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Abstract In TU-games in characteristic function form, some power indices can be 
expressed by means of different formulas, which potentially allow remarkable advan-
tages in calculation. By exploiting the powerful instrument of average essentialities of 
coalitions, we propose new representations for the Banzhaf value, the normalized 
Banzhaf index, the coalition value and the Myerson value. When considering 
weighted voting games, some of these formulas only depend on the number of feasible 
coalitions exceeding the winning quota, and this may imply a considerable reduction 
of computational cost in algorithms. 
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1. Introduction 

Power indices constitute a fundamental instrument for the evaluation of indi-
vidual and coalitional payoff of players in weighted voting games. As a matter 
of fact, it is well-known that several power indices of cooperative TU-games 
in characteristic function form admit a number of different representations, 
often based on analytic or combinatorial properties. An obvious example is 
the Shapley value, which in addition to its traditional formulation due to 
Shapley (1953), can also be expressed by integrating partial derivatives of the 
multilinear extension of the game as in Owen (1995), or by exploiting the 
peculiar instrument of average essentialities of coalitions as defined by 
Gambarelli (1990). The main idea on which his work was based concerned 
the drawing up of a new formula for the Shapley value, which turned out to 
be really advantageous in algorithms, especially in the reduction of calcula-
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tion time. Moreover, it was very useful to deduce relationships between that 
value and the barycenter of the imputation set of the related game. 

Essentially, the present work aims at finding alternative formulations for 
some of the most common values by means of average essentialities, 
expressed either in classical or in adapted form. Basically, the objectives to 
meet are two: to reduce computational cost of possible calculation algorithms 
and to open some doors in the fascinating topic of geometric properties of 
values in imputation simplices, first introduced by Shapley (1953), and sub-
sequently analyzed by Gambarelli (1990). 

As far as the first one is concerned, the search for a better way to express a 
power index makes sense particularly: sparing operations for calculation or 
storage to be used is very important in algorithms, especially when dealing 
with a big number of players. 

On the other hand, the position of a value in the imputation set of the 
related game deserves a special attention: in detail, necessary and sufficient 
conditions in order that the barycenter of the imputation set can coincide 
with a power index can easily be provided. Besides, one can straightaway 
construct simplices or even imputation sets whose barycenter is a specific 
value, and that may lead directly to the construction of games endowed with 
interesting properties. 

In section 2, notation and definitions which will be used in the following 
are introduced. In section 3, the Banzhaf value and the normalized Banzhaf 
index are investigated. The new formula for the Banzhaf value enunciated in 
Proposition 3.1 immediately implies a particular representation for the nor-
malized Banzhaf index in weighted voting games, only depending on the 
number of coalitions of all possible sizes, overtaking the majority quota. 
Remark 3.3 shows how a calculation algorithm based on this formula might 
be less expensive, in terms of both data-storing and operations needed to be 
performed. 

Section 4 examines the coalitional value, originally introduced by Owen 
(1982), which suits situations in which political parties make agreements in 
order to form preliminary coalitions. At a price of some modifications in 
definitions, a new representation for this value can be written down. A 
numerical example at the end of this section expounds the possible advan-
tages of this formula as far as data-storing is concerned. 

An adequate power index for voting models appears to be the Myerson 
value, i.e. the Shapley value for graph-restricted games. It seems natural to 
regard the vertices of a graph as the players of a cooperative game and its 
edges as the feasible alliances. The subject of relationship between Myerson 
value and properties of graphs has been widely studied, for instance by 
Algaba et al. (2001) and Fernandez et al. (2002). Section 5 is devoted to the 
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development of some further considerations about the Myerson value. 
Besides exposing it analogously to the Shapley value by means of appropriate 
redefinitions of the average essentialities, one can use some basic notions of 
graph theory to achieve a new representation. Proposition 5.9 shows that 
fixing some hypotheses on the considered weighted voting game, the payoff 
for each player only depends on the number of winning feasible coalitions 
she takes part in, which is strictly related to the number of links she has as a 
vertex of the graph. In order to clarify the previous formula, a numerical 
example about a 5-person weighted majority game follows. The strong 
impression one has is that notwithstanding the remarkable difficulties which 
the formulation of the Myerson value generally involves, average essentialities 
might provide new interesting results. 

2. Preliminary definitions 

Let us consider a TU-game in characteristic function form →: 2Nv R , whose 
set of players is = {1,..., }N n . The notation we will use is the same as in 
Gambarelli (1990, 445), i.e. let us call: 

( ,0)S s  the set of the ( )n
s  s -player coalitions; 

+( , )S s i  the set of the ( )−
−

1
1

n
s  s -player coalitions including the i -th element; 

−( , )S s i  the set of the ( )−1n
s  s -player coalitions excluding the i -th element. 

All those sets are lexicographically ordered, and calling ( ),jS s k  the j -th 
element of the set ( , )S s k , with = 0k  or = ±k i , ∈i N , we give the following 
definitions:  

Definition 2.1 For every coalition ⊆S N , the essentiality ( )e S  is the num-
ber: 

∈

= −∑( ) : ( ) ({ })
i S

e S v S v i  

Particularly ( ) ( )( )=, : ,j je s k e S s k , for all ∈ = − − + −, , 1,..., 1,0,1,...,s N k n n  
−1, ; ( )n n e S  can even be thought of as the excess of any coalition S  with 

respect to the payoff vector whose j -th coordinate is the characteristic value 
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of the j -th player, as stated by Owen (1995, 319). 

Definition 2.2 For =1,...,s n , the average essentiality of the s -player coali-
tions is: 

( )
( )

( )
( )

=

= ∑
1

1,0 ,0

n
s

j
j

a s e sn
s

 

Definition 2.3 For =1,...,s n , and ∈i S , the average essentiality of the s -
player coalitions excluding the i -th is: 

( )
( )

( )
( )  s

   s

−

=

− = −− ∑
1

1

1, ,1

n

j
j

a s i e s in  

Remark 2.4 The previous definition is compatible with the convention 

( )− = ∀ ∈, 0,a n i i N  

Definition 2.5 For =1,...,s n  and ∈i N , the average essentiality of the s -
player coalitions including the i -th is: 

( )
( )

( )
( )−
−

=

+ = +−
−
∑

1
1

1

1, ,1
1

n
s

j
j

a s i e s in
s

 

Definition 2.6 Given the nonnegative integers …1, , , nq w w , such that 

=

< ≤∑
1

0
n

j
j

q w  

we denote with [ ]≡ …1; , , nv q w w  the simple weighted voting game on N  
defined by 

= ≥ = < ⊆( ) 1 if ( ) , ( ) 0 if ( ) , for allv S w S q v S w S q S N  

where ( )
∈

=∑ i
i S

w S w  
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iw  is the number of votes of the i -th player, and q  is the quota needed 
for a coalition to win. In order to avoid triviality for such a game, it is better 
to assume that no player can reach the majority quota on her own, that is 

<iw q  for all ∈i N . 

3. A new formula for the Banzhaf value 

It is sensible to recall the classical definition of the Banzhaf value as stated by 
Banzhaf (1965): 

( ) ( ) ( )( ) ( )
( )

=

⋅
= =

∑
� � � �…1

1

θβ β , ,β , with β
θ

i
n i n

j
j

v Nv v v v  

where ( ) { }( )( )
∈

= −∑θ \i
i S

v S v S i  is the number of swings for the i -th player. 

Proposition 3.1 The Banzhaf value of any n -person TU-game v  in 
characteristic function form can be expressed by the following formula: 

( )
( ) ( ) ( ) ( ) ( ) { }( )

( ) ( ) ( ) ( ) { }( )

  s

  s

−

=

−

= =

⎛ ⎞−⎡ ⎤− − +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠=
⎛ ⎞−⎡ ⎤− − +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑

∑ ∑
�

1

2

1

1 2

1,0 2 , 2
β

1,0 2 , 2

n
n

s
i n n

n

j s

n nv N a s a s i v is
v

n na s a s j v js

 

for all ∈i N  

Proof We can express θi  as follows: 

( )( ) ( )( )( )
( )

{ }( )

−
−

= =

= + − − − +∑ ∑
1
1

2 1

θ , 1,

n
sn

i j j
s j

v S s i v S s i v i  

Since the following equality holds for all ∈,i s N : 

( )( )
( )

( )( )
( )

( )( )
( )  s

− −
−

= = =

= − + +∑ ∑ ∑
1 1

1

1 1 1

,0 , ,

n n n
s s

j j j
j j j

v S s v S s i v S s i  

a simple relation on the average essentialities follows: 
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( ) ( ) ( ) ( ) ( ) ( )  s
− −= − + +−

1 1,0 , ,1
n n na s a s i a s is s  (1) 

Hence, the number of swings can be written in terms of average essential-
ities: 

( ) ( ) { }( )
( )

( ) ( )

{ }( )
( )

{ }( )∈ +

=
∈ − −

− −⎡ ⎤+ + − − −− −⎢ ⎥
= +⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑ ∑

,

2
1,

1 1, 1,1 1
θ

n
k S s ij

i
s

k S s ij

n na s i v k a s is s
v i

v k
 

By exploiting (1) and the straightforward claim that ( ) =1,- 0a i , for all 
∈i N , we have that: 

( ) ( ) ( ) ( ) ( ) ( )

( ) { }( )
{ }( )

( ) ( ) ( ) ( ) { }( )

  s

  s

=

−

=

− −⎡ ⎤− − − − −−⎢ ⎥= +⎢ ⎥−+⎢ ⎥−⎣ ⎦
−⎡ ⎤= − − +⎢ ⎥⎣ ⎦

∑

∑

2

1

2

1 1,0 , 1,1
θ 1

1
1,0 2 , 2 .

n

i
s

n
n

s

n n na s a s i a s is s
v in v is

n na s a s i v is

 

Consequently, the i -th coordinate of the Banzhaf value will be given by 
the expression: 

( )
( ) ( ) ( ) ( ) ( ) { }( )

( ) ( ) ( ) ( ) { }( )

  s

  s

−

=

−

= =

⎛ ⎞−⎡ ⎤− − +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠=
⎛ ⎞−⎡ ⎤− − +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑

∑ ∑
�

1

2

1

1 2

1,0 2 , 2
β

1,0 2 , 2

n
n

s
i n n

n

j s

n nv N a s a s i v is
v

n na s a s j v js

 � 

Next corollary provides a representation of the normalized Banzhaf index 
for a voting game which only depends on the number of winning coalitions 
of every cardinality, except 1 and n . In the following, we will denote with the 
symbol # A  the cardinality of the set A . 

Corollary 3.2 The normalized Banzhaf index ( )β v  of a weighted voting 
game [ ]≡ …1; , , nv q w w  can be expressed like that: 
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( )
( ) ( )( )

( ) ( )

−

=
− −

= = =

+ − −
= ∀ ∈

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠

∑

∑ ∑ ∑

1

2
1 1

2 1 2

1 ,0 2 ,
β ,

,0 2 ,

n

s
i n n n

s j s

K s K s i
v i N

n n K s K s j
 (2) 

where 

( , ) : #{ ( , ) : ( ) }
( ,0) : #{ ( ,0) : ( ) }

, 1, ,

K s i T S s i w T q
K s T S s w T q

s N i n

− ∈ − ≥
= ∈ ≥

∀ ∈ ∀ = …
 

Proof If v  is a simple weighted voting game, obviously we have that 

( )
( )

( )

( )
( ) ( ){ }

( )

( )
( )

( )

( )
( ) ( ){ }

( )

1

1

1

# ,0 :
,0

# :
, 1 1

n
s

j
j

n

j
j

v S
T w T q

a s n n
s s

v S
T S w T q

a s i n n

=

−

=

∈ ≥
= =

∈ ≥
− = =− −

∑

∑
  s

S s

s,-i

  s   s

 

Then, if we call 

( ) ( ) ( ){ }s,-i− = ∈ ≥, : # :K s i T S w T q  

∀ ∈ ∀ = …, 1, ,s N i n , the representation of the normalized Banzhaf index 
becomes 

( )
( ) ( )( )

( ) ( )

−

=
− −

= = =

+ − −
= ∀ ∈

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠

∑

∑ ∑ ∑

1

2
1 1

2 1 2

1 ,0 2 ,
β ,

,0 2 ,

n

s
i n n n

s j s

K s K s i
v i N

n n K s K s j
 � 

Remark 3.3 Is the formula obtained in Corollary 3.2 useful to reduce the 
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computational cost of algorithms? What follows is a succinct comparison 
between two algorithm projects, respectively based on the usage of the origi-
nal formulation and of the new one. In every computation algorithm for the 
normalized Banzhaf index of a simple game a verification process, attainable 
through an ‘if-then-else’ cycle, is associated to each coalition S : if the sum of 
seats (or votes) of the coalition players exceeds the quota q , the value is 1, 
and it is 0 otherwise. The precise number of verifications to make can be 
evaluated in both methods. Dealing with the traditional definition of the 
Banzhaf-Coleman index, in order to calculate the number θi of swings for the 
i -th player, we have to check all the coalitions of ( )+,S s i  and of ( )−,S s i , 
with = −2,..., 1s n , i.e. a total number of 

( ) ( ) ( ) ( ) ( ) ( ) ( )  s
− −

= = =

− −⎛ ⎞+ = = − − − = − −⎜ ⎟−⎝ ⎠∑ ∑ ∑
1 1

2 2 0

1 1 2 21 0 1
n n n

n

s s s

n n n n n n n ns s s n  

sets for each person of the game. Since the number of players is n , 
− −22 2nn n n  verifications are needed. 

As far as the aspects of data-storing are concerned, all the coalitions’ char-
acteristic values one needs to memorize should be − −2 2n n , since the empty 
set and the one-player coalitions have value 0 and the complete player set N  
has obviously value 1. Let us now analyze how an algorithm based on the new 
formula should work: we need to calculate all the ( ),0K s , with = −2,..., 1s n , 
and all the ( )−,K s i  as we defined them in Corollary 3.2. To this aim, we need 
to check − −2 2n n  coalitions for the ( ),0K s ; on the other hand, each 
( )−,K s i  requires the verification of: 

( )−
−

=

− = −∑
1

1

2

1 2
n

n

s

n ns  sets. 

So totally, we have 

( )− ⎛ ⎞− − + − = + − − −⎜ ⎟
⎝ ⎠

1 22 2 2 2 1 2
2

n n n nn n n n n  

coalitions. The memory needed to store all those values is definitely less than 
the one required by the previous method. In fact, the ( ),0K s  are − 2n , the 
( )−,K s i  are − 2n  too, so in total ( )− + − = − −22 2 2n n n n n  entries are 

needful. 
For instance, an algorithm for a 6-person weighted voting game requires 
⋅ − − =6 26 2 6 12 336  verifications with the traditional formula, but only 
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( )⋅ + − − − =62 1 6 2 36 6 2 212  verifications with the new one. The values to be 
stored are − − =62 6 2 56  with the original formula, whereas they are only 

− − =26 6 2 28  with the new one. 
So it is easy to realize that such a representation, only depending on the 

number of coalitions exceeding the quota q , becomes considerably suitable 
for games with a large number of players. 

4. A new formula for the coalition value 

Realistic models for voting games are sometimes constructed investigating 
likely political phenomena such as preliminary alliances amongst parties (or 
firms, if our aim is an application to financial games). In other words, when 
some players agree to form an a priori union, an apter power index able to 
evaluate both the marginal contribution of a player inside her coalition and 
power of the coalition herself is needed. 

The algebraic instrument which suits this model is a partition of the player 
set N  into so-called a priori unions, i.e. pairwise disjoint subsets of N  
whose union is N  itself. A value taking a priori unions into account is the 
Owen-Banzhaf coalition value, initially proposed by Owen (1982) and in 
recent years newly discussed and axiomatized by Laruelle and Valenciano 
(2003) and by Albizuri et al. (2003). Actually, Albizuri et al. (2003) take this 
value as a starting point and subsequently define the configuration value, a 
sort of generalization to a more complex case, in which the a priori coalitions 
are not necessarily disjoint. 

First of all, it is convenient to recall the definition of the coalition value, as 
it was formalized by Owen’s axiomatization (1995, 303-307). Given a TU-
game →: 2Nv R  and a subset { }=: 1,...,M m  strictly contained in N , we can 
fix a partition { }= …1, , mB B B  of N  (which Albizuri et al. (2003) call a coali-
tion structure), where: 

=

= ∩ =∅ ∀ ∈ ≠∪
1

, , ,
m

k i j
k

B N B B i j M i j  

Consider the quotient TU-game = →/ : 2Mu v B R , such that: 

( )
∈

⎛ ⎞
= ∀ ⊆⎜ ⎟

⎝ ⎠
∪ ,h
h H

u H v B H M  

one can easily notice that if [ ]≡ …1; , , nv q w w  is a weighted majority game, u  
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is a weighted majority game too: ( ) ( )≡ ⎡ ⎤⎣ ⎦…1; , , mu q w B w B . 
The coalition value ( ) ( ) ( )( )= …1φ , φ , , ,φ ,nB v B v B v  is expressed by 

Albizuri et al. (2003) as follows: 

( )
( ) ( ) ( )

( ) { }( )( )( )
⊆ ⊆
∉ ∈

− −− −
= ⋅

∪ − ∪

∑ ∑
1 ! !1 ! !

φ ,
! !

\

p
i

C B S B pp
B C i Sp

C C

S B Sm C C
B v

m B

v A S v A S i

 

∀ ∈ ,i N  where 

∈

= ∪C q
B Cq

A B  

A plain relation between the coalitional value and the Shapley value holds, 
so the justification for this formula is somewhat intuitive: given a coalition 
structure B , we consider all her substructures C  not containing the a priori 
set which includes the i -th player. Then we regard the union of all coalitions 
of C  as a unique set CA  subsequently, we consider the set system formed by 
all the unions between a CA  and all coalitions containing i , and we calculate 
I ’s Shapley value referred to this coalition structure. 

This adapted Shapley value is represented by the internal sum; on the 
other hand, the external sum extends this calculation to all substructures C . 

In fact, the coefficients in the external sum are the classical Shapley value 
factors: m , C , and −m C  are the cardinalities of ( ), \ \B B B C  and \B C  
respectively. Hence, to obtain i -th player’s coalitional value, a sort of double 
omputation of a Shapley value needs to be performed. In the case of weighted 
voting games on an a priori coalition structure, the value can be reformulated 
with the help of some slight changes in the definitions of average essential-
ities. 

Theorem 4.1 If [ ]≡ …1; , , nv q w w  is a weighted voting game defined on a 
player set { }= 1,...,N n , and { }= …1, , mB B B  is a coalition structure, the coali-
tion value of the quotient game /v B  can be expressed as follows: 

( )
( )

( ) ( )

⊆ =
∉

⎛ ⎞+ − − −⎜ ⎟=
⎜ ⎟⎛ ⎞− ⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑
1

1 , 1,φ ,
Bp

C C
i

C B s p
B Cp

K s i K s iB v m Bm C C

 (3) 

for all ∈i N , where 
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( ) ( ) ( ){ }
( ) ( ) { }( ){ }

, : # , : ,

1, : # , : , ( \ )
C p C

C p C

K s i T S s i T B w A T q

K s i T S s i T B w A T i q

+ = ∈ + ⊆ ∪ ≥

− − = ∈ + ⊆ ∪ ≥
 

( ) ( ) { }( ){ }− − = ∈ + ⊆ ∪ ≥1, : # , : , ( \ )C p CK s i T S s i T B w A T i q  

for every ⊆C B and for every ∈ \pB B C  

Proof First, we assume that no single player can obtain the majority by her-
self, because in that case all the other players would be dummies, i.e. their 
value would be 0. Let us fix a subset C  of B . We can define the average 
essentiality of the coalitions of the kind ∪CA T : 

( ) ( ) ( )
⊆

+ = ∪ ∀ ∈ +
⎛ ⎞−
⎜ ⎟−⎝ ⎠

∑1, : , ,
1

1

C C
T Bp p

a s i v A T T S s i
B
T

 

Analogously, we define the average essentiality of the coalitions 
{ }∪( \ )CA T i  as follows: 

( ) { }( ) ( )
⊆

− − = ∪ ∀ ∈ +
⎛ ⎞−
⎜ ⎟−⎝ ⎠

∑11, : ( \ ) , ,
1

1

C C
T Bp p

a s i v A T i T S s i
B
T

 

In both definitions pB  is the only element of B  containing the i -th player. 
Consequently, by defining: 

( ) ( ) ( ){ }, : # , : ,C p CK s i T S s i T B w A T q+ = ∈ + ⊆ ∪ ≥  

( ) ( ) { }( ){ }− − = ∈ + ⊆ ∪ ≥1, : # , : , ( \ )C p CK s i T S s i T B w A T i q
 

for all ∈,i s N ,the formula (3) easily follows. � 

Example 4.2 Because of the complexity of the coalition value formula, it is 
rather difficult to arrange an analysis like the one in Remark 3.3; in fact the 
number of coalitions whose characteristic value should be verified strongly 
depends on the a priori structure B . To avoid weightening the treatment, we 
can just set up a numerical example in which the number of CK  to be stored 
is smaller than that of all the sets ∪CA T needed to calculate the coalitional 
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value. 

Consider the 7-person weighted voting game 

[ ]≡ 15;1,2,3,4,5,6,7v  

and the a priori union 

{ } { } { }{ }= 1,3 , 2,4,6 , 5,7B  

By the traditional calculation it is simple to see that the coalitional value of 
this game is: 

( ) ⎛ ⎞= ⎜ ⎟
⎝ ⎠

1 1 5 1 5 1φ , 0, , , , , ,
18 3 36 6 36 6

B v  

Let us compare the two formulas. We can notice that as far as the elements 
1,3,5,7 are concerned, the calculation of their coalition value requires the 
knowledge of the values of 12 coalitions. 

For instance, let us examine player 1; the four substructures iC  to be 
considered are: 

{ } { } { } { }{ }=∅ = = =1 2 3 4, 5,7 , 2,4,6 , 5,7 , 2,4,6C C C C  

Consequently, excluding N , ∅  and all one-player coalitions as usual, the 
sets whose value is necessary to compute ( )φ ,i B v  are 12, in detail: 

{ } { } { } { } { } { }
{ } { } { } { }
{ } { }

1,3 , 5,7,1,3 , 5,7,3 , 5,7,1 , 5,7 , 2,4,6,1
2,4,6 , 2,4,6,1,3 , 2,4,6,3 , 2,4,6,5,7,1
2,4,6,5,7 , 2,4,5,6,7,3

 

With the new formula, since 1 belongs to a 2-player a priori coalition, one 
needs to store: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

C C C C

C C C C

C C C C

K K K K
K K K K
K K K K

1 2 2 2

2 3 3 3

3 4 4 4

2, 1 , 2, 1 , 1, 1 , 1, 1
0, 1 , 2, 1 , 1, 1 , 1, 1
0, 1 , 1, 1 , 1, 1 , 0, 1

+ + + −
− + + −
− + − −

 

exactly 12 values, so no memory is spared in these cases. 
But if we consider the elements belonging to a 3-player a priori union, that 
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is 2, 4 or 6, the situation changes. In fact, to compute ( )2φ ,B v  by means of 
the traditional formula we need to know the values of the following coali-
tions: 

{ } { } { } { } { }
{ } { } { } { } { }
{ } { } { } { } { }
{ } { } { } { } { }
{ } { } { }
{ } { } { }

2,4,6 , 2,4 , 2,6 , 1,3,2,4,6 1,3,4,6
1,3,2,6 , 1,3,6 , 1,3,2,4 , 1,3,4 , 1,3,2
1,3 , 5,7,2,4,6 , 5,7,4,6 , 5,7,2,6 , 5,7,6
5,7,2,4 , 5,7,4 , 5,7,2 , 5,7 , 1,3,5,7,4,6
1,3,5,7,2,4 , 1,3,5,7,4 , 1,3,5,7,2,6
1,3,5,7,6 , 1,3,5,7,2 , 1,3,5,7

 

totally 26 subsets of N . 
In this case, the four substructures to consider are: 

{ } { } { } { }{ }=∅ = = =1 2 3 4, 5,7 , 1,3 , 5,7 , 1,3C C C C  

Consequently, the formula (3) requires the memorization of 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

C C C C

C C C C

C C C C

C C C C

C C C C

K K K K
K K K K
K K K K
K K K K
K K K K

1 1 1 2

2 2 2 2

2 3 3 3

3 3 3 4

4 4 4 4

3, 1 , 2, 1 , 2, 1 , 3, 1
2, 1 , 2, 1 , 1, 1 , 1, 1
0, 1 , 3, 1 , 2, 1 , 2, 1
1, 1 , 1, 1 , 0, 1 , 2, 1
2, 1 , 1, 1 , 1, 1 , 0, 1

+ − + +
− + − +
− + − +
− + − +
− + − −

 

which are 20 in total. 
To sum up, with the original formula the values to be stored are 
⋅ + ⋅ =12 4 3 26 126 , whereas with the new one they are only 
⋅ + ⋅ =12 4 3 20 108 . Hence, this method appears more advantageous as the 

number of players belonging to large a priori coalitions increases. 

5. Some notes about the Myerson value 

In this section some preliminary classical definitions are proposed, in order 
to characterize the value of Myerson (1977, 225-229), for n-person TU-
games. The notation used is the same that was exploited by Algaba et al. 
(2001) and Fernandez et al. (2002). 

Definition 5.1 Let { }= 1,2,...N n  be a finite set of players and F  a set system 
of coalitions. F  is called union stable if for all ∈1 2,S S F  with ∩ ≠∅1 2S S  it is 
satisfied that ∪ ∈1 2S S F . 
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Definition 5.2 Given the union stable set system ⊆ 2NF , the elements 
belonging to F  are called feasible coalitions. 

Definition 5.3 If ⊆ 2NF , for every ⊆S N , a set ⊆T S  is called a component 
of S  in F  if ∈T F  and there exists no ′∈T F such that ′⊂ ⊆T T S , i.e. if T  
is a maximal feasible subset of S  in F . 

Definition 5.4 Given an n -person game →: 2Nv R  in characteristic func-
tion form and the union stable set system ⊆ 2NF , the F-restricted game (or 
graph-restricted game) →: 2F Nv R  is defined by: 

( ) ( )
( )∈

= ∀ ⊆∑ ,F

T C SF

v S v T S N  

where ( )FC S  is the collection of all the components of S  in F . 
Let us recall the classical definition of the Shapley value in the most 

general case (see Shapley, 1953): 

Definition 5.5 The Shapley value of the n -person TU-game →: 2Nv R  is 
the vector ( ) ( ) ( ) ( )( )= …1 2Φ Φ ,Φ , ,Φnv v v v , where: 

( )
( ) ( ) ( ) { }( )( )

∈
⊆

− −
= −∑ ! 1 !

Φ \
!i

i S
S N

n S S
v v S v S i

n
 

Definition 5.6 If v  is an n -person TU-game and ⊆ 2NF  is a union stable 
set system, the Myerson value of the game v  is the Shapley value of the 
related F -restricted game Fv , i.e. the vector ( ) ( ) ( )( )= …1μ μ , ,μnv v v  such 
that: 

( ) ( )=μ Φ F
i iv v  

Gambarelli’s theorem (1990) yields the following representation for the 
Shapley value: 

Theorem 5.7 The Shapley value of an n -person game in characteristic func-
tion form v  can be expressed as follows: 

( ) { }( ) ( ) ( )−

= =

−
= + − ∀ ∈∑ ∑

1

2 2

,0 ,Φ ,
n n

i
s s

a s a s iv v i i N
s s
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Proof See Gambarelli (1990). � 

Let us redefine the average essentialities of the coalitions as follows: 

( )
( )

( )( ) { }( )
( )

( )

( )
( )

( )( ) { }( )
( )

( )

( )
( )

( )( ) { }( )
( )

( )

1 ,0

1

1 ,

1
1

1 ,

1,0 ,0

1
, ,1

1, ,1
1

n
s

F F
F j

j k S sj

n

F F
F j

j k S s ij

n
s

F F
F j

j k S s ij

a s v S s v kn
s

a s i v S s i v kn

a s i v S s i v kn
s

= ∈

−

= ∈ −

−
−

= ∈ +

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− = − −− ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+ = + −− ⎜ ⎟
⎝ ⎠−

∑ ∑

∑ ∑

∑ ∑

  s

  s
 

Consequently, adapting the relation (1) between the average essentialities: 

( ) ( ) ( ) ( )= − − + + ∀ ∈ ∀ = …,0 , , , , 1, ,F F Fna s n s a s i sa s i i N s n  

we can also express the coordinates of the Myerson value: 

( ) { }( ) ( ) { }( ) ( ) ( )−

= =

+ −
= + − +

−∑ ∑
1

1 2

, ,0μ
Fn nF

F F F
i

j s

v jv N a s i a sv v i
n n n s

 

By definition of graph-restricted game, it is obvious that in general if v  is 
a non-trivial weighted voting game, Fv  is a simple game in ( )0,1  normaliza-
tion too. 

In fact, since the components of one-element subsets are still one-element 
subsets, we have that if ⊆ 2NF  is a union stable set system, the coordinates of 
the Myerson value of such a game are:  

( )
( ) ( )−

=

+ −
= +

−∑
1

2

1 , ,0μ
n

F F
i

s

a s i a sv
n n s

 (4) 

Substantially, given a non-trivial weighted voting game [ ]≡ …1; , , nv q w w , a 
graph 

( )= ,G N E  and a union stable set system F , the corresponding graph-
restricted game is defined as follows: 
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( ) ( ) ( ) ( )FT C
∈

⎧ ⎫⎪ ⎪= ∈ ≥ ≠∅ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑# : if , 0F F
j F

j T

v S S w q C S v S  

otherwise. 
In (4), the average essentialities are given by 

( )
( )

( )
( )( )

( )
( )

( )
( )( )

1
1

1

1

1, # , :1
1

1
,0 # ,0 :

n
s

F j k
j k T

n
s

F j k
j k T

a s i S s i w qn
s

a s S s w qn
s

−
−

= ∈

= ∈

⎧ ⎫
+ = ∈ + ≥⎨ ⎬− ⎩ ⎭−

⎧ ⎫
= ∈ ≥⎨ ⎬

⎩ ⎭

∑ ∑

∑ ∑

F

F

T C

T C

 

From now on we will call 

( ) ( ) { } ± = ± ∩ ∀ ∈ ∪ ∀ = …, : , , 0 , 1, ,T s i S s i F i N s n  

Definition 5.8 If ( )= ,G N E  is a connected graph and ∈i N , the degree of i  
(deg( i )) is the number of vertices of G  which are incident with i . 

Obviously, given a graph G  and a graph-restricted game Fv , for every 
∈i N , 

( ) ( )

( ) ( )

1

2
1

2

deg( ) 1 , 1 if

deg( ) 1 , if

n

s
n

s

i s T s i n N F

i s T s i N F

−

=
−

=

= − ⋅ + + − ∈

= − ⋅ + ∉

∑

∑
 

where F  is the union stable set system on which the game is defined. 
Now we can decompose deg( i ) in sums of contributions coming from all 

coalitions containing the i -th player, the winning and the losing ones, i.e. we 
can define, for all = −2,..., 1s n : 

( ) ( )
∈

⎧ ⎫⎪ ⎪= − ⋅ ∈ + ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑,deg : 1 # ( , ) : jw s
j S

i s S T s i w q  
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( ) ( )
∈

⎧ ⎫⎪ ⎪= − ⋅ ∈ + <⎨ ⎬
⎪ ⎪⎩ ⎭

∑,deg : 1 # ( , ) : jl s
j S

i s S T s i w q  

respectively the number of winning and losing coalitions of F  containing the 
player i , so that 

( )
−

=

= − +∑
1

, ,
2

deg( ) 1 deg ( ) deg ( )
n

w s l s
s

i n i i  

if the grand coalition N  belongs to F . We can connect the notion of degree 
of a vertex of a graph to the average essentialities and consequently to the 
Myerson value. 

Proposition 5.9 If [ ]≡ …1; , , nv q w w  is a weighted voting game and Fv  is the 
corresponding F -restricted game on a stable set system F  associated to a 
graph = ( , )G N E , if for every ( )∈ +, \S S s i F , either ( ) =∅FC S  or no 
components of S  in F  are winning coalitions, then the Myerson value for 
the i -th player is: 

( )
( ) ( )

( )( ) s

− −

= =

= − + −− −
∑ ∑

1 1
,

2 2

deg1 ,0μ 11

n n
w sF

i
s s

ia sv nn n s s s
 (5) 

Proof Call ( ) ( )′ ± = ±, : , \S s i S s i F  and ( )′ ±,kS s i  its elements, ordered lexico-
graphically, for every { }∈ ∪ 0i N , and for all =1,...,s n , we have the following 
decomposition for ( )+,Fa s i : 

( )
( )

( )
( )( )

( )

( )
F

T S s,+i

T C

∈

′ +

= ∈

⎧ ⎫
∈ ∩ ≥⎨ ⎬

⎩ ⎭+ = −
−

⎧ ⎫
′∈ + ≥⎨ ⎬

⎩ ⎭+ −
−

∑

∑ ∑
,

1

# :
, 1

1

# , :

1
1

k
k T

F

S s i

j k
j k T

F w q
a s i n

s

S s i w q

n
s

 

Observe that if for every ( )′∈ +,S S s i  it is satisfied that ( ) =∅FC S  or if no 
components of S  in F  reach the winning quota q , the second summand 
vanishes, and by definition of deg ( ),w s i : 
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( )
( )

( )⎡ ⎤+ = ⎢ ⎥− −⎣ ⎦
−

,deg1, 1 1
1

w s
F

i
a s i n s

s
 

Consequently, the following representation for the Myerson value holds: 

( )

( )

( )( )
( )

( ) ( )

( )( )
 

  s

−

=
− −

= =

−− −−
= +

−

= − + ∀ ∈−− −

∑
∑ ∑

,

1

2
1 1

,

2 2

deg
,01 111μ

deg1 ,0 ,11

w s
F

n

i
s
n n

w sF

s s

i
a sn ss

v
n n s

ia s i Nnn n s s s

 � 

Example 5.10 Consider the 5-person weighted voting game v  with =kw k  
for =1,2,3,4,5k  and majority quota = 8q , and the relative graph-restricted 
game on the union stable set system 

{ } { } { } { } { }{ }= 1,2 , 2,4 , 1,2,4 , 1,2,3,5 , 2,3,4,5 ,F N  

which is defined by: 
( ) = ∈1 ifFv S S F  and ( )8; 0F

jj S
w v S

∈
≥ =∑ ∈if S F  

and ( )8; 0F
jj S

w v S
∈

< =∑  otherwise. 

Obviously, all the 2-player coalitions have characteristic value 0, just like 
{ }1,2,4 , the only 3-player coalition belonging to F . The 3-player coalitions 
whose components belong to F , consequently, have characteristic value 0 
too, and besides the remaining 3-player coalitions have empty collection of 
components. 

As far as the 4-player coalitions are concerned, the two of them appearing 
in F  have characteristic value 1, the remaining ones have the following 
collection of components: 

{ }( ) { } { }( ) { }( )
{ }( ) { } { }( ) { }( )
{ }( ) { }( )

1,2,3,4 1,2,4 1,2,3,4 1,2,4 0

1,2,4,5 1,2,4 1,2,4,5 1,2,4 0

1,3,4,5 1,3,4,5 0

F
F

F
F

F
F

C v v

C v v

C v

= ⇒ = =

= ⇒ = =

=∅⇒ =

 

hence the hypotheses of Proposition 5.9 are satisfied. We can perform the 
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calculation of the Myerson value either by means of the traditional formula 
or by applying (5). It is straightforward to verify that 

( ) ⎛ ⎞= ⎜ ⎟
⎝ ⎠

1 3 3 1 3μ , , , ,
20 10 10 20 10

v  

On the other hand, in formula (5) we have that 

( )
( )

( ) ( )
( )

= = = = =
1 1 2 22,0 , 3,0 0, 4,05 510 5
2 4

F F Fa a a  

so the first summand for all the coordinates of ( )μ v  is –1 5 ; in order to 
calculate deg ( ),w s i  for all ∈i N  and = 2,3,4s , it is sufficient to see how many 
winning coalitions of size s  including the i -th player are contained in F . 
One can easily notice that 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )

= = =
= = = ∀ ∈
= = ⋅ =
= = = ⋅ =

,2 ,2 ,2

,2 ,2 ,3

,4 ,4

,4 ,4 ,4

deg 1 deg 2 deg 4 0
deg 3 deg 5 1, deg 0
deg 1 deg 4 3 1 3
deg 2 deg 3 deg 5 3 2 6

w w w

w w w

w w

w w w

i i N  

So the coordinates of the Myerson value are:  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2

3 4

5

1 3 1 1 6 3μ ; μ4 45 20 5 104 3 4 34 4
1 6 3 1 3 1μ ; μ4 45 10 5 204 3 4 34 4
1 6 3

μ 45 104 3 4

v v

v v

v

= − + = = − + =
⋅ ⋅ ⋅ ⋅

= − + = = − + =
⋅ ⋅ ⋅ ⋅

= − + =
⋅ ⋅

 

Remark 5.11 The hypotheses for the application of (5) are undoubtedly 
strict, but just like the representation (2), interesting profits from its usage 
might be drawn. In fact, to compute a Myerson value the needful data are 
only the value of the grand coalition (which is not necessarily 1), the − 2n  
average essentialities ( ),0Fa s , and all the ( )− ,( 2) deg w sn n i , so only 

( )− + −2 2n n n + = − −21 1n n  values, instead of all the − −2 1n n  characteris-
tic values of any TU-game in which all one-player coalitions have null value. 
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6. Further developments 

The average essentialities of coalitions provide a useful instrument for the 
expression of power indices, and sometimes bring computational advantages, 
as we have shown in Remarks 3.3 and 5.11 and in Example 4.2. Anyway, we 
only sketched some outlines of algorithms based on these formulas. It would 
be interesting to check their actual efficiency by writing down the complete 
algorithms precisely and implementing them. 

Other possible developments concern the links between the Myerson 
value and the degrees of the single players: specific properties of graphs may 
help in order to simplify the expression of that value also in cases different 
from the one analyzed in Proposition 5.9. 
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