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Abstract. A class of ranked posets {(Dh
k,�)} has been recently defined in order to analyse, from

a combinatorial viewpoint, particular systems of real homogeneous inequalities between

monomials. In the present paper we focus on the posets D2
k, which are related to systems of the

form {xa xb *abcd xcxd: 0 e a, b, c, d e k, *abcd 2 {<, >}, 0 < x0 < x1 < . . .< xk}. As a consequence of

the general theory, the logical dependency among inequalities is adequately captured by the so-

defined posets W k
2 ; <

� �
. These structures, whose elements are all the D2

k’s incomparable pairs, are

thoroughly surveyed in the following pages. In particular, their order ideals – crucially significant

in connection with logical consequence – are characterised in a rather simple way. In the second

part of the paper, a class of antichains Pk � W k
2

� �
is shown to enjoy some arithmetical properties

which make it an efficient tool for detecting incompatible systems, as well as for posing some

compatibility questions in a purely combinatorial fashion.
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1. Introduction

Certain monomial homogeneous inequalities involving sequences of real,

positive numbers (x0 < x1 < . . . < xk) were studied from a combinatorial

viewpoint in [7], so as to adequately capture the notions of logical consequence

and system satisfiability. In particular, for any fixed integer h Q 2 all possible

satisfiable systems of the form {x0
ax2

b
*a,b x1

a + b: a, b 2 N+, a + b e h, *a,b 2 {<,

>}} were listed. Such result, as well as other achievements in the cited paper,

were obtained by analysing the so-defined posets (Dh
2,�) and W k

2 ; <
� �

, deeply

related to the above homogeneous inequalities. In the present paper, we will

instead focus on the posets Wk
2; <

� �
. The general definitions of (Dh

k ,�) and

Wk
h; <

� �
are the following (the canonical basis of Rk+1 will be denoted by

{e 0 = (1, 0, . . . , 0), e1, . . . , ek = (0, . . . , 0, 1)}; when using, any symbol e i, the

dimension should be clear from the context).
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DEFINITION 1.1. If h 2 N+ and k 2 N, the symbol Dh
k stands for the set of (k +

1) -tuples u = (u0, . . . , uk) such that ui 2 N for all i and
P

i ui = h. A partial

ordering � over Dh
k is then defined as the reflexive and transitive closure of the

relation�* such that u�* u0 , 9i < k: ui = ui
0 + 1, ui + 1 = ui + 1

0 j1 and uj = uj
0

otherwise. Furthermore,W k
h stands for the set u; vð Þ 2f Dk

� � Dk
� : 2 � � � h; u

6� v 6� u; uivi ¼ 08ig. It is endowed with a partial ordering <, namely the

reflexive and transitive closure of <* defined through : (u, v) <* (u 0, v 0), 9i <

k : (u j u 0, v j v 0 ) 2 {(eijei + 1, 0), ( 0, jei + ei + 1), (ei, e i + 1), (jei+1,

je i)}.

Among other things, it turns out that the ordering � is the intersection of all

the weight orders < r0 < r1 <...< rk
restricted to Dh

k (notable connections between

monomial orders and weight orders have been pointed out in [4]. See e.g. [1] for

a detailed account of monomial orders as employed in Grobner bases theory).

Each poset Dh
k appears to be a suitable environment for effectively managing all

inequalities of the form
Q

0�i�k x
ui

i <
Q

0�i�k x
vi

i , with u, v 2 Dh
k, from the

viewpoint of logical relationships. Following [7], in the sequel we will shortly

denote the above inequality by �( u, v ) (x) or simply �( u, v ). Since u � v m u if

and only if �( u, v )(q0, . . . , qk) is true for all positive real numbers q0 < q1 < . . . <

qk ([7], Theorem 2.3), it is possible to define the following class of linearisations

of (Dh
k, �).

DEFINITION 1.2. A �-linearisation of (Dh
k, �) is an extension of � to a total

ordering, obtained by defining for each incomparable pair (u, v )

u� v,
Y

0�i�k

q
ui

i <
Y

0�i�k

q
vi

i ;

where q is a fixed increasing sequence of positive real numbers, yielding strict

inequalities for all incomparable pairs.

Therefore, a �-linearisation can be interpreted as a consistent selection of one

inequality between �( u, v ) and �( v , u ) for every u; vð Þ 2 W k
h . We observe that a

concept similar to the �-linearisation was introduced and studied by Maclagan

[3] in connection with binary strings.

Essentially because W 2
h splits into two disjoint totally ordered sets, it is not

hard to obtain a complete description of all �-linearisations of (Dh
2,�) for any h.

The pertinent result runs as follows.

THEOREM 1.3 ([7], Corollaries 3.2, 3.3). The �-linearisations of (Dh
2, �) are

indexed by the rational numbers of the form b/a, with b Q 0, a > 0, a + b e hj1.

In particular, there are 2
P

1e iehj1 �(i) such linearisations, where � is the Euler

function. The system associated to any fixed b/a is {x0
a x2

b < x1
a+b, x0

A x2
B > x1

A+B},

where B/A is the smaller admissible number following b/a in (Q+
? {1}, <).

The infinite case means that A = 0, B = 1 and, consequently, that the second

inequality becomes trivial.
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Evidently, the question settled in [7] is a particular case of the classification

problem for systems
�

x
u0

0 xu1

1 � � � x
uk

k * u;vð Þx
v0

0 xv1

1 � � � x
vk

k : u; vð Þ 2 Wk
h;*u;v 2 <;>f g;

x0 < x1 < . . . < xkg for any fixed h, k Q 2. The general case seems much

harder to deal with. The best relevant result achieved in [7] is a characterisation

of logic consequence between any two given inequalities, in terms of a relation

(not necessarily an ordering) defined overW k
h . As the next definition shows, such

relation generalises the partial ordering <. Anyway, in some cases it collapses to <.

DEFINITION 1.4. Let L; M 2 W k
h . L is weakly preceding M (L <w M) if there

exist 2n positive integers {ai, bi: 0 e i e nj1} and n +1 elements {L = L0,

L1, . . . , Ln = M} such that ai Li < bi Li+1 for all i < n, in some W k
H ; <

� �
large

enough.

The announced characterisation is the following.

THEOREM 1.5 ([7], Theorem 4.3). �M Á �L if and only if L <w M.

If k = 2 the relation <w coincides with <. As already mentioned, it partitions

W2
h into two chains, thus allowing a complete understanding of all logical

dependencies and all compatible systems for any fixed h. Also in the present

case, although the structure of W k
2 ; <

w
� �

is not as elementary as in the k = 2

cases, <w does reduce to <, and < itself can be fully described. This is indeed the

main concern of Section 2. In particular, Wk
2 is shown to split into two

isomorphic posets þW k
2 ; �W k

2 which can be thoroughly understood. Every order

ideal of W k
2 ; <

� �
is subsequently detected, which is equivalent to detecting all

logical consequences of any fixed inequality �L. Although the �-linearizations of

D2
k remain unprobed, the satisfactory knowledge of W k

2 with all its order ideals

seems encouraging.

The results of Section 2 pave the way for the analysis of compatibility issues

related to subsets of any fixed W k
2 ; <

� �
. Availing of this opportunity, in Section

3 we consider a particular maximal antichain Pk � þW k
2 and the corresponding

sub-antichains Pu ¼ Pk \ þW u
2

�
þW u�1

2

� �
with 2 e u e k. These sets possess a

quite natural combinatorial meaning and an uncommon arithmetical expressive-

ness. A basic tool for our investigation is the splitting of Pk into two subsets

Qk ¼ [uQu; Qk ¼ [uQu, with respect to the odd or even position of the

elements in a prescribed lexicographical ordering over Pk . We also provide a

formula which characterises the parity of any given element. By arithmetically

manipulating the Pk’s in two specific instances, we show that certain inequalities

are implied by some other inequalities and, consequently, that certain systems are

not satisfiable. In order to account more formally and technically for the above

facts, we start Section 4 by proving four similar properties of the antichains {Pu}.

In each of the four claims j which refers to a particular congruence class of u

(mod 4) j it is shown that the alternate sign summation, with respect to the

position parity, over all elements of some fixed level Pu produces a particular
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pattern depending on the congruence class. This pattern can be easily displayed

using certain summations of vector pairs. The above properties are subsequently

exploited to prove, among other things, an incompatibility statement involving

P8��3 and P8� for any � Q 2. In more details, we construct an incompatible

system by collecting all the inequalities related to P8��3 [ P8� (reversing all-

inequalities related to Q8��3 [ Q8�), and adding some prescribed sets of other

inequalities of the form �L, with L 2 W 8�
2 .

We recall that inference rules involving linear inequalities (some of which are

the logarithmic analogue of the homogeneous inequalities studied in this paper)

have been extensively surveyed over the last 50 years. Nevertheless, specific

research areas such as the present one seem – as far as we know – beyond the

reach of classical results on linear inequalities (see for example the pioneering

paper of Kuhn [2] and the books [6, 9]). Finally, we remark that Snellman [5] has

analysed similar posets from a different viewpoint.

2. The Structure of W <ð ÞWk
2;<
��

In the present section we provide a detailed description of W k
2 ; <

w
� �

and of its

order ideals. Once proved the structure results (Proposition 2.1 and Lemma 2.3)

we will characterise all order ideals in a cheap way.

PROPOSITION 2.1. Let L = (er + e s, et + eu), M = (er 0 + e s 0, e t 0 + e u 0) be

elements of W k
2 . Then, L <w M if and only if r e r 0, s e s 0, t Q t 0, u Q u 0. In

particular, <w reduces to < and L, M are incomparable whenever (rj t)(r 0j t 0)
< 0.

Proof. The if part can be easily obtained by the very definition of <w. The

only if part is proved as follows. Let et + eu j (er + es) =
P

0 e i e kj1 ai(e i+1 j

e i) and et 0 + e u 0 j (er 0 + e s 0) =
P

0 e i e kj1 ai
0(e i+1 j ei) for some integers

{ai}, {ai
0}. Since �M Á �L, Lemma 4.6 of [7] guarantees the existence of some q

2 Q+ such that qai Q ai
0 for all i. Notice that (a0, . . . , akj1) and (a0

0 , . . . , ak j 1
0 )

may have only the two forms (possibly the same)

0; 0; . . . ; 0; 1; 1; . . . ; 1; 0; 0; . . . ; 0;�1;�1; . . . ;�1; 0; 0; . . . ; 0ð Þ;
0; 0; . . . ; 0;�1;�1; . . . ;�1; 0; 0; . . . ; 0; 1; 1; . . . ; 1; 0; 0; . . . ; 0ð Þ;

where each of the six sequences of zeroes needs not occur. Using the inequalities

{qai Q ai
0} we deduce that if the vector a is of the first form, then a 0 is of the first

form as well, whence the four claimed inequalities follow with few difficulties.

Analogously, if a is of the second form then also a 0 is of the second form, and

the inequalities can be obtained as in the above case. The relation defined by

these inequalities is a partial ordering contained in or equal to <. Therefore, it

must coincide with <. Finally, (rj t) (r 0j t 0) is negative if and only if a, a 0

have distinct forms, and the above discussion implies that the forms must

coincide if L and M are comparable. Ì
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Let þW k
2 and �W k

2 denote the sub-posets of W k
2 made up of those elements

(er + es, et, eu) having r > t and r < t respectively. These two posets are

isomorphic, while on account of Proposition 2.1 W k
2 is precisely the union of

þW k
2 ; <

� �
and �W k

2 ; <
� �

. The first result that concerns the above sub-posets

is the following (anyway, in this paper we will never invoke it).

COROLLARY 2.2. Let �L be a logical consequence of �L1
^ �L2

^ . . . ^ �Ln
,

with L 2 W k
2 and Li 2 þ �½ �W k

2 for all i. Then, L 2 þ �½ �W k
2 .

Proof. In the + case there exists at least one inequality :�Li
which is a logical

consequence of K�L (indeed, :�L ) :�L1
_ :�L2

_ . . . _ :�Ln
ð Þ). A continuity

argument could easily show that the same property holds if we turn the two non-

strict inequalities :�L; :�Li
into strict inequalities. Now Theorem 1.5 implies

that L and Li are weakly comparable, whence they belong to the same connected

component of the poset, namely þW k
2 . The j case is treated analogously. Ì

The following terminology prepares the ground for an accurate description of

þW k
2 and – as a straightforward consequence – of the wholeW k

2 for any k. Let g,

h, v be positive integers and (Rg, <g) be the poset represented on the left side of

Figure 1. For more clearness we will denote the generic element (x, y) 2 Rg also

by (x, y)g. Let us define the poset (Sh, <h) as ¶1 e g e hRg endowed with the

transitive closure of the relation x; yð Þg _<< h x 0; y 0ð Þg0 , g ¼ g 0; x; yð Þ < g

�

x 0; y 0ð ÞÞ _ g 0 ¼ g þ 1; x 0 ¼ xþ 1; y 0 ¼ yð Þ. We will possibly add the super-

script h to the generic element (x, y)g 2 Sh. Let us finally define the Poset (Cv, 	)

as ¶1 e h e v Sh endowed with the transitive closure of the relation x; yð Þhg _		
x 0; y 0ð Þ h0

g
0 ,

�
h ¼ h0; x; yð Þg < h x 0; y 0ð Þg 0

�
_ h 0 ¼ h�1; g 0 ¼ g � 1; x 0 ¼ x;ð

Figure 1. (Rg, <g), and (C5, 	) - with some missing lines.
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y 0 ¼ yÞ. The posets Cv (one of which has been depicted almost entirely on the

right side of Figure 1) play a basic role, according to the

LEMMA 2.3. For every k Q 2, þW k
2 ; <

� �
is isomorphic to (Ckj 1, 	).

Proof. A bijection from the former set to the latter is obtained by sending (er

+ e s, e t + e u) to (r, sj r + 1,)uj tj1
uj1 . We omit the routine argument which

proves that the above bijection is actually an isomorphism of posets. Ì

Notice that, as an easy consequence of the general definition, it turns out that

everyW k
h is ranked. Therefore, our representation ofW 6

2 in Figure 1 fails to take

account of the rank property – although it may be hopefully appreciated for other

reasons.

We proceed to describe the order ideals ofW k
2 . The first step concerns Rg. For

our purposes, non-empty subsets of {1, 2, . . . , g} will be also regarded as

sequences g 
 i1 > i2 > . . . > i! 
 1ð Þ. In keeping with the standard terminol-

ogy, we recall that J(P) stands for the set of order ideals of a poset (P, <) and

that, for each p 2 P, �p (resp. Vp) denotes the principal order ideal (resp. prin-

cipal dual order ideal, or principal filter) {q 2 P : q e p} (resp. {q 2 P : q Q p}).

PROPOSITION 2.4. Let the elements of some fixed Rg be labelled as in Figure 1.

The map �g : P 1; 2; . . . ; gf gð Þ ! J Rg

� �
defined through

i1 > i2 > . . . > i!ð Þ 7!
[!

e¼1

� e; ieð Þ; ; 7!;

is a bijection. In particular, Rg has 2g order ideals.
Proof. First we prove surjectivity. If I 2 J(Rg), let us consider the antichain

made up of the maximal elements of I. Such elements can be easily arranged so

as to form a unique sequence u1; iu1
ð Þ; . . . ; um; ium

ð Þð Þ with ue < ue 0 if e < e 0 and

iue
> iueþ1

þ ueþ1 � ue for all e < m. If um > m, let us set u0 = 0, ! = um and

extend the above sequence to: 1; i1ð Þ; 2; i2ð Þ; . . . ; !; i!ð Þð Þ by defining iz ¼
iueþ1
þ ueþ1 � z for every z, e such that ue < z < ue + 1. Having possibly extended

the sequence, it can now be checked with few difficulties that �g i1; . . . ;ðð
i!ÞÞ ¼ I . Injectivity is proved as follows. If �g i1; . . . ; i!ð Þð Þ ¼ �g i01; . . . ;

��

i! 0
0 ÞÞ ¼ K with ! m ! 0, the contradiction K � !; i!ð Þ; ! 0; i0! 0

� �� �
K is reached.

Otherwise, if ! = ! 0 we consider any integer u such that iu m iu
0 , thus obtaining

the contradiction K � {(u, iu), (u, iu
0 )} �= K. Ì

The above result enables us to list all the order ideals of þW k
2 . To accomplish

this goal we require some more notions. Let Qs denote the set of sequences of

non-negative integers (i1, i2, . . . , is) such that i1 e s and that iq > iq + 1 for every

q < s, unless iq = iq+1 = 0 (any such sequence is therefore obtained by possibly

adding a number of zeroes to some sequence i1 > i2 > . . . > i!ð Þ 2 P 1; 2;fð
. . . ; sgÞ). For any positive integer v, the symbol

P
v stands for a particular set of
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lower triangular v � v matrices with the following properties: if x Q y Q 1, the

(x, y)-entry of some fixed matrix of
P

v is a sequence (i1
x,y, i2

x,y, . . . , ixjy + 1
x,y ) 2

Qxj y + 1; furthermore, sequences of any fixed matrix satisfy iz
x,y

e iz
x + 1,y, iz + 1

x,y
e

iz
x,y + 1 for all admissible choices of x, y, z (see the left side of Figure 2).

THEOREM 2.5. For any integer k Q 2, there exists a bijection from J þWk
2

� �
toP

kj1 (which is definable by means of a formula).
Proof. If 1 e y e x e kj1, let Sx denote the sub-poset of Ckj1 as defined

before Lemma 2.3, and let Ryx stand for the corresponding sub-poset of Sx

isomorphic to Ry. Using the isomorphism provided by Lemma 2.3, for any given

I 2 J þWk
2

� �
¼ J Ck�1ð Þ we consider the set Iyx = I 7 Ryx 2 J(Ryx). In accordance

with Proposition 2.4, we associate Iyx to the sequence Gy
j1 (Iyx) and possibly add

as many zeroes as needed to obtain an element of Qy. With this element we fill

the (x, xj y + 1)-square of the matrix under construction. By repeating the above

procedure for all y, x with y e x we obtain an element of
P

k j1, because the two

schemes of inequalities follow easily by the structural features of Ck j 1.

Proposition 2.4 implies that the above correspondence is injective, whereas the

inequalities related to each matrix of
P

kj1 guarantee surjectivity. Ì

3. Specular Elements and Incompatibility Issues

Every poset þWk
2; <

� �
contains a maximal antichain which seems to be of

interest, both combinatorially and arithmetically.

DEFINITION 3.1. The generic element er þ es; et þ euð Þ 2 Wk
2 is briefly de-

noted by (r, s; t, u). The set of specular elements of þWk
2 is Pk ¼ [2�u�kPu,

with Pu = {(r, s; t, u): rj t = uj s > 0}.

PROPOSITION 3.2. For any k 
 2; Pk is a maximal antichain of þW k
2 ; <

� �
.

Furthermore, Pkj j ¼ k3
�

12þ k2
�

8� k=12� �, with � = 0 if k is even, � 0
1/8 otherwise.

Figure 2. An element of
P

4 and the corresponding order ideal of þW5
2 (circles).
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Proof. First, we show that any two specular elements are incomparable. If (r,

s; t, u) e (r 0, s 0; t 0, u 0) then r e r 0, s e s 0, t Q t 0, u Q u 0 by Proposition 2.1. It

follows that r 0 j t 0 Q r j t = uj s Q u 0j s 0, which implies r 0j t 0 = rj t because

r 0jt 0= u 0j s 0. Thus, we have that r = r 0, t = t 0, and finally that s = s 0, u = u 0.
Maximality is now proved by showing that any element outside Pk is com-

parable with some specular element. Indeed, if (r, s; t, u) is such that rj t <

uj s, then (r, s; t, u) < (r, t + uj r ; t, u), whereas the assumption rj t > uj s

yields (r, s; t, u) > (t + ujs, s; t, u). We proceed to count the specular elements

of þW k
2 . Using the notation of Theorem 2.5, we regard any fixed Pu as a subset

of Suj1 and notice that, for any admissible y, Pu 7 Ry, uj1 consists of b(y + 1)/2c
elements (precisely, those lying in the middle level of Ry, uj1). As

P
1 e y e uj 1

b(y + 1)/2c is equal to either u2 / 4 or (u2
j 1)/4, according to whether u is

respectively even or odd, we are eventually led to the following cases.

k even : Pkj j ¼
Xk=2

�¼1

�2 þ
Xk�2ð Þ=2

�¼1

�2 þ � ;

k odd : Pkj j ¼
Xk�1ð Þ=2

�¼1

�2 þ
Xk�1ð Þ=2

�¼1

�2 þ �:

With the help of the well-known formulas which evaluate the sums of the first n

natural numbers and the sums of their squares, the above cases can be easily

handled so as to obtain the claimed equalities. Ì

In the sequel we will contract the two above formulas for
P

1 e y e uj 1

b( y + 1) / 2c into the unique formula bu/2c du/2e. As we begin to point out in the

following lines, the arithmetical properties of specular elements may lead to

interesting calculations and, in particular, to simple proofs of incompatibility. At

the end of this section we will relate these preliminary results to the

combinatorics of specular elements.

Firstly, let us consider the three elements of P3. We will write them as vector

pairs, thus using the original notation. From ((0, 2, 0, 0), (1, 0, 1,0)) j ((0, 1, 1,

0), (1, 0, 0, 1)) + ((0, 0, 2, 0), (0, 1, 0, 1)) = ( z, z) with z = (0, 1, 1, 0) it follows

that the implication �(1,1;0,2) $ �(2,2;1,3) Á �(1,2;0,3) is true. Similarly, the four

elements in P4 give rise to the equality j ((0, 1, 0, 1, 0), (1, 0, 0, 0, 1)) + ((0, 0,

2, 0, 0), (1, 0, 0, 0, 1)) j ((0, 0, 1, 1, 0), (0, 1, 0, 0, 1)) + ((0, 0, 0, 2, 0), (0, 0, 1,0,

1)) = ( z 0, z 0) with z 0 = (0, j1, 1, 0, 0). Hence, the implication �(1,3;0,4)$

� (0,4;2,2) $ �(2,3;1,4) Á �(3,3;2,4) is true. Although in both examples the antecedent

conjunctions are not proved to be satisfiable, what can be deduced for certain is

the

PROPERTY 3.3. Each of the systems {�(1,1;0,2), �(2,2;1,3), K�(1,2;0,3)}, {�(1,3;0,4),

�(0,4;2,2), �(2,3;1,4), �(3,3;2,4)} is unsatisfiable.
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The reader can easily check that, in these two examples, the negative sum-

mands refer to all the elements in even position with respect to the lexicog-

raphical ordering on the triples (u, t, r) corresponding to the elements r; s;ð
t; uÞ 2 P4 (see Figure 3). In order to account more closely and extensively for

the above arithmetical properties, we introduce some further notions. Let us

endow Pk with the total ordering B defined through (r, s; t, u) / (r 0, s 0; t 0, u 0),
(u < u 0) ¦ (u = u 0, t < t 0) ¦ (u = u 0, t = t 0, r < r 0) j therefore, / is the

lexicographical ordering mentioned above. Furthermore, let us denote by Qk ¼
[2�u�kQu (resp. by Qk ¼ [2�u�k Qu) the set of specular elements of Pk in odd

(resp. even) position with respect to /, and by ~QQk ¼ [2�u�k
~QQu the subset of Qk

whose generic element is of the form (r, s; 0, u) (we assume that Qu; Qu; ~QQu �
Pu for all u). In Figure 3 bold elements form Q7 and an initial segment of Q8. In

particular, all elements belonging to ~QQ8 are placed before the zig-zag line.

Now we have all the ingredients for managing more complex cases than the

initial two. For example, as it can be patiently checked, by performing the same

alternating sign summation over (P5 ? P6 ? P7 ? P8, /) we obtain a pair of the

form
�
2e

2
þ 2e

7
þ z00; 2e

4
þ 2e

5
þ z 00

�
. Because (4, 5; 2, 7) is in even position, we

can remove (e2 + e7, e4 + e5) from the alternate summation and also subtract it

from the vector pair, thus obtaining the

PROPERTY 3.4. The inequality x2x7 < x4x5 is a logical consequence of

xrxs < xtxu : r; s; t; uð Þ2 Q5 [ Q6 [ Q7 [ Q8ð Þf g [ xrxs > xtxu : r; s; t; uð Þ2f
Q5 [ Q6 [ Q7n 4; 5; 2; 7ð Þf g

� �
[ Q8g.

Again, while the above result says nothing about the simultaneous consistency

of the two sets of inequalities, it can nonetheless be adapted to yield the fol-

lowing incompatibility statement.

PROPERTY 3.5. The inequalities xrxs < xtxu : r; s; t; uð Þ2Q5 [ Q6 [ Q7 [f
Q8g; xrxs> xtxu : r; s; t; uð Þ 2 Q5 [ Q6 [ Q7n 4; 5; 2; 7ð Þf g

� �
[ Q8

� �
and x2x7

Q x4x5 make up an incompatible system.

It is clear that without removing (2, 7; 4, 5) the two resulting properties would

become utterly trivial. Bearing in mind also the behaviour of P3 and P4, it seems

worth asking whether the above phenomena may be anyhow generalised. As

Figure 3. P8 suitably displayed.
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seemingly natural environments we propose P2cþ1 [ P2cþ2 [ . . . [ P2cþ1 and

P4c + 1?P4c + 2?P4c + 3?P4c + 4. Accordingly, in Section 4 we will shortly

consider the latter case (the former will not be dealt with in the present paper).

Some key results for our purposes – and for similar-questions concerning

alternate summations of specular elements – will be collected in the same

section. In the following lines, instead, we provide a comparatively fast method

for deciding whether or not a given specular element belongs to some Qu. The

main theorem is preceded by a more restricted result.

PROPOSITION 3.6. (r, s; 0, r + s) 2 ~QQrþs if and only if r + b(r + s + 1)/4c is odd.
Proof. We use an inductive argument over (?uQ2{(r, s; 0, u) 2 Pu}, /). For

the sake of simplicity we will denote by (r, s) the quadruple (r, s; 0, r + s). As (1,

1) satisfies the claimed property, the induction basis holds. Let us assume that r +

b(r + s + 1)/4c is odd and (r, s) m (1,1). Firstly we manage the case r + s 0 3

(mod 4). If r Q 2, the induction hypothesis implies that r � 1; sð Þ 2 Qrþs�1

because rj1 + b((r + s)/4c = rj1 + b(r + s + 1)/4c, which is even. It is therefore

enough to check that the interval r �1; sð Þ; r; sð Þ½ � � Prþs; /ð Þ has even size.

With few difficulties we have that j [(rj1, s), (r, s)]j = 2 +b(r + sj1)/2c d(r +

sj1)/2e (Figure 3 may be helpful. In particular, notice that any two elements

(rj1, s), (r, s) lie consecutively along the NW–SE direction). If r = 1 then s Q 6

and we can use a similar argument, with (r + 1, s j 2) in place of (r j 1, s). The

conclusion follows by j [(r + 1, sj2), (r, s)]j = b(r + sj1)/2c d(r + sj1)/2e.
Finally, if r + s K 3 (mod 4) then r + b(r + (sj1) + 1)/4c is even and j[(r, sj1),

(r, s)]j = 1 + b(r + s j 1)/2c d(r + s j 1)/2e, where the last summand is now odd.

Conversely, under the same induction hypothesis let us now assume that r; s; 0;ð
r þ sÞ 2 eQQrþs. If r > 1, the element immediately preceding (r, s) is (rj1, s + 1),

and the above discussion implies that (rj1) + b((rj1) + (s + 1) + 1/4c is even.

Otherwise, if r = 1 then s Q 6 and a similar argument applies to (r + 1, sj1) in

place of (rj1, s + 1). Ì

Now we are in a position to settle the general case.

THEOREM 3.7. Let g(t, u) be equal to 1 if uj(tj4bt/4c) < 2 + 4n e u for some

integer n; otherwise, let g be equal to 0. Then, (r, s; t, u) 2 Qu if and only if r j t

+ b(r + sj 2t + 1)/4c + bt/4c + g(t, u) is odd.
Proof. First, we observe that if t Q 1 the interval [(rj1, sj1; tj1, uj1),

(r, s; t, u)] has even size if and only if u K 2 (mod 4). Indeed, as [(rj1, sj1;

tj1, uj1), (uj2, uj 2; uj 3, uj1)] is equinumerous to [(r, s; t, u), (uj1,

uj1; uj 2, u)] (a bijection can be obtained by adding (1, 1; 1, 1) to every

element of the former interval), the above number is easily seen to be equal to bu/

2c I du/2e + 1. Furthermore, it is not hard to realize that by iteratively subtracting

(1, 1; 1, 1) from (r, s; t, u), until (rjt, sj t; 0, uj t) is reached, bt/4c + g(t, u)

elements of the form (a, b, c, 2 + 4n) with c > 0 are generated. As a consequence,

we have that (r, s; t, u) 2 Qu if and only if either r � t; s� t;ð 0; u� tÞ 2 ~QQu�t

210 ANDREA VIETRI



and bt/4c + g(t, u) is even, or r � t; s� t; 0; u� tð Þ =2 ~QQu�t and bt/4c + g(t, u) is

odd. In both cases Proposition 3.6 leads to the required characterisation. Ì

As previously mentioned, we conclude this section with a look at the

combinatorial meaning of specular elements in connection with systems of

inequalities. The basic fact we allow for is that every Pk is an antichain. Because

of this property, the combinatorial structure of D2
k cannot provide any immediate

information about the unsatisfiability of a given system {�(r, s;t, u): (r, s; t, u) 2 A}

$ {�(t, u;r, s) : (r, s;t, u) 2 B} with A \ B ¼ ;; A [ B � Pk . In fact, the choice of

either �(r, s;t, u) or �(t, u;r, s) for each (r, s; t, u) results in an overall choice of

mutually compatible order ideals in W k
2 . More precisely – reasoning in þW k

2 –

the principal filter corresponding to some reversed inequality does not intersect

the principal ideal corresponding to any non-reversed inequality. This implies

that no pair of inequalities of the form (a < b, b < a) can logically follow by the

initial set of inequalities.

Although the above remark fits any antichain of þW k
2 , we believe that the

arithmetical structure of Pk makes it a rather interesting object of study. In the

next section we will accordingly select certain order ideals of W k
2 , by actually

selecting an ideal or a filter of þW k
2 for each specular element of some pre-

scribed levels Pu. Equivalently, we will decide whether or not to reverse any

fixed inequality which refers to the chosen levels. The arithmetics lying behind

the chosen inequalities will then give rise to some incompatibility results.

4. Working with Specular Elements

The first part of this section is devoted to showing that the alternate sum over

each Pu yields essentially the same pattern for all u congruous to some fixed U

(mod 4). By virtue of this property we will then have comparatively few

difficulties in summing up elements over the union of some prescribed Pu’s

(using alternate signs as above). In particular, we will be able to generalise the

examples of the previous section, as well as to pose some relevant questions and

to provide new examples and suggestions. The following notation will con-

siderably shorten both the claim and the proof of the main results.

NOTATION 4.1. If ‘ is a positive integer, the symbols  ‘
x stands for (‘ + 1)/2j

jxj (‘ + 1)/2j. The function  ‘
– has a particular effect on the sequence (1,

2, . . . , ‘). For example  5 transforms (1, 2, 3, 4, 5) into (1, 2, 3, 2, 1), whereas

 8 ((1, 2, 3, 4, 5, 6, 7, 8)) = (1, 2, 3, 4, 4, 3, 2, 1), and so forth. Without rigorously

defining the symbol �‘
x, where W is odd, we define the effect of �‘

j on two

sequences whose lengths are odd and not congruous (mod 4), as follows: �9 ((1,

2, . . . , 9)) = (1, 1, 2, 2, 3, 2, 2, 1, 1), �11 ((1, 2, . . . , 11)) = (1, 1, 2, 2, 3, 3, 3, 2, 2,

1,1). For more clearness, �7 ((1, 2, . . . , 7)) = (1, 1, 2, 2, 2, 1, 1), �13((1, 2, . . . , 3))

= (1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1).
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In some cases, summations such as
Pa

!¼1 b !a e	 !ð Þ or
Pc

!¼1 d!e
 !ð Þ could be

interpreted as particular stair-like diagrams. For instance, if a = 5, b = 1, c =1 d =

2, x = 2! + 1, h = 2!, the related diagrams might look like these:

A similar remark applies to �‘j. We believe that such diagrams are a useful tool

for carrying out calculations and visualising certain general properties (e.g.

cancellation rules) which are more or less hidden by the formalism. As a little

example, the identity
P10

!¼1  
!
10e2!þ1 ¼

P9
!¼1  

!
9 e2!þ3 þ

P5
!¼1 e2!þ1 has a

rather natural interpretation in terms of these diagrams.

PROPOSITION 4.2. For every non-negative u K 0 (mod 4) there exists a vector

z 2 Nu + 1 such that

P

r;s;t;uð Þ2Qu

r; s; t; uð Þ þ
P

r;s;t;uð Þ2Qu

t; u; r; sð Þ � z; zð Þ ¼

¼ �1ð Þ
u
4
Pu=2�2

!¼1

 !
u=2�2e2! þ 2

Pu=4�1

!¼1

!e u=2þ1þ2!;
Pu=2�2

!¼1

 !
u=2�2e1þ2! þ 2

Pu=4�1

!¼1

!e u=2þ2!

 !

:

Proof. We interpret the ordered elements (r, s; t, u) as columns (r, s, t) of a

suitable matrix which, to increase readability, has been split into four lines as

follows.

r : 1 2 ::::: u=2 2 3 ::::: u=2 3 4 ::::: u=2þ 1

s : u� 1 u� 2 ::::: u=2 u� 1 u� 2 ::::: u=2þ 1 u� 1 u� 2 ::::: u=2þ 1

t : 0 0 ::::: 0 1 1 ::::: 1 2 2 ::::: 2

4 5 ::::: u=2þ 1 5 6 ::::: u=2þ 2 6 7 ::::: u=2þ 2

u� 1 u� 2 ::::: u=2þ 2 u� 1 u� 2 ::::: u=2þ 2 u� 1 u� 2 ::::: u=2þ 3

3 3 ::::: 3 4 4 ::::: 4 5 5 ::::: 5

7 8 ::::: u=2þ 3 8 9 ::::: u=2þ 3

u� 1 u� 2 ::::: u=2þ 3 u� 1 u� 2 ::::: u=2þ 4 ::::: :::::
6 6 ::::: 6 7 7 ::::: 7

u� 5 u� 4 u� 3 u� 4 u� 3 u� 3 u� 2 u� 2 u� 1

::::: ::::: u� 1 u� 2 u� 3 u� 1 u� 2 u� 1 u� 2 u� 1 u� 1

u� 6 u� 6 u� 6 u� 5 u� 5 u� 4 u� 4 u� 3 u� 2
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Because jPu is odd if and only if u K 2 (mod 4), it can be easily deduced that

the minimum of Pu belongs to Qu precisely when b(u + 1)/4c is even (this

property actually holds for all u, regardless of the congruence class (mod 4) they

belong to). We will prove the proposition by assuming that the above quantity is

even; the odd sub-case will automatically follow by reversing all signs. Notice

that – as it also happens in the other two cases with u 0 2 (mod 4) – the

component u is inessential because it gives rise to the pair 1/2bu/2c du/2e (e u, eu)

(instead, in the remaining case the last component produces either (e u, 0) or

( 0, e u), according to whether (uj 2)/4 is respectively odd or even – see

Proposition 4.4). Now we analyse the above matrix. Let us group columns into

maximal sequences of consecutive columns having constant t. The bold numbers

in each row can be neglected because their overall contribute is of the form

( z 0, z 0). Indeed, the positions of bold, equal numbers of adjacent sequences in

rows r and s have different parities, while any sequence of bold, equal numbers

in row t has even size. Also the underlined numbers of rows r, t (forming two

copies of { r: r K1 (mod 4), 1 e r e uj3}) can be neglected. As the reader may

check, the contribute of the remaining numbers in row r is

2
Xu=2�3

!¼1

�!u=2�3e
2þ2!

;
Xu=2�1

!¼1

 !u=2�1e
1þ2!

 !

:

Instead, the contribute of row s is

Xu=4

!¼1

eu=2�1þ2! þ 2
Xu=4�1

!¼1

!eu=2þ1þ2!;
Xu=4

!¼1

eu=2�2þ2! þ 2
Xu=4�1

!¼1

!eu=2þ2!

 !

:

Finally, the remaining numbers of row t produce the summand
�P

1�!�u=4

e4!�2; 0
�
. Now the claimed assertion is easily established using the equalities (at

this stage, stair-like diagrams can really help)

2
Pu=2�3

!¼1

�!
u=2�3

e2þ2! �
Pu=4

!¼1

eu=2�2þ2! þ
Pu=4

!¼1

e4!�2 ¼
Pu=2�2

!¼1

 !
u=2�2

e2!;

Pu=2�1

!¼1

 !
u=2�1

e1þ2! �
Pu=4

!¼1

eu=2�1þ2! ¼
Pu=2�2

!¼1

 !
u=2�2

e1þ2!:

Ì

An argument similar to the above one yields the corresponding results for u K

1, 2, 3 (mod 4). We just state them and display the related matrices as a sketchy

proof.
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PROPOSITION 4.3. For every u K 1 (mod 4) with u Q 5 there exists a vector z

2 Nu + 1 such that
P

r;s;t;uð Þ2Qu

r; s; t; uð Þ þ
P

r;s;t;uð Þ2Qu

t; u; r; sð Þ � z; zð Þ

¼ �1ð Þ
u�1

4

�
Pu�1ð Þ=2

!¼1

 !
u�1ð Þ=2

e2!�1 þ 2
Pu�1ð Þ=4

!¼1

!e u�1ð Þ=2þ2!;

Pu�1ð Þ=2

!¼1

 !
u�1ð Þ=2

e2! þ 2
Pu�1ð Þ=4

!¼1

!e u�3ð Þ=2þ2!

�
:

r : 1 2 ::::: u� 1ð Þ=2 2 3 ::::: uþ 1ð Þ=2 3 4 ::::: uþ 1ð Þ=2

s : u� 1 u� 2 ::::: uþ 1ð Þ=2 u� 1 u� 2 ::::: uþ 1ð Þ=2 u� 1 u� 2 ::::: uþ 3ð Þ=2

t : 0 0 ::::: 0 1 1 ::::: 1 2 2 ::::: 2

4 5 ::::: uþ 3ð Þ=2 5 6 ::::: uþ 3ð Þ=2 6 7 ::::: uþ 5ð Þ=2

u� 1 u� 2 ::::: uþ 3ð Þ=2 u� 1 u� 2 ::::: uþ 5ð Þ=2 u� 1 u� 2 ::::: uþ 5ð Þ=2

3 3 ::::: 3 4 4 ::::: 4 5 5 ::::: 5

7 8 ::::: uþ 5ð Þ=2 8 9 ::::: uþ 7ð Þ=2

u� 1 u� 2 ::::: uþ 7ð Þ=2 u� 1 u� 2 ::::: uþ 7ð Þ=2 ::::: :::::
6 6 ::::: 6 7 7 ::::: 7

u� 5 u� 4 u� 3 u� 4 u� 3 u� 3 u� 2 u� 2 u� 1

::::: ::::: u� 1 u� 2 u� 3 u� 1 u� 2 u� 1 u� 2 u� 1 u� 1

u� 6 u� 6 u� 6 u� 5 u� 5 u� 4 u� 4 u� 3 u� 2

PROPOSITION 4.4. For every positive u K 2 (mod 4) there exists a vector z 2
Nu + 1 such that

P

r;s;t;uð Þ2Qu

r; s; t; uð Þ þ
P

r;s;t;uð Þ2Qu

t; u; r; sð Þ � z; zð Þ

¼ �1ð Þ
u�2

4

 
Pu�1ð Þ=2

!¼1

 !
u=2e2!�1 þ 2

Pu�6ð Þ=4

!¼1

!eu=2þ1þ2! þ
Pu�1

!¼u=2

e2!

Pu=2

!¼1

 !
u=2

e2!�2 þ 2
Pu�2ð Þ=4

!¼1

!eu=2þ2! þ eu

!

:

r : 1 2 ::::: ::::: u=2 2 3 ::::: u=2 3 4 ::::: u=2þ 1

s : u� 1 u� 2 ::::: u=2þ 1 u=2 u� 1 u� 2 ::::: u=2þ 1 u� 1 u� 2 ::::: u=2þ 1

t : 0 0 ::::: ::::: 0 1 1 ::::: 1 2 2 ::::: 2

4 5 ::::: u=2þ 1 5 6 ::::: ::::: u=2þ 2 6 7 ::::: u=2þ 2

u� 1 u� 2 ::::: u=2þ 2 u� 1 u� 2 ::::: u=2þ 3 u=2þ 2 u� 1 u� 2 ::::: u=2þ 3

3 3 ::::: 3 4 4 ::::: ::::: 4 5 5 ::::: 5

7 8 ::::: u=2þ 3 8 9 ::::: u=2þ 3

u� 1 u� 2 ::::: u=2þ 3 u� 1 u� 2 ::::: u=2þ 4 ::::: :::::
6 6 ::::: 6 7 7 ::::: 7

u� 5 u� 4 u� 3 u� 4 u� 3 u� 3 u� 2 u� 2 u� 1

::::: ::::: u� 1 u� 2 u� 3 u� 1 u� 2 u� 1 u� 2 u� 1 u� 1

u� 6 u� 6 u� 6 u� 5 u� 5 u� 4 u� 4 u� 3 u� 2
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PROPOSITION 4.5. For every positive u K 3 (mod 4) there exists a vector z 2
Nu + 1 such that

P

r;s;t;uð Þ2Qu

r; s; t; uð Þ þ
P

r;s;t;uð Þ2Qu

t; u; r; sð Þ � z; zð Þ

¼ �1ð Þ
uþ1

4

 
Pu�1ð Þ=2

!¼1

 !
u�1ð Þ=2

e2!�1 þ 2
Pu�3ð Þ=4

!¼1

!e uþ1ð Þ=2þ2! þ
Puþ1ð Þ=4

!¼1

e2!�1;

Pu�1ð Þ=2

!¼1

 !
u�1ð Þ=2

e2! þ 2
Pu�3ð Þ=4

!¼1

!e u�1ð Þ=2þ2! þ
Puþ1ð Þ=4

!¼1

e2!�2

�
:

r : 1 2 ::::: u� 1ð Þ=2 2 3 ::::: uþ 1ð Þ=2 3 4 ::::: uþ 1ð Þ=2

s : u� 1 u� 2 ::::: uþ 1ð Þ=2 u� 1 u� 2 ::::: uþ 1ð Þ=2 u� 1 u� 2 ::::: uþ 3ð Þ=2

t : 0 0 ::::: 0 1 1 ::::: 1 2 2 ::::: 2

4 5 ::::: uþ 3ð Þ=2 5 6 ::::: uþ 3ð Þ=2 6 7 ::::: uþ 5ð Þ=2

u� 1 u� 2 ::::: uþ 3ð Þ=2 u� 1 u� 2 ::::: uþ 5ð Þ=2 u� 1 u� 2 ::::: uþ 5ð Þ=2

3 3 ::::: 3 4 4 ::::: 4 5 5 ::::: 5

7 8 ::::: uþ 5ð Þ=2 8 9 ::::: uþ 7ð Þ=2 9 10 ::::: uþ 7ð Þ=2

u� 1 u� 2 ::::: uþ 7ð Þ=2 u� 1 u� 2 ::::: uþ 7ð Þ=2 u� 1 u� 2 ::::: uþ 9ð Þ=2 ::::: :::::
6 6 ::::: 6 7 7 ::::: 7 8 8 ::::: 8

u� 5 u� 4 u� 3 u� 4 u� 3 u� 3 u� 2 u� 2 u� 1

::::: ::::: u� 1 u� 2 u� 3 u� 1 u� 2 u� 1 u� 2 u� 1 u� 1

u� 6 u� 6 u� 6 u� 5 u� 5 u� 4 u� 4 u� 3 u� 2

As a first fruit of the above four propositions, it turns out easily that all

adjacent levels of the form P2�;P2�þ1 enjoy some cancellation properties which

make the corresponding alternate summations rather simple. The proof of the

relevant corollary consists of a routine calculation, which is omitted.

COROLLARY 4.6. For every integer c Q 0 there exist two vectors z , z 0 such

that
P

r;s;t;uð Þ2Q4cþ2[Q4cþ3

r; s; t; uð Þ þ
P

r;s;t;uð Þ2Q4cþ2[Q4cþ3

t; u; r; sð Þ � z; zð Þ ¼

¼ �1ð Þcþ1 Pcþ1

!¼1

e2!�1 þ 2ce4cþ2;
P4cþ1

!¼2cþ1

e! þ
Pc

!¼1

e2cþ2!

� �
;

P

r;s;t;uð Þ2Q4cþ4 [Q4cþ5

r; s; t; uð Þ þ
P

r;s;t;uð Þ2Q4cþ4 [Q4cþ5

t; u; r; sð Þ � z0; z0ð Þ ¼

¼ �1ð Þcþ1 Pcþ1

!¼1

e2!�1 þ 2cþ 1ð Þe4cþ4; e2cþ2 þ 2
Pc

!¼1

e2cþ2þ2!þ
Pcþ1

!¼1

e2cþ1þ2!

� �
:

With the above results at hand it becomes quite easy to show that the example

of the previous section, concerning P5? . . .?P8, is rather peculiar when

compared with the general case P4c + 1? . . .?P4c + 4. Indeed, as stated in the

next claim, the corresponding summations seem not so easy to interpret in terms
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of logical consequences (the routine proof, involving Propositions 4.2, 4.3 and

the first part of Corollary 4.6, is omitted).

PROPERTY 4.7. For every integer c Q 1 there exists a vector z such that

P

r;s;t;uð Þ2S1�i�4Q4cþi

r; s; t; uð Þþ
P

r;s;t;uð Þ2S1�i�4Q4cþi

t; u; r; sð Þ � z; zð Þ ¼

¼ �1ð Þcþ1
2
P2c

!¼1

 !2ce2! þ 2
Pc

!¼1

!e2c�1þ2! þ 2
Pc

!¼1

!e2cþ3þ2!;

�

2
P2c

!¼1

 !2ce1þ2! þ 4
Pc

!¼1

!e2cþ2!

�
:

For example, by applying the above property in the case c = 2 we obtain

� 0; 0; 2; 0; 4; 2; 4; 4; 2; 2; 0; 4; 0ð Þ; 0; 0; 0; 2; 0; 4; 4; 4; 8; 2; 0; 0; 0ð Þð Þ:

By subtracting a suitable pair we then obtain

� 0; 0; 2; 0; 4; 0; 0; 0; 0; 0; 0; 4; 0ð Þ; 0; 0; 0; 2; 0; 2; 0; 0; 6; 0; 0; 0; 0ð Þð Þ:

If c = 3, subtracting a suitable pair from the resulting pair yields

0; 0; 2; 0; 4; 0; 6; 0; 2; 0; 0; 4; 0; 2; 0; 6; 0ð Þ; 0; 0; 0; 2; 0; 4; 0; 4; 0; 2; 4; 0; 10; 0; 0; 0; 0ð Þð Þ

We leave it as an open question to provide a sensible interpretation of the two

above results – as well as of the general phenomenon – in terms of logical

dependencies among inequalities. Notice that, as also shown in the above

examples, the formula of Property 4.7 is not optimal in that some coordinates

may be different from zero in both sides. Instead, we conclude this section by

providing an optimal formula, which allows a more successful analysis of some

particular alternate summations. Let us consider the levels P4c + 1, P4c + 4, where c

is any positive integer. Differently from the preceding cases, the roles of Q4c + 1

and Q4cþ1 are interchanged:

PROPERTY 4.8. For every integer c > 0 there exists a vector z such that

P

r;s;t;uð Þ2Q4cþ1 [Q4cþ4

r; s; t; uð Þþ
P

r;s;t;uð Þ2Q4cþ1 [Q4cþ4

t; u; r; sð Þ � z; zð Þ ¼

¼ �1ð Þcþ1 Pc

!¼1

e2!�1 þ 2
Pc

!¼1

e2cþ2! þ 2c� 3ð Þe4cþ1 þ 2ce4cþ3;

�

2e2cþ1 þ 5
Pc�1

!¼1

e2cþ1þ2! þ 2ce4cþ2

�
:
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As previously done under similar circumstances, we leave the proof to the

reader (the ingredients are Propositions 4.2 and 4.3). By neglecting ( z, z ) and

suitably manipulating the formula in the case c Q 3 and odd, we obtain the

following incompatibility result.

THEOREM 4.9. Let � be an integer greater than 1. The inequalities

xrxs < xtxu : r; s; t; uð Þ 2 Q8��3 [ Q8�

n o
; xtxu < xrxs : r; s; t; uð Þ 2 Q8��3 [ Q8�

n o
;

x2
4��1þ2i < x5þ4ix8��3 : 0 � i � � � 2

n o
; x2

4��1þ2i < x3þ4ix8��1 : 1 � i � � � 2
n o

;

x2
6��1þ2i < x4�þ4ix8��2 : 0 � i � � � 2

n o
; x2

6��1þ2i < x4�þ2þ4ix8��4 : 0 � i � � � 2
n o

;

x2
6��3 < x4�x6��2; x2

6��3 < x1x8��2; x2
8��5 < x3x8��2; x2

8��2 < x8��3x8��1

n o
;

subject to xi < xj if i < j, make up an incompatible system.

Proof. Using the last five sets of inequalities, we perform a number of

changes which altogether transform the resulting pair of Property 4.8

(corresponding to the product of all inequalities of the first two sets divided by

the tautology
Q

x
zi

i ¼
Q

x
zi

i ) into a pair of distinct vectors (v, v 0) with v � v 0.
This procedure will yield a contradiction. Indeed, Theorem 1.5 ensures that

�( v, v 0)(x) does not hold, whereas at each change the resulting pair (w, w 0) is such

that �( w, w 0)(x) holds, and each deduction from one inequality to the next is

shown to be logically correct.

We begin with 2�j1 iterated subtractions of the pair (8�j3, 8�j1; 8�j 2,

8�j 2) from the initial pair

0ð 1 0 1 . . . 0 1 0 0 2
4�

0 2 0 2 . . . 0 2
8��4

4� � 5 0 4� � 2 0;
; 0 0 0 0 . . . 0 0 0 2 0 5 0 5 0 . . . 5 0 0 4� � 2 0 0Þ:

Since the inequality x2
8��2 < x8��3x8��1 is assumed, to hold, the corres-

ponding inequality that results from the above subtractions is a logical

consequence of the initial inequality. We have therefore obtained the pair

0ð 1 0 1 . . . 0 1 0 0 2
4�

0 2 0 2 . . . 0 2
8��4

2� � 4 0 2� � 1 0;
; 0 0 0 0 . . . 0 0 0 2 0 5 0 5 0 . . . 5 0 0 0 0 0Þ:

Let us assume that � Q 3 (the case � = 2 is postponed). By exploiting the third

and fourth set of inequalities, we now subtract the pairs (5, 8� j 3; 4� j 1, 4� j

1), (7, 8� j 1; 4� + 1, 4� + 1), (9, 8� j 3; 4� + 1, 4� + 1), (11, 8� j 1; 4� + 3,

4� + 3), (13, 8� j 3; 4� + 3, 4� + 3), . . . , (4� j 5, 8� j 1; 6� j 5, 6� j 5), (4�
j 3, 8� j 3; 6� j 5, 6� j 5).
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The resulting pair is

0ð 1 0 1 0 0 0 . . . 0 2
4�

0 2 0 . . . 0 2 0
6��3

2 0 2 . . . 0 2
8��4

� � 3 0 � þ 1 0;
; 0 0 0 0 0 0 0 . . . 0 0 1 0 1 . . . 1 0 5 0 5 0 . . . 5 0 0 0 0 0Þ:

Notice that the above element is preceded – with respect to the partial

ordering < over W8�
6��2 – by the pair whose left vector ends with �j1, 0, � + 1,

0, 0 instead of 2, �j 3, 0, � + 1, 0 and whose right vector is unchanged.

Theorem 1.5 implies that the latter pair represents a still valid inequality, with

which we now replace the above inequality. Subsequently, using the remaining

hypotheses we modify the last inequality by subtracting the pairs (4�, 8� j 2;

6�j1, 6�j1), (4� + 2, 8�j 4; 6�j 1, 6�j 1), (4� + 4, 8�j 2; 6� + 1, 6� +

1), (4� + 6, 8� j 4; 6� + 1, 6� + 1), . . . , (8� j 8, 8� j 2; 8� j 5, 8� j 5)(8� j

6, 8�j 4; 8�j 5, 8�j 5). The outcome is

0ð 1 0 1 0 0 0 . . . 0 1
4�

0 1 0 . . . 0 1 0
6��3

1 0 1 0 . . . 1 0 0 0 2
8��2

0 0;
; 0 0 0 0 0 0 0 . . . 0 0 1 0 1 . . . 1 0 5 0 1 0 1 . . . 0 1 0 0 0 0 0Þ:

Finally, by subtracting (4�, 6�j 2; 6�j 3, 6�j 3), (1, 8� j 2; 6� j 3, 6� j

3), (3, 8�j 2; 6�j 3, 8�j 5) we obtain the pair

0ð 0 . . . 0 0
4�þ1

1 0 1 . . . 0 1 0
6��3

0 0 1 0 1 . . . 0 1 0 0 0 0 0 0;
; 0 0 . . . 0 1 0 1 0 . . . 1 0 0 0 1 0 1 0 . . . 1 0 0 0 0 0 0 0Þ:

As anticipated at the beginning of the proof, we have reached contradiction.

Indeed, the corresponding inequality should correctly read in the reverse way.

If � = 2, to prevent the 13th coordinate of the left vector becoming negative

(�j 3) we add (e13, e13) to the initial pair, before starting with the subtraction

procedure (the reader may have noticed that this mending is not strictly

necessary, because also negative entries have consistent meaning when related to

inequalities). Ì

Unfortunately, the above argument fails to yield an incompatibility result if

� = 1. Notice that in this case the sets of inequalities reduce to the first two and

the last. Moreover, the inequalities x3
2 < x4

2 and x3
2 < x3x6 of the last set are trivial.

In Figure 4 we have emphasized all pairs of þW8 that are involved in the

system. Many lines of the Hasse diagram are missing; some others, are only

dotted. Full circles represent actual pairs of þW8, while empty circles refer to

elements of �W8. The stars correspond to the remaining two inequalities, and to

the two non-trivial consequences (smaller stars) of one inequality.

One may wonder if any inequalities exist, different from the above two, which

lead to an incompatibility proof if added to the first two sets (a single inequality
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might possibly suffice). For example a quick glance to the depicted poset should

warn the reader that the inequality x6
2 < x1x7 – whose addition makes possible a

straightforward incompatibility proof – cannot be sensibly added but in the

reverse way. Indeed, the mentioned inequality (see the arrow) would contradict a

basic requirement, namely that the union of all principal ideals (related to non-

reversed inequalities) be disjoint from the union of all principal filters (related to

reversed inequalities). The same figure should help realizing that many other

inequalities, which cause incompatibility if added, are available only in the

undesired reversed way. Adding any of them in the uncorrect way would indeed

produce a trivial incompatibility at the root. On the contrary – as it could be

shown with few difficulties – all the inequalities employed in the general proof of

Theorem 4.9 do comply with the ideal-filter condition. Therefore, at least the

Figure 4. Representing some inequalities in þW8.
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very elementary combinatorial substratum of þW8 agrees with the seven in-

volved sets of inequalities, and a real proof of incompatibility is needed. Figure 5

deals – sketchy – with the case � = 2 of Theorem 4.9.

For the general even case (c = 2�) a result essentially similar to Theorem 4.9

could be established, using the same reasoning as above.

5. Conclusive Remarks

We feel that the combinatorial expressiveness of specular elements has been

unveiled to a rather small degree in the present paper. Presumably, pictures like

the one in Figure 4 still have much to say, if properly examined. For example,

with some efforts one might try to reduce the number of inequalities which

altogether cause incompatibility in Theorem 4.9, so as to hopefully obtain a

minimal incompatible system. Notice that the third and fourth set of inequalities

in the claim, together with the first three inequalities of the last set, do not

generally refer to specular elements. Finding an incompatible system made up of

only specular elements (besides the first two sets) might be a challenging

problem. On the other hand, a careful analysis of the mere combinatorial

constraints in þW8 – more generally, in every þWk – is expected to yield some

compatibility results, with no need of an explicit numeric solution. In particular,

we would welcome the discovery of some key properties that change the role of

ideals and filters, namely from elementary indicators of incompatibility (as in the

above case � = 1) to reliable tools for proving compatibility.
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