s)| >¢&) <limsup Pr*(sup sup | G—G(s)| >e)<n,
n i steT; n i

i steT;

where T; is an opportune partition of [0, 1].

Lemma 2

Assume any of the conditions holds. The vector (Wy(t), W(t)) will be convergent in distribution
Jor any t; where Wy(t)=+/m(Ao(t) — (1 — a)t) and W, (t)=+/m(A(t) — aF(t)), and where F(t)
is the CDF of p; under the alternative hypothesis.

Proof. We will use the Cramer—Wold device (see Van der Vaart, 1988) to prove the conver-
gence of the vector. We will assume any of the mixing conditions holds. If association holds,
it is straightforward to prove the results are the same. Let (cg, c;) € R?. It is easy to see that
coMo()+c1Ai(1) is equal to 1/m Y (co+ Hi(c1 — co))l <13

Define the sequence {&;}icn to be:

£ = H; if {i mod 2} =0
" lp if {i mod 2} =1.

By definition, the sequence will be {p|, Hy, p2, H>, p3,...}.

We have then that (co+ Hi(c; — CO))I{p, <= (co+ &yi(er — CO))I{ézi—l e

It is easy to see that the ¢ sequence is still mixing, and the same conditions will be true.
In particular, called o'(n) the mixing coefficients for the ;s at lag n, under Assumption 2 we
have that > /o/(n) < \@Zn# <+ oc0. Hence, the series of the partial sums > &; will be
weakly convergent (see, e.g. Billingsley, 1999). Same results are immediately proved under the
other conditions.

As (co+&y(c1 — o))y, | <n is @ measurable function which depends only on finitely many
coordinates of the vector {&;}, the same results on the mixing coefficients will hold for it
(again, see Billingsley, 1999).

Hence 1/m " (co+ Hi(c) — )1y, <1y, opportunely rescaled, will converge in distribution.
By Cramer—Wold device, also the two-dimensional vector (W (t), W,(t)) will converge in dis-
tribution.

By condition 1 (Van der Vaart, 1988), condition 2 (Yoshihara, 1975), condition 3 (Yu,
1993), condition 4 or 5 (Oliveira & Suquet, 1995), condition 6 (Csérgo & Mielniczuk, 1996),
the empirical process /m( G(1) — G(1)) will be convergent to a centred Gaussian random pro-
cess. The convergence is to something very close to a Brownian bridge on the scale of G.
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The only difference will be given by the covariance kernel, which will be the usual kernel to
which is added a convergent series. The covariance kernel is given by:

+ o0
K(s,0)=G(s A1)~ G($)G(0) +2 > [P(p1 <s5.pi <0) — G($)G(1)].

k=2

As the empirical process is convergent, G(,) is asymptotically equicontinuous and Vi, ..., #;
the vector (G(tl),. . GA(tk)) will converge in distribution.

By lemma 1, then also A;(7),j=0,1 will be asymptotically equicontinuous. As each com-
ponent is asymptotically equicontinuous, then also the vector (Ao(z), A1(7)) will be asymp-
totically equicontinuous.

Moreover, by lemma 3, V¢q,..., t; the vector [(Ao(t1), Ai(t1)),. .., (Ao(tx), A1(t))] will con-
verge in distribution. It is straightforward, in fact, to extend the result of lemma 3 to the
vector case.

Then, it happens that (W, W) will converge to a centred two-dimensional Gaussian
process. Let p, (k)=Pr(p; <s,py <t|H =i, Hy=j). The covariance kernel is obtained by
direct calculation of E[Wi(s)W;(?)], i=0,1, j=0,1, and is given by

_ | Ko.o(s, ) Ko 1(s, 1)
Kils, )= K (s, 1) Kl,l(S»f)]’
where
+ oo
Ko.o(s, )=(1=a)(s AD) = (1 —a)st+2 ) [poo(k) — (1 —a)si],
k=2
+ 00
Ko 1(s,t)=—(1 —a)saF(t)+2 Z[pm(k) — (1 —a)saF (1)),
k=2
+ 00
Ki.o(s, )= —(1 =a)taF(s)+2>_[pio(k) — (1 - a)taF(s)],
k=2
and
+ oo
Ki(s.0=aF(s \t) = @FS)F()+2)_[py (k) = F()F (D).
k=2

The computations are tedious, not very complex and omitted for brevity.
Note now that

A )
Ao() + Ai(2)

where r(-,-): [ x [® — ][>,

For technical reasons, we restrict the I'(¢) process in [J, 1], for any ¢ >0. The variance of
I'(¢) is in fact infinite at t=0. Let Q(f)=(1 — a)t/G(¢).

The function r(-,-) is such that r((1 —a)U,aF)=Q (where U is such that U(¢)=¢ for any
t€[0,1]), and it is also Fréchet differentiable at that point, with derivative: r(,_,; .»(Vo, V1) =
aFVy—(1—a)UV,/G>.

Hence, by functional d-method, /m(I'(¢) — O(¢)) will converge to the process defined by
the evaluation of VEH,)U, Vo, V1) at the limit of (W, W)). As this is nothing but a linear
combination of the two elements of the vector, with coefficients aF/G?> and —(1 —a)U/G?, it
will be a Gaussian process on (0, 1], with mean 0 and covariance kernel Kj(s, ) given by:

I'(2) =r(Ao(1), A (1));
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% [(1—a)stF(s A t)+aF(s)F(H)(s A 1)]
+ 00

+ e FORO > [P <. <t | Hy =0, Hi=0)= (1 =
+o0

—a(l—a)sF(1) > [Pr(py <s,pe <t|Hy=0, Hy=1)— (1 — a)saF (1)]
k=2
+o0

—a(1—a)tF(s) Y [Pr(py <s.pi <t|Hi =1, H,=0)— (1 — a)taF (s)]
k=2

+o00
+(1—ayst Y [Pr(pi <s,pe <t| Hi =1, H, =1) = a*F(s)F (1)),
k=2

Again, the long computations are omitted. Hence, the FDP process centred at Q(¢) has a
centred Gaussian limiting distribution with covariance kernel Kj3(s, ), as stated in Corollary 1.

Applying again the functional J-method we see that \/%(@(t) — 0(1)), where O(t)=
(1 —a)t/ G(,), will be convergent to a Gaussian process on (0, 1] with covariance kernel

+o00
Ky(s, )= % <G(s At)— G(s)G(z)+2kz=:2(P(p. <8, pe<1)— G(s)G(t))),

and then also
a1 B
Vm(Q  (u)— Q™' (w)) 1n
is convergent to a Gaussian process with covariance kernel

Ky(Q (), 07'(1)

Ks(s, )= Q’(Q’I(S))Q/(Qfl(l)) .

As Tpr=0 (), by applying the d-method to (11) it can be seen that /m(Tp — O (a))
will converge in distribution to an N(0, V), with V' =K5(0Q~'(«), 0~'(«)); as stated in corol-
lary 1. By one last application of the d-method we see that /m(Q(Tp;) — o) will converge in
distribution to an N(0, (Q(Q 1 (a)))*V).

We cannot conclude now that FDR — «, as FDR is the expected value of the stochastic
process I'(z) evaluated at the random point Tp;. We need to make some further considerations:
let now 0<35<Q !(x), and note that

|T(Tpr) — | < | T(Tpr) — Q(Te) | + | O(Ter) — ]
SSltlp IT(#) — Q) | 1{rp <) +Slip |T(0) = O) | L7y 20, + | Q(Ter) — ot

1
<1y <o) + —= sup [ Vm(T(t) = Q1)) | +| O(Tpr) — |

m >s
=0p(m™"?),
as Tp; converges in probability to O~ !(«).
As 0<T'(r)<1 for any m, the sequence is uniformly integrable.

Hence, E[I'(Tp)]=0a+o0(1).
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Appendix B
Proof of theorem 4

By Doukhan & Louhichi (1999) and Nze et al. (2002) the conditions imply that \/ﬁ(a(t) —
G(1)) converges in D[0, 1] to a centred Gaussian process, with covariance kernel of is

+ o0

Kg(s,0)=2 Z cov(ly <5 1y, <o)
k=0
This implies also lemma 1. Lemma 2 follows from the same reasoning as the proof above,
in particular it is straightforward to see that, in the notation used above, the series of the
partial sums > ¢ is weakly convergent.
The rest of the theorem follows from iterated application of functional and classical
d-method, which can be done in light of the weak convergence of v/n(G — G(1)).

Appendix C
Proof of theorem 2

We will make use of the following theorem from Silvestrov (1971, 1972), reviewed in Silvest-
rov (2004).

Theorem 7

Suppose X,(t) is a stochastic process weakly converging to a process X (t) for any t €[0, T]. Sup-
pose T, is a random variable weakly converging to a random variable T. Suppose the following
conditions hold:

1. (T, X.(t) weakly converges to (T, X (t)) for any t € U, where U C|[0,T], dense in the
interval, and contains the point 0.

2. The process X (t) is continuous at the point T with probability 1.

3. The process X,(t) is J-compact:

lim lim sup Pr( sup min(| X,(¢') — X.(2) |, | Xu(t) — X, (") ) >0) =0

- e—0 OV(t—c)<t'<t<t"<(t+c)A1

for any 6>0.
Then, X,(T,) weakly converges to X(T).

It is actually easy to prove the assumptions of theorem 7 in our setting: let X, ()=
Vm(I'(t) — Q1)) and T,,=T. From theorem 1, we know that X, () converges weakly to
X(t)=W(t), where W (¢) is a Gaussian process on (0, 1), centred at 0 and with covariance
kernel K(s, t) given in (6). We assumed that 7, i T, which implies that the vector (7, X,,(¢)
converges in distribution to (7, X(¢)) for any € (0,1). As X(z) is a Gaussian process, it is
continuous with probability 1 at any point ¢ € (0, 1). Finally, J-compactness is implied by
asymptotic equicontinuity of X,,(-).
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