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Abstract �e problem of seat apportionment in electoral systems turns out to be
quite complex, since no apportionment method exists which succeeds in verifying all
the principal fairness criteria. Gambarelli () introduced an apportionment tech-
nique which is custom made for each case, respects Hare minimum, Hare maximum
and Monotonicity and satis�es other criteria in order of preference. In this paper a
generalization of that method is proposed, in order to extend it to the multi-district
election case, where criteria should be respected at a global as well as at a local level.
An existence theorem and a generating algorithm are supplied.
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. Introduction

Apportionments are a typical problem of the world of politics, as there is a
need to assign seats to parties in proportion to the number of votes, or con-
stituencies in proportion to the population. �e problem consists in trans-
forming an ordered set of nonnegative integers, the ‘votes’, into a set of inte-
gers, the ‘seats’, respecting some speci�c fairness conditions. Severalmethods
have been constructed, but paradoxes and contradictions are likely to occur
in many cases [e.g., Brams ()]. Starting from some results by Balinski,
Demange and Young (, ), Gambarelli () proposed an apportion-
ment technique respecting the principal criteria of electoral systems. �e ap-
proach was related to one-district elections and involves the determination
© 2007 Accedo Verlagsgesellschaft, München.
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of an order of preference for the satisfaction of criteria and introduces the
concept of ‘minimax solution’.

In this paper we propose a generalization of the above method to multi-
district systems, where further problems arise. In such situations, the total
apportionment depends not only on the global number of votes, but also on
the votes obtained by parties in every district.

�e basic apportionment criteria are presented in the following Section.
Section  synthetically features the most known apportionment techniques.
In Section  we recall the minimax method for one-district apportionments.
�e generalization of this method to the multi-district case is presented in
Section . �e ordering of the new criteria is discussed in Section . A the-
orem on the existence of the solutions is presented in Section . Section 
shows further criteria to re�ne the solution. Section  supplies a comparison
with the results of classical methods. An overview on the Banzhaf index and
an algorithm generating solutions are reported in the Appendices.

. Criteria

Apportionment can be de�ned as the process of allotting indivisible objects
(seats) amongst players (parties) entitled to various shares. �e related liter-
ature is quite vast: see for instance, Hodge and Klima () for an overview.

Let v = (v , . . . , vn) be the vector of valid voteswonby the n parties (n ≥ )
of an electoral system, where sT is the total number of seats to be assigned.
We call:

vT = ∑
n
i= v i the total number of votes,

h i =
sT

vT
v i the Hare quota of the i-th party,

S the set of n-dimensional integer allotments s = (s , . . . , sn) such that
∑

n
i= s i = sT .

�e problem consists in detecting, amongst all possible seat allotments,
the aptest one to represent the Hare quota vector h̃ = (h , . . . , hn). Obvi-
ously, if h̃ is an integer vector, it turns out to be the best solution. Otherwise,
a rounding allotment procedure is necessary, which should satisfy some fair-
ness criteria. �e most well known of these criteria are

(a) Hare maximum No party can obtain more seats than the ones it wins
by rounding up its Hare quota.

(b) Hare minimum No party can obtain fewer seats than the ones it wins
by rounding down its Hare quota.
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(c) Monotonicity For any pair of parties, the one entitled to fewer votes
cannot win more seats than the other one.

(d) Superadditivity A party formed by the union of two parties must at
least gain a number of seats equal to the sum of the seats won by the
single parties.

(e) Symmetry �e apportionment must not depend on the order in
which parties are considered. In particular, two parties having the
same amount of votes must achieve the same number of seats.

It is well-known that no apportionment method exists which conjointly
veri�es all the above conditions, for all possible vectors of votes. For instance,
consider a system inwhich there are only twoparties gaining exactly the same
amount of votes, and where an odd number of seats must be allotted. In such
a case, criterion e) cannot be ful�lled, then an exogenous criterion must be
applied. Analogously, it can be proved that c) and e) cannot be respected in
general, if a) and d) hold and vice versa.

Moreover, someparadoxesmay occur: ‘Alabama’, ‘Population’, ‘NewStates’
and so on [e.g. Brams ()].

Hence, the problem we are going to face is the search for a suitable com-
promise solution.

. Classical apportionment methods

Herea�er some traditional apportionment techniques will be recalled and
applied to a simple apportionment problem.

Example  Let , ,  be the valid votes obtained by the parties A, B, C,
and  seats be shared among these parties.

�eMethod of Largest Remainders (also known asHamilton’s Method) as-
signs the initial seats according to theHareminimumquotas and the remain-
ing ones to the parties having the largest fractional parts of their quotients
among the remainders.

In this case, party A and party B initially win one seat each. Subsequently,
party A with . and party C with . obtain the last two seats. Hence Hamil-
ton’s Method provides the seat allotment (, , ).

�eMethod of the Greatest Divisors (also known asMethod of d’Hondt or
Je�erson’sMethod) allots seats to the parties having the highest quotients a�er
dividing their respective shares by , then by , then by , and so on. In our
case, only the division by  is needed, because the quotients it generates are
. for A, . for B,  for C. Consequently, the highest among all quotients are
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, , . and ., so A and B gain two seats each, and no seat is assigned to
C.

�e Method of the Greatest Divisors with quota (also known as Balinski-
Young Method) is an apportionment technique similar to that of d’Hondt,
except for the impossibility for each party to exceed itsHaremaximumquota:
when a party reaches its Hare maximum quota, it does not participate in the
seat allotment any longer. In this example, no party can exceed that quota,
so the apportionments generated by theMethod of d’Hondt and by Balinski-
Young Method coincide.

For further apportionment techniques see for instanceNurmi (), Hol-
ubiec and Mercik () and Hodge and Klima ().

. �e method of mimimax

�e minimax method is inspired by the nucleolus (see Schmeidler, ).

. Preliminary de�nitions

Let s be a seat vector of S and v be a vote vector inRn
+
. Consider the simplex:

X = {(x , . . . , xn) ∈ Rn
+
∶

n

∑
k=

xk = } .

Given a transform t ∶ Rn
+
Ð→ X, we call

t(s) = s = (s , . . . , sn), t(v) = v = (v , . . . , vn).

For all s ∈ S, ∈ Rn
+
, i , j = , . . . , n, i ≠ j, we call

e j(v , s) = s j − v j the bonus of the j-th component;

c i j(v , s) = e i(v , s) − e j(v , s) the complaint of the j-th party against the
i-th party;

c(v , s) the complaint vector, i.e. the vectorwhose components are the non-
negative complaints listed in non-increasing order.

�e previous de�nitions allow us to establish a relation on S. For all
s′ , s′′ ∈ S we say that:

s′ is indi�erent to s′′ with respect to v (s′ ≈ s′′) if and only if c(v , s′) =

c(v , s′′).

s′ is preferable to s′′ with respect to v (s′ ≻ s′′) if and only if k ∈ Z+ exists
such that:
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. ck(v , s′) < ck(v , s′′);
. ch(v , s′) = ch(v , s′′) for all h < k.

It is easy to prove that ≈ is an equivalence relation and that ≻ is a total order
in the set S. Consequently, this relation determines a preference for the
apportionment vectors of S.

Observe that, if a transform t∗ ∶ Rn
+
Ð→ X exists such that t∗(s) = t∗(v),

then all bonuses and consequently all parties’ complaints vanish.
We call t-minimax criterion (or t-criterion) the criterion which consists in

keeping only the seat allotments not preferred, with respect to the distribu-
tion of votes, by other apportionments, and discarding all the others.

Gambarelli’s method () consists in the following procedure.

An order of importance of criteria to be applied, is preliminarily �xed:
C ,C , . . . ,Ck .

�en we call:
S the subset of S obtained a�er applying criterion C;
S the subset of S obtained a�er applying criterion C;

and so on until Sk .
We call CC . . .Ck-solution the set Sk of allotments which respect the
criteria C ,C , . . . ,Ck , applied in sequence.

�e �rst criterion to be applied in this method is called the F-criterion, and
consists in discarding all seat apportionments violating at least one of the ba-
sic criteria: Hare maximum, Hare minimum and Monotonicity. Gambarelli
(: ) proved that the F-criterion applied as the �rst criterion C in the
sequence of criteria determining the solution, generates a non-empty set of
seat allotments.

. �e N-criterion

Let (x , . . . , xn) be a nonnegative integer vector such that x + x + . . .+ xn =
xT . Consider the normalization map N ∶ Rn

+
Ð→ X such that

N(x , . . . , xn) = (
x
xT

, . . . ,
xn
xT

) = (x  , . . . , xn).

�e Normalization criterion (or the N-criterion) is the t-minimax criterion
associated to the transform t = N . Notice that the apportionments gener-
ated by the application of the N-criterion coincide with those provided by
Hamilton’s Method. Anyway, the next criterion to be applied will further-
more restrict the solution set achieved as yet.
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. �e β-criterion

�is criterion is based on the Banzhaf normalized power index (). Some
notes on this index (here simply called β-power index are supplied in Ap-
pendix A. We consider the β-power index particularly suitable for electoral
systems, because of its proportionality properties in the allotment of seats.

In order to enunciate the second minimax criterion, we will consider
the transform β ∶ Rn

+
Ð→ X, associating to every vote distribution v =

(v , . . . , vn) and to every seat allotment s = (s , . . . , sn) the Banzhaf normal-
ized power indices β(v) and β(v) of the related voting games with simple
majority quota. �e β-criterion is the t-minimax criterion associated to the
transform t = β.

. Minimax solutions

�e two previous minimax criteria allow us to make use of two di�erent se-
quences of criteria: by choosing C = F, C = N , C = β, we will have the
FNβ-solution; by choosingC = F, C = β, C = N , themethodwill generate
FβN-solution. Gambarelli (: ) proved that each FNβ-solution and
each FβN-solution consist of a non-empty sets of seat allotments. �e next
example shows an application of the minimax method.

Example  Let  seats be assigned to the  parties A, B,C ,D entitled to the
votes (, , , ).

If we apply the F-criterion, then all seat apportionments are discarded
except s = (, , , ), s = (, , , ) and s = (, , , ).

In fact, Hare quotas are:  for party A, . for party B, . for party C, and
. for party D, so all the remaining seat distributions would violate either
Hare maximum or Hare minimum. Subsequently, N-criterion is applied to
the apportionment set:

S = {(, , , ), (, , , ), (, , , )}

the normalized vector of votes is v = (., ., ., .);

the normalized vectors of the seat distributions are respectively:
s = (., ., ., .),
s = (., ., ., ),
s = (., ., ., );

the bonuses are:
e(v , s) = (,−.,−., .),
e(v , s) = (, .,−.,−.),
e(v , s) = (,−., .,−.).
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Consequently, the three complaint vectors are:
c(v , s) = (., ., ., ., ., .),
c(v , s) = (., ., ., ., ., .),
c(v , s) = (., ., ., ., ., .).
According to the previously de�ned relation, s ≈ s ≻ s.

�e application of the N-criterion causes the elimination of s. �en the
set of ‘surviving’ allotments is

S = {(, , , ), (, , , )}.

�e next step is the application of the β-criterion. �e Banzhaf normal-
ized power index of votes for simple majority can be obtained a�er some
computations: β(v) = (., ., ., .).

�e β-index of seats of each apportionment, for simple majority, has to be
computed for s = (, , , ) and s = (, , , ):

β(s) = (., ., ., .),
β(s) = (., ., ., ).
�e bonuses are respectively:
β(s) − β(v) = (, , , );
β(s) − β(v) = (−., ., .,−.).

So this last criterion yields the unique FNβ-solution:

S = {(, , , )}.

In general, S may be composed by more than one seat allotment.

. Multi-district apportionments

Our aim is to extend the minimax method to the multi-district case.

. A leading example

We will show our model using the following

Example  An electoral system is composed of two districts (to which  and
 seats must be assigned) and three parties A, B,C. �e valid votes obtained
are shown in Table .

�e localHare quotas are reported inTable .�e last rowof Table  shows
the global Hare quotas, i.e. the Hare quotas of the totals of Table . Notice
that the sum of local Hare quotas di�ers from the global Hare quotas. Table
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Table —�e votes of Example 

Votes Party A Party B Party C Totals

District I 50 60 10 120
District II 10 10 60 80
Totals 60 70 70 200

Table —�e local and global Hare quotas of Example 

Hare quotas Party A Party B Party C Totals

District I 2.500 3.000 0.500 6
District II 0.625 0.625 3.750 5
Totals 3.125 3.625 4.250 11

Global Hare quotas 3.300 3.850 3.850 11

Table —�e normalized votes and β-indices of votes of Example 

Party A Party B Party C Totals

Local normalized votes
District I 0.416 0.500 0.083 1
District II 0.125 0.125 0.750 1

Global normalized votes 0.300 0.350 0.350 1

Local β-indices of votes
District I 1/5 3/5 1/5 1
District II 0 0 1 1

Global β-indices of votes 1/3 1/3 1/3 1
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 shows the related normalized votes and β-indices of votes. In this case the
last row shows these data at the global level, too.

. Data and variables

We will utilize the following indices:

d to denote the districts (d = , . . . , nd ) and

p to denote the parties (p = , . . . , np).

A multi-district apportionment problem is based on the following data:

V = [vd p], the matrix of valid votes obtained by the p-th party in the d-th
district;

a = [ad], the vector of the seats to be assigned to the d-th district (in our
example (, )).

Other computation parameters are:

S = [sd p], any integer matrix whose elements are seat distributions which
respect the total seats to be allotted in the districts, i.e.

np

∑
p=

sd p = ad (d = , ..., nd).

b = [bp], the total seats assigned to the p-th party in matrix S, i.e.

nd

∑
d=

sd p = bp (p = , ..., np).

Let S be the set of matrices S respecting the above conditions.

We will generalize the de�nitions of section . as follows.
For all v ∈ V , s ∈ S, p, q = , . . . , np , p ≠ q, we call

ed p(V , S) = sd p − vd p the bonus of the p-th party in the d-th district;

cd pq(V , S) = ed p(V , S)−edq(V , S) the complaint of the p-th party against
the q-th party in the d-th district;

c(V , S) = (c(V , S), . . . , ck(V , S)) the S-complaint vector, i.e. the vector
whose components are the non-negative complaints of the whole matrix
S, listed in non-increasing order.
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�e above de�nitions allow us to establish on S the same preference re-
lationship introduced in section ..

. Solutions

We will use the same concept of solution introduced in Section ., with the
simple substitution of Sk with Sk for all involved k.

For an easier understanding of the criteria used, we will present them to-
gether with the construction of the solution to example . Obviously, the or-
der of criteria can be changed depending on the importance given to them.
Here the following sequence is used:

FG-criterion (F-criterion for the global apportionments);

NG-criterion (N-criterion for the global apportionments);

βG-criterion (β-criterion for the global apportionments);

NL-criterion (N-criterion for the local apportionments).

βL-criterion (β-criterion for the local apportionments).

�e FG-criterion, NG-criterion and βG-criterion are no other than the cor-
responding criteria presented in section ., applied to global Hare quotas of
the votes. In our example the application of the FG-criterion leads to the only
matrices where total seats per party are: (, , ), inasmuch this distribution
is the only one which respects monotonicity, the Hare minimum and Hare
maximum at global level. As the FG-criterion supplies only one allocation
of total seats, the NG-criterion and the βG-criterion maintain the set of the
above matrices unchanged.

�e NL-criterion consists in keeping only the matrices which minimize
the S-complaint vectors, according to what is indicated in the t-minimax
criterion presented in section ., using t = N . In our example, to help the
search for such matrices, we can focus on the only ones that respect the Hare
minimum andHare maximum in all the districts, as they are preferable to all
the others. �ese are shown in the upper part of Table . In the same tables
the rounded normalized seats sd p , the bonuses ed p and the complaints cd pq
are shown.

�e maximum values of the S-complaint vectors of the four matrices are
respectively ., ., ., .. �e matrix which corresponds to the
minimum of such values is the �rst. �en the FGNGβGNL-solution is unique
and is the matrix shown in Table .

�e βL-criterion consists in keeping only those matrices which minimize
the S-complaint vectors, according to what is indicated in the t-minimax cri-
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Table —�e computations to obtain the
FGNGβGNLβL-solution of Example 

S A B C A B C

District I 3 3 0 2 4 1
District II 0 1 4 1 0 4
s1p 0.5 0.5 0 0.3 0.6 0
s2p 0 0.2 0.8 0.2 0 0.8
e1p 0.083 0 −0.083 −0.083 0.16 −0.083
e2p −0.125 0.075 0.050 0.075 −0.125 0.050
c1pq 0.17 0.08 0.08 0.25 0.25 0
c2pq 0.2 0.175 0.025 0.2 0.175 0.025

District I 2 3 1 1 4 1
District II 1 1 3 2 0 3
s1p 0.3 0.5 0.16 0.16 0.16 0.16
s2p 0.2 0.2 0.6 0.4 0 0.6
e1p −0.083 0 −0.083 −0.85 0.16 −0.083
e2p 0.075 0.075 0.150 0.275 −0.125 −0.150
c1pq 0.17 0.08 0.08 0.42 0.33 0.08
c2pq 0.225 0.225 0 0.425 0.4 0.025

Table —�e FGNGβGNLβL-solution
of Example 

3 3 0
0 1 4

Table —�e FGNGβGβL-solution
of Example 

2 3 1
1 1 3

1 3 2
2 1 2
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Table —�e FGNGβGβLNL-solution
of Example 

2 3 1
1 1 3

terion presented in section ., using t = β. In our example, due to unique-
ness, the FGNGβGNLβL-solution coincides with the FGNGβGNL-solution.

If we want to change the order of the two local criteria, we must apply the
βL-criterion to the matrices of the FGNGβG-solution. Observe that, among
suchmatrices, there are two, and only two, which perfectly respect the power
indices of the votes, shown in Table . �esematrices (shown in Table ) lead
to null S-complaint vectors and therefore are the FGNGβGβL-solution.

It is now easy to verify that the FGNGβGβLNL-solution is the one shown
in Table .

Observe that all the above solutions remain the same if the order of NG-
criterion and βG-criterion is exchanged, as mentioned at the beginning of
the presentation of these criteria. However, the two solutions obtained by
inverting the order of local criteria are di�erent. An example is now given in
which these solutions coincide.

Example  An electoral system is made up of two districts (to which  and
 seats must be assigned) and two parties A, B. �e valid votes obtained are
shown in Table .

�e local and global Hare quotas are reported in Table . Observe that
all Hare quotas are integer numbers. Table  shows the related normalized
votes and β-indices of votes.

It is easy to verify that the FGNG-solution is the set of matrices shown in
Table , varying the integer k from  to . Similarly for the FGβG-solution.
Obviously, the FGNGβG-solution and the FGβGNG-solution coincide with
the above solutions.

Now we will continue with the calculations of the FGNGβGNL-solution
(see Table ). A�er some algebra we obtain that  is the value of k which
minimizesmax {(−k)/, (−k)/}.�erefore the FGNGβGNL-solution
is made up of the only matrix shown in Table  and coincides with the
FGNGβGNLβL-solution.

Going on to the calculation of the FGNGβGβLNL-solution, it is easy to
verify that such a solution is the set of matrices shown in Table  for which
 − k > k and  + k <  − k. �ese matrices correspond to the values of
k between  and . k =  is included in these. �erefore the FGNGβGβLNL-
solution coincides with the FGNGβGNLβL-solution.



i
i

i
i

i
i

i
i

G. Gambarelli and A. Palestini: Minimax Multi-District Apportionments 

Table —�e votes of Example 

Votes Party A Party B Totals

District I 320 80 400
District II 4680 4920 9600
Totals 5000 5000 10000

Table —�e local and global
Hare quotas of Example 

Hare quotas Party A Party B Totals

District I 16 4 20
District II 39 41 80
Totals 55 45 100

Global Hare Quotas 50 50 100

Table —�e normalized votes and
β-indices of votes of Example 

Party A Party B Totals

Local normalized votes
District I 0.8000 0.2000 1
District II 0.4875 0.5125 1

Global normalized votes 0.5 0.5 1

Local β-indices of votes
District I 1 0 1
District II 0 1 1

Global β-indices of votes 0.5 0.5 1
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Table —�e solutions of Example 

Solutions Party A Party B Totals

District I 20 − k k 20
District II 30 + k 50 − k 80
Totals 50 50 100

Table —�e computations to obtain the
FGNGβGNLβL-solution of Example 

Party A Party B

s1p (20 − k)/20 k/20
s2p (30 + k)/80 (50 − k)/80
e1p (4 − k)/20 (k − 4)/20
e2p (9 − k)/80 (k − 9)/80

c1pq (4 − k)/10
c2pq (9 − k)/40

. On the ordering of criteria

In the examples in the last Section we gave greater importance to global level
criteria than to those at a local level; however, there is no change in the tech-
nique if the order is permuted. However, it seems reasonable to apply the
FG-criterion �rst, as this guarantees respect to the will of the entire elec-
torate. Complaints are o�en heard about the misrepresentations of parlia-
mentary majorities, due to local roundings. Such dissatisfaction seems rea-
sonable inasmuch as a Parliament represents the entire population. Subse-
quently, the choice of order of the criteria depends on the national situation
which it is applied to. In particular, the choice of priority between adhering
to normalized votes or to power indices in the �rst case gives preference to
the proportional aspect; in the second case to the majority aspect, which is
essential for democracy.

. On the existence of solutions

�eorem  For every multi-district apportionment problem, all solutions
having the FG-criterion as the �rst criterion, are not empty.
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Table —�e FGNGβGNLβL-solution and the
FGNGβGβLNL-solution of Example 

15 5
35 45

Proof In our hypotheses at least one distribution of seats b = (b , . . . , bn)
which is able to verify the F-criterion exists (see the end of section .).
It is known that, given any two integer vectors a = (a , . . . , an) and b =

(b , . . . , bn) having equal sums of the components, at least one integer ma-
trix (nd × np) exists, which has such vectors as totals of row and column.
Each one of the other criteria Ck+ generates a nonempty subset of the Sk-
solution, inasmuch it chooses, from these matrices, only the optimal ones
according to that criterion; however, in the case of equal optimality, it keeps
them all. ◻

An algorithm for the automatic computation of the solution is shown in
Appendix B.

. Further criteria

In cases of non-uniqueness, further criteria can be added and applied in order
to restrict the solution set, using the same techniques. For instance, a�er the
�ve criteria have been applied, it is again possible to choose whether to give
preference to the βL-criterion or the NL-criterion. Taking into consideration
the corresponding complaints, it is possible to keep only those matrices for
which the maximum of such a vector corresponds to a minimum number of
votes. Resorting to thismethod a further restriction of the solution set can be
obtained.�e uniqueness of the �nalmatrix, however, cannot be guaranteed;
e.g. in the case where the global Hare quotas are of the type shown in the
example in Section . In such cases it is therefore necessary to apply other
methods, based for example on the candidates’ ages, draws and so on.

. A comparison with other methods

Tables  and  show the allocations assigned by the principal classicalmeth-
ods of rounding (presented in Section ) in the cases of examples  and ,
indicating some criteria which are violated.

Regarding Table , we add that all apportionments respect, at a local level,
symmetry, monotonicity and Hare minimum; at global level Hare minimum
and power index. Note that the new solutions respect all the criteria at global
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level; in particular the solutions in the last column respect all the criteria,
contrary to classical methods.

Regarding Table , we add that all apportionments respect: at a local
level, symmetry, monotonicity and power index; at global level, monotonic-
ity. Note that the new solutions respect all the criteria at global level, contrary
to classical methods.

. Conclusions

�e concept of solution proposed here avoids most of the distortions which
arise when using classical methods and, when unavoidable, minimizes their
negative e�ects. �e procedures to obtain the solutions are simply applicable
to automatic computation. �e majority of classical techniques were devel-
oped before computers existed, or at least before they came into common
use. We think it is now time to get up-to-date with electoral regulations, too.

Appendix

A Some notes on the normalized Banzhaf power index

In the�eory of Cooperative Games, a power index is a function which as-
signs shares of power to the players as a quantitative measure of their in�u-
ence in voting situations. For instance, suppose that a system is composed
of three parties without particular propensity for special alliances, and that a
simple majority is required. If the allotment of seats is (, , ), any rea-
sonable power index will assign an equal power allotment of (/, /, /).
If the seat allotment of the three parties is (, , ), then any reasonable
index would give a power share of (, , ), since the �rst party attains the
majority by itself. Some complications occur if the seat allotment is (, ,
). If A, B,C are the three parties, we can remark that A is crucial for the
three coalitions {A, B,C}, {A, B} and {A,C}, i.e. such coalitions attain the
majority with party A and lose it without A. On the other hand, party B is
only crucial for the coalition {A, B} and party C is only crucial for the coali-
tion {A,C}. In general, the power indices are based on the crucialities of
the parties. In particular, the Banzhaf index () assigns to each party the
number of coalitions for which it is crucial. In our example, the assigned
powers are (, , ).

�e Banzhaf normalized power index assigns to each party a quota of the
unity proportional to the number of coalitions for which it is crucial. In our
example, the assigned powers are (/, /, /).

In addition to John F. Banzhaf, several authors independently introduced
various indices having the same normalization: James S. Coleman (), Li-
onel S. Penrose () and, according to a particular interpretation, Luther
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Table —�e allocations assigned by various
methods in the case of Example 

Method Hamilton FGNGβGNLβL

Hondt-Je�erson FGβGNGNLβL

Balinski-Young FGβGNGβLNL

A B A B

District I 16 4 15 5
District II 39 41 35 45
Totals 55 45 50 50

Local Breaks X
Hare min. X
Hare max.

Global Breaks
Symmetry X
Hare min. X
Hare max. X
Power indices X

Martin in the XVIII century (see Riker, () and Felsenthal and Machover
()). �at is the reason why this index should be mentioned as ’Banzhaf-
Coleman-Martin-Penrose Normalized power index’.

A combinatorial interpretation is shown in Palestini (). For the au-
tomatic computation in general cases, we suggest the algorithm by Bilbao
et al. (). �e algorithm by Gambarelli () takes into account previ-
ous computations, when the seats vary recursively. �en (with reference to
the Appendix B) it is more suitable for the application of the βL-criterion, if
computed before the NL-criterion.

Overviews of further power indices can be found in Gambarelli (),
Holubiec and Mercik (), Gambarelli and Owen ().

B An algorithm generator of the solutions

We show an algorithm for the automatic generation of the solutions having as
�rst criteria FGNGβG or FGβGNG . Notice that this procedure can be easily
structured for parallel processing, so that the time of computation can be
considerably reduced.

Input
V the valid votes.
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a the seats to be assigned to the districts.
‘Global option’ of the ordering of criteria at the global level

(FGNGβG or FGβGNG).
‘Local option’ of the ordering of criteria at the local level

(NLβL or βLNL).

Output
S , S , . . . , Sn the set of survived matrices.

Working area
Nv the matrix of normalized votes.
βv the matrix of the Banzhaf normalized power indices of votes.
N s the matrix of normalized seats.
βs the matrix of the Banzhaf normalized power indices of the seats.
R , R , . . . , Rn the set of matrices survived to the �rst local criterion.
B the set of vectors b generated by criteria FGNGβG or FGβGNG .
cCUR the vector c(V , S) at the current step.
cMIN the minimum vector cCUR of the past steps.
fd , fp pointers to set S.
S the matrix in construction:

s11 s12 s13 ⋯ s1nP a1
s21 s22 s23 ⋯ s2nP a2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

snd 1 snd 2 snd 3 ⋯ snd nP and
b1 b2 b3 ⋯ bnP ∑ bd = ∑ ap

Procedure
Read the input data.
Compute V .
Compute β using Bilbao et al. ().
Compute B according to the global option.
Set maximum values to cMIN .

For every b of B:
Set (nd , np) as �rst pointers.
Move nd to fd and np to fp .
For all S of the current b:
Set S (move a and b to the arrays of the totals and move zeroes to all
sd p).
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Call the subroutine ‘Construction of the next S’.
Update fd , fp .
Call the subroutine ‘Generation of solution’ using Rk as output.
Return.

Return

Set maximum values to cMIN .
Move n to m.
Varying t from  to m:

Move Rt to S.
Call subroutine ‘Generation of solution’ using Sn as output.

Return
End

Subroutine ’generation of solution’
If the local option is NL ,

compute N s

else
compute βs using Gambarelli () (case βLNL)
or Bilbao et al. () (case NLβL).

During the above computation, construct cCUR and compare it with cMIN .
Just if cCUR > cMIN exit.

When the construction of the normalized matrix is ended:
If cCUR = cMIN

move n +  to n
else

move  to n
move cCUR to cMIN .

Move S to output.
Exit

Subroutine ’construction of the next S’
If min{and , bnp} = and , then

move and to snd np ,
move  to all the other elements of the last row
and to and ,
move (bnp − and ) to bnp ,
and iterate the procedure on the submatrix
obtained by eliminating the last row,
i.e. decreasing nd by .

If min{and , bnp} = bnp , then
move bnp to snd np ,
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move  to all other elements of the last column
and to bnp ,
move (and − bnp ) to bnp ,
and iterate the procedure on the submatrix
obtained by eliminating the last column,
i.e. decreasing np by .

At the end of the procedure we obtain a = b;
this number will be moved to s.
Exit.

Example In example  the construction sequence of the �rst S is:

6
5

3 4 4 11

0 6
4 1
3 4 0 7

0 6
0 1 4 1
3 3 0 6

3 0 3
0 1 4 0
3 0 0 3

3 3 0 0
0 1 4 0
0 30 0 0

  
  

  
  

  
   . . .   
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