Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

195 JUe|d SPUSLL

BGOIA0

g
g
)
=

4

B System:
_s}vitch” model

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Cell

P RESS

Cytokinin—auxin crosstalk

Laila Moubayidin, Riccardo Di Mambro and Sabrina Sabatini

Dipartimento di Genetica e Biologia Molecolare, Laboratory of Functional Genomics and Proteomics of Model Systems,

Universita La Sapienza - P.le Aldo Moro, 5 - 00185 Rome, Italy

Post-embryonic plant growth and development are
sustained by meristems, a source of undifferentiated
cells that give rise to the adult plant structures. Two
hormones, cytokinin and auxin, are known to act
antagonistically in controlling meristem activities. Here,
we review recent significant progress in elucidating the
molecular mechanisms through which these hormones
interact to control specific aspects of plant development.
For example, in the root meristem of Arabidopsis
thaliana, cytokinin promotes cell differentiation by
repressing both auxin signalling and transport, whereas
auxin sustains root meristem activity by promoting cell
division. The coordinated action of these two hormones
is essential for maintaining root meristem size and for
ensuring root growth.

Cytokinin and auxin: master regulators of plant
development

Cytokinin and auxin have long been recognized as crucial
signalling molecules controlling plant growth and devel-
opment. In 1957, it was shown that root and shoot de-
velopment in tobacco pith tissue cultures depends on the
cytokinin:auxin ratio, and that organ differentiation can be
regulated by changing the relative concentrations of these
two growth factors in the culture medium: high levels of
cytokinin supported shoot formation and high concen-
trations of auxin promoted rooting, whereas, at equal
concentrations of cytokinin and auxin, the tissue tended
to grow in an unorganized fashion [1]. In this classic paper,
the concept of hormonal control of organ formation was
suggested; however, little is still understood about the in
vivo significance of these tissue culture experiments and of
the molecular mechanisms through which the two hor-
mones act in concert to exert these effects. In addition,
the mode of interaction between cytokinin and auxin often
depends upon the plant species and organ being studied.
This has hampered the elaboration of a general model for
the control of plant growth and development by these
hormones.

Here, we summarize the state-of-the-art concerning
cytokinin and auxin biosynthesis, transport and signalling.
We also focus on recent progress in understanding the
molecular mechanisms through which these hormones
interact to control plant organ development.

Cytokinin biosynthesis, transport and signalling

Cytokinins came to light because of their ability to promote
cell division in tobacco tissue culture [2] and, since their
discovery, these N-substituted adenine-based molecules
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have been associated with important developmental roles,
including shoot and root development [3,4]. Isopentenyla-
denine (iP), trans-zeatin (tZ) and dihydrozeatin (dZ) are
the predominant cytokinins found in higher plants [5,6]
and their activity in planta is thought to be controlled by a
fine balance between synthesis and catabolism.

The rate-limiting step of cytokinin biosynthesis in Ara-
bidopsis thaliana is catalyzed by the ATP/ADP-isopente-
nyltransferase (AtIPT) gene family [6]. Expression
patterns of IPT genes indicate that cytokinin is produced
at various sites in the plant, including roots, shoots and
immature seeds [7]. Most metabolic cytokinin inactivation
depends on the activity of the cytokinin oxidase/dehydro-
genase (CKX) genes, which catalyze the irreversible degra-
dation of cytokinins [6]. These genes, as well as IPT genes,
show a spatially and temporally regulated pattern of
expression during Arabidopsis development [7,8], confirm-
ing a fine regulation of cytokinin turnover.

By contrast the molecular basis of cytokinin transport is
still unknown. The spatial expression patterns of cytokinin
metabolic genes and the unequal distribution of tZ- and iP-
type cytokinins in vascular transporting systems suggest
that cytokinins act as both local and long-distance signals.
Indeed, evidence for cytokinin acting as long distance
signal [9,10] and local signal mediators [4,11] is available.
Plants respond to cytokinin via a two-component signalling
pathway. According to the current model in Arabidopsis,
three ARABIDOPSIS HIS KINASE, AHK2, AHK3 and
AHK4/WOL1/CRE1 [originally independently isolated as
WOODENLEG 1 (WOL1) and CYTOKININ RESPONSE 1
(CRE1)] act as transmembrane cytokinin receptors [12-14]
(Figure 1). These receptors transfer the signal via phos-
phorelay to the nucleus, activating two classes of primary
ARABIDOPSIS RESPONSE REGULATORS (ARRs)
denominated type-A and type-B response regulators
[15,16] (Figure 1). Type-B ARRs act as transcription factors
[14,17] and induce the transcription of cytokinin primary
response genes, including type-A ARRs [14,16]. Whereas
type-B ARRs are positive regulators of the cytokinin
response [14,17], type-A ARRs are negative regulators of
cytokinin signalling [14,16] (Figure 1). Thus, as in the case
of auxin signal transduction, the cytokinin effectors net-
work is regulated by a negative feedback loop to control the
magnitude of subsequent responses (Figure 1). Recently,
early components of the cytokinin response pathway have
been discovered: the CYTOKININ RESPONSE FACTORS
(CRFs), which belong to the AP2 Arabidopsis gene family
and are transcriptionally induced through the cytokinin
two-component signalling pathway, in tandem with the
type-B ARRs. It has been proposed that the activated
CRFs, together with the activated type-B ARRs, mediate
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Figure 1. Cytokinin and auxin signalling interactions.

Cytokinins (red molecules) are perceived by the AHK receptors, which act as a
histidine kinase. The phosphoryl group (P) on the His of the receptor is transferred
via a conserved Asp residue on its receiver domain to a conserved His on an
authentic ARABIDOPSIS HIS PHOSPHOTRANSFER PROTEIN (AHP) in the
cytoplasm (yellow arrows indicate the phosphotransfer). The genome of
Arabidopsis thaliana encodes for five authentic AHPs (AHP1-AHP5), which move
into the nucleus and transfer the phosphoryl group to the type-A or type-B ARR
(ARABIDOPSIS RESPONSE REGULATORS) cytokinin primary response gene [14].
The type-B ARRs act as transcription factors and their phosphorylation activates
the transcription of the cytokinin-regulated genes, including the type-A ARRs
(cytokinin response ON). Phosphorylated type-A ARRs activate negative regulation
of cytokinin signalling through as yet unknown mechanisms (cytokinin response
OFF) [14]. Auxin (blue molecules) can freely diffuse across the plasma membrane
(blue broken arrows), and is also actively taken up from the apoplast by the action
of influx transporters AUX/LAX (AUXIN-RESISTANT MUTATION 1/LIKE AUX1) and
actively transported out of the cell by auxin efflux carriers, the PIN proteins. Auxin
flux direction (solid blue arrows) depends on the PIN subcellular asymmetric
localization [31]. When concentration of auxin in the cell is low, the Aux/IAA (auxin/
indole-3-acetic acid) proteins heterodimerize with the ARF (AUXIN RESPONSE
FACTOR) transcription factors, repressing the transcription of the auxin-response
genes (auxin response OFF) [23]. At high auxin concentrations, auxin binds to the
TIR1 (TRANSPORT INHIBITOR RESPONSE 1) receptor, stimulating the interaction
of the Aux/IAAs proteins with the SCF™'®" ubiquitin-ligase complex (SKP1, CDC53/
CULLIN, F-box), thus promoting their degradation by the 26S proteasome [23]. The
consequent reduction in levels of Aux/IAA proteins releases the ARFs from their
inhibition, inducing the expression of auxin-responsive genes (auxin response ON)
[23]. The type-B ARRs can activate transcription of the Aux/IAA genes suppressing
auxin signalling [44], whereas as yet unidentified auxin signalling components
suppress cytokinin signalling, activating type-A ARRs [55].

cytokinin-regulated gene expression, by affecting an over-
lapping set of target genes [18].

However, little is known about how the cytokinin sig-
nalling components described above control specific devel-
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opmental output. Cytokinin signalling and perception,
mediated by the AHK4/CRE1 receptor and the AHP6
histidine phosphotransfer protein, are necessary for vas-
cular tissue development [19], whereas activation of the
type-B transcription factor ARR2 by the AHKS receptor is
necessary to control leaf longevity in Arabidopsis [20].
Furthermore, it has been shown that, in the root meristem,
cytokinin perceived by an AHK3/ARR1, AHK3/ARR12 two-
component signalling pathway acts in specific developmen-
tal domains to control cell differentiation rate, thus
controlling root meristem size and root growth [4].

Auxin biosynthesis, transport and signalling

Auxin is the most studied plant hormone and has been
shown to be involved in controlling fundamental aspects of
plant development, such as cell fate determination, cell
division and cell polarity [21-23]. The exact sites of auxin
biosynthesis in the plant are unknown, whereas molecular
components of the auxin biosynthesis pathway have been
identified (reviewed in Ref. [24]). Among these molecular
components, the YUCCA (YUC) gene family is the best
characterized and encodes flavin monooxygenase-like
enzymes that are necessary for the rate-limiting conver-
sion of tryptamine into N-hydroxyl-tryptamine [25]. The
overexpression of YUC genes and loss-of-function of
multiple yuc mutants show many developmental defects
that correlate well with the amount of auxin overproduc-
tion and reduction, respectively [26,27]. Interestingly, yuc
multiple mutants are not rescued by exogenous auxin,
demonstrating that spatially and temporally regulated
auxin biosynthesis by the YUC genes is essential for
correct development [26].

From its sites of biosynthesis, auxin is actively trans-
ported by influx and efflux carrier proteins to specific
tissues, where it triggers a signalling cascade resulting
in specific developmental responses. In Arabidopsis, the
most-studied auxin transporters are the PIN genes, which
form a small family of eight members, most of which
appear to facilitate cellular auxin efflux [28] (Figure 1).
Members of the PIN protein family are homologous and
functionally redundant, as indicated by the increasingly
severe phenotypes of multiple pin mutants [29,30]. The
most distinctive aspect of PIN proteins is their asymmetric
localization within auxin transport-competent cells [31].
The polarity of PIN localization correlates well with the
direction of auxin transport and with the local accumu-
lation of auxin in adjacent cells [22], suggesting that PIN
polarity determines the direction of intercellular auxin
flow (Figures 1,2).

Other probable auxin transporters in Arabidopsis
belong to the multidrug resistance-like (MDR) p-glyco-
protein (PGP) family of membrane proteins. In most cases,
PGP proteins are localized within cells without pronounced
asymmetric distribution, but, in specific cases, polar distri-
bution has also been observed. Interestingly, in heter-
ologous, systems such as yeast or mammalian HeLa
cells [32], some PGPs are capable of transporting different
auxins across the plasma membrane out of (PGP1) or into
(PGP4) the cell [33,34].

In addition to PIN- and MDR-type auxin transporters, a
family of putative auxin influx carriers has been identified
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Figure 2. Cytokinin and auxin crosstalk during root meristem size determination.
Longitudinal view of the Arabidopsis root meristem, where the stem cell niche
(STN) [48], the proximal meristem (PM), the elongation differentiation zone (EDZ)
and the transition zone (TZ) can be identified [4]. The TZ encompasses the
boundary between the PM and the EDZ. The TZ is different for each cell type,
giving a jagged shape to the boundary between dividing and expanding cells.
Black arrowhead indicates the cortex tissue file TZ. Dark-green arrows represent
PINs-mediated auxin flux direction, and purple labelling represents the cytokinin
biosynthesis gene IPT5 (ATP/ADP-isopentenyltransferase 5) expression. At the
vascular tissue TZ, cytokinin-mediated activation of the SHY2 (SHORT
HYPOCOTYL 2) gene, through the AHK3/ARR1 two-component signalling
pathway, leads to PIN1, PIN3 and PIN7 downregulation and cell differentiation
[44]. By contrast, auxin mediates SHY2 protein degradation through the SCF™'R!
complex, thus sustaining PINs activity and cell division [44]. The SHY2 negative
control on auxin transport on the one hand, and of cytokinin biosynthesis (through
IPT5 induction) on the other, confer robustness to the cytokinin-auxin feedback
loop regulation [44]. In post-embryonic STN (cells highlighted in yellow), auxin
might repress cytokinin signalling activating type-A ARRs (blue broken arrow),
prompting cell division [55].

in Arabidopsis. Specifically, AUX1 (AUXIN-RESISTANT
MUTATION 1) and its related LAX (LIKE AUX1) proteins
[35,36] are suggested to be involved in active cellular auxin
uptake that is thought to occur in addition to diffusion [36]
(Figure 1). Auxin influx and efflux carriers finely regulate
auxin distribution in plant tissues and organs [31]. For
example, in the root meristem, the PIN genes are respon-
sible for accumulating auxin in a distal position and this
auxin maximum was demonstrated to be instructive for
patterning cell fate and cell polarity [21]. Recent use of
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multilevel computational modelling of auxin diffusion and
permeability demonstrated that a robust auxin maximum
and an auxin gradient can be maintained in the root
meristem and that the establishment of this gradient
can have instructive functions in patterning and meristem
zonation [37]. In this model, the main players are the
polarly localized PIN proteins, which are necessary and
sufficient to produce the auxin maximum and gradient
[37].

As it reaches its site of action, auxin is perceived by
receptors of the TRANSPORT INHIBITOR RESPONSE 1
(TIR1) family [38,39]. TIR1 encodes for an F-box subunit of
the ubiquitin ligase complex SCFT'R! (SKP1, CDC53/
CULLIN, F-box); when auxin binds to the TIR1 receptor,
it stabilizes the interaction between TIR1 and the AUXIN/
INDOLE-3- ACETIC ACID (Aux/IAA) proteins [40]
(Figure 1). This interaction results in Aux/IAA ubiquitina-
tion and subsequent 26S-proteasome mediated degra-
dation (Figure 1). The Aux/IAA proteins act as auxin-
response inhibitors by forming heterodimers with the
ARF (AUXIN RESPONSE FACTOR) transcription factors,
thereby preventing activation of auxin-responsive genes
[41] (Figure 1). The TIR1-mediated Aux/IAA protein degra-
dation releases the ARFs from their inhibitory effect,
prompting activation of the auxin-responsive genes, among
which are also the Aux/IAA genes [23,42] (Figure 1).
Degradation of the Aux/IAA proteins and consequent
ARF activity depends on auxin concentration: high levels
of auxin cause Aux/TAA degradation, whereas, at low auxin
levels, these proteins are stable and interact with the ARF's
[41] (Figure 1). This mechanism, together with regulated
stability of Aux/IAA proteins, provides a self-regulatory
loop for auxin-induced gene expression [23].

Cytokinin and auxin crosstalk

During the past few years, much pharmacological, genetic
and transcriptomic evidence has accumulated that
confirms the importance of cytokinin-auxin interactions
during plant development. Auxin controls cytokinin bio-
synthesis [43] via the specific activation of IPT5 and IPT7
[7] and most auxin-resistant mutants also show changes in
their cytokinin sensitivity [44,45]. Moreover, several tran-
scriptome studies have shown that cytokinin and auxin
mutually regulate their signalling factors and/or their
metabolism [46,47]. Nevertheless, only recently have
researchers begun to understand the molecular mechan-
isms through which these two hormones interact to pro-
duce a specifidevelopmental output.

For example, cytokinin-auxin antagonistic interactions
have been shown to be fundamental in controlling root
development [44] and post-embryonic root growth is sus-
tained by the root meristem (Figure 2). In Arabidopsis,
stem cells localized in a stem cell niche in the apex of the
root meristem [48] (Figure 2) generate daughter cells,
which undergo additional division in the proximal meris-
tem, and differentiate at the distal transition zone (TZ)
that encompasses the boundary between dividing and
differentiating cells of the different cell files [4]
(Figure 2). For meristem maintenance and, therefore, to
enable continuous root growth, the rate of cell differen-
tiation must equal the rate of generation of new cells.
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Cytokinin and auxin have a crucial role in the control of
this balance.

It has recently been shown that cytokinin controls the
rate of meristematic cell differentiation, thus contributing
to the determination of the Arabidopsis root meristem size
[4]. Application of cytokinin causes a decrease in root
meristem size because of a progressive decrease in mer-
istematic cell number, and cytokinin biosynthesis and
signalling mutants display a larger root meristem owing
to an accumulation of meristematic cells [4]. Furthermore,
experiments of tissue-specific depletion of cytokinin, and
the expression pattern of different cytokinin signalling
genes, demonstrate that cytokinin specifically acts at the
vascular tissue of the root meristem transition zone, where
an AHK3/ARR1, AHK3/ARR12 two-component signalling
pathway perceives cytokinin and controls the differen-
tiation rate of all the other root cells [4] (Figure 2).

Experiments involving application of exogenous auxin
(resulting in an increase of meristem size) and the effects of
mutations in the PIN auxin efflux facilitators (which pro-
duce a shorter meristem compared with wild-type plants)
are consistent with a role of auxin in controlling cell
division [4,29]. It was therefore suggested that the balance
between the antagonistic effects of cytokinin, which med-
iates cell differentiation at the transition zone, and auxin,
which mediates cell division, establishes the size of the
Arabidopsis root meristem [4]. The nature of this antagon-
istic interaction has recently been unveiled, showing that
the balance between cell differentiation and cell division
necessary for controlling root meristem size and root
growth is the result of the crosstalk between cytokinin
and auxin. This occurs through a simple regulatory circuit
converging on the SHY2 (SHORT HYPOCOTYL 2) gene, a
member of the auxin repressor Aux/IAA gene family [44]
(Figure 2).

Experiments using chromatin immunoprecipitation
demonstrate that the primary cytokinin-response tran-
scription factor ARR1 directly binds and activates the
promoter of SHY?2 specifically at the vascular tissue tran-
sition zone [44]. In wild-type roots, transcription of SHY2 is
enhanced by cytokinin application, whereas no upregula-
tion was observed when cytokinin was added to arrl
mutant roots [44]. Furthermore, the shy2-31 loss-of-func-
tion mutant allele [49] displays larger root meristems,
mimicking the effects of auxin application, as also observed
in cytokinin signalling mutants [4,44]. By contrast, the
shy2-2 gain-of-function mutant allele (which has a non-
degradable version of the SHY2 protein [50]) has smaller
meristems, mimicking the effects of cytokinin application
[4,44]. These results indicate that the SHYZ2 protein is both
necessary and sufficient for the cytokinin-mediated control
of root meristem size.

Activation of SHY2 results in repression of auxin sig-
nalling that negatively regulates the auxin transport facil-
itators PIN genes [44] (Figure 2). Accordingly, PIN mRNA
levels are low in the shy2-2 gain-of-function allele, whereas
in the shy2-31 loss-of-function allele, the domain of expres-
sion of the PIN genes is expanded specifically at the
vascular transition zone [44]. Conversely, auxin mediates
degradation of the SHY2 protein [41,44,50], thus sustain-
ing the activity of the PIN genes, and positively regulating
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root meristem size [44] (Figure 2). Hence, application of
auxin to the shy2-2 gain-of-function mutant allele did not
trigger an increase in the PIN expression or root meristem
size [44].

SHY2 also controls cytokinin biosynthesis (Figure 2), as
the expression of the IPT5 gene in the shy2-31 and shy2-2
mutants was shown to be higher and lower, respectively,
than in wild-type plants [44]. Thus, cytokinin and auxin
antagonistically interact at the vascular tissue of the
transition zone to balance cell differentiation with cell
division (and to determine root meristem size) by control-
ling in opposite ways the abundance of the SHY2 protein
[44] (Figure 2). Cytokinin reduces auxin response by acti-
vating (via the AHK3/ARR1 two-component signalling
pathway) transcription of the SHY2 gene; the SHY2
protein, in turn negatively regulates the expression of
the PIN genes [44] (Figure 2). The resulting redistribution
of auxin leads to cell differentiation of all the other neigh-
bouring tissues, thus reducing root meristem size. Con-
versely, auxin controls root meristem growth by directing
degradation of the SHY2 protein, thus sustaining the
activity of the PIN genes and cell division [44]
(Figure 2). The SHY2 protein negatively controls auxin
transport on the one hand and cytokinin biosynthesis on
the other, thus conferring robustness to the auxin cytoki-
nin feedback loop (Figure 2).

Beyond the maintenance of the root meristem, the
negative effect of cytokinin on auxin signalling and trans-
port might be of general significance in explaining the
antagonistic interaction of cytokinin—auxin. The two hor-
mones are known to have opposite effects on de novo auxin-
induced organogenesis [51], lateral root formation [52] and
leaf position determination [53,54]. In all these processes,
the cytokinin—auxin antagonistic effects can be explained
by a negative control of cytokinin on the PIN-dependent
auxin distribution.

The cytokinin—auxin antagonistic interaction is also cru-
cial for specifying the embryonic root stem cell niche during
Arabidopsis embryogenesis [55]. The Arabidopsis embryo-
nic root stem cell niche is initiated by the specification of a
single cell, the hypophysis. By combining a new visualiza-
tion tool for cytokinin two-component-output sensor and
inducible genetic manipulations, it has been shown that
an auxin maximum at the hypophysis activates transcrip-
tion of the type-A ARR7 and ARR15 genes, two negative
regulators of cytokinin signalling [55]. The consequent sup-
pression of cytokinin output is necessary to enable normal
embryonic stem cell niche formation. Accordingly, lack of
both the ARR7 and ARR15 genes prevents the establish-
ment of a normal embryonic root [55]. Thus, to specify root
stem cell niche, auxin mediates cytokinin signalling sup-
pression [55]. It is tempting to speculate that post-embryo-
nic root growth depends on the coordinated activities
of the cytokinin-mediated auxin-signaling suppression at
the transition zone promoting cell differentiation, and on the
auxin-mediated cytokinin-signalling suppression at the
stem cell niche, stimulating cell division (Figure 2).

Concluding remarks and prospects
Important advances have been made in our understanding
of the crosstalk between cytokinin and auxin. The root



meristem appears to be maintained and limited by differ-
ent ratios of the two hormones in the meristem and at the
borders of the meristematic zone. Auxin induces cell
division in the meristem, whereas cytokinin controls
the switch from meristematic to differentiated cell sup-
pressing auxin signalling and transport at the transition
zone. Thus, their antagonistic interaction is important for
the formation and maintenance of the root transition
zone. An important point to be clarified is whether the
same mechanisms are also involved in determining the
boundary of other organs; that is, whether this type of
control could explain the positioning of the shoot meris-
tem border as well as the growth of lateral organ. With the
large data sets of hormone-responsive genes collected
from genomic studies in different systems at hand, the
search for the involvement of this remarkably flexible and
simple circuit in different developmental contexts can
now begin.
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