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Abstract: We exhibit cyclic ðKvv ;CkÞ-designs with vv > k; vv � k ðmod 2kÞ, for k an odd prime

power but not a prime, and for k ¼ 15. Such values were the only ones not to be analyzed yet,

under the hypothesis vv � k (mod 2kÞ: Our construction avails of Rosa sequences and

approximates the Hamiltonian case ðvv ¼ kÞ; which is known to admit no cyclic design

with the same values of k:As a particular consequence, we settle the existence question for cyclic
ðKvv ;CkÞ-designs with k a prime power. # 2004 Wiley Periodicals, Inc. J Combin Designs 12: 299–310,

2004
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1. INTRODUCTION

A k-cycle system of a graph G ¼ ðV ;EÞ is a (multi)set B of k-cycles whose edges
partition E: B is said to be cyclic if V ¼ Zv for some v and B ¼
ðb0; b1; . . . . . . ; bk�1Þ 2 B implies that Bþ 1 2 B; where for each z 2 Zv the sum
Bþ z is defined in the obvious way as ðb0 þ z; b1 þ z; . . . ; bk�1 þ zÞ: In the sequel,
the vertices of any graph will be considered as elements of Zv for some fixed v:

Details about k-cycle systems may be found for example in Refs. [13] and [15].
Moreover, in Ref. [11] the decomposition of a graph G into k-cycles is considered as a
particular case of the decomposition into copies of an assigned subgraph H; namely
a ðG;HÞ-design. Following this terminology, in the present paper we will be
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concerned with cyclic ðKv;CkÞ-designs, where Kv is the complete graph on v vertices
and Ck is the cycle of length k: In more details, we will prove the following

Theorem 1.1. If v > k; v � kðmod 2kÞ and k is 15 or an odd prime power but not a
prime, then there exists a cyclic ðKv;CkÞ-design.

The values of k, mentioned in the theorem, are the only ones which have been not
investigated, so far, under the same hypothesis v > k; v � k (mod 2kÞ: The other
cases, and the further case v ¼ k; have been analyzed by Buratti and Del Fra [4], who
established the following result.

Theorem 1.2. Let M ¼ fpa j p odd prime; a � 2g [ f15g. If v > k; v � kðmod 2kÞ
and k 2 M, then there exists a cyclic ðKv;CkÞ-design if and only if ðv; kÞ 6¼ ð9; 3Þ.
If v ¼ k (the Hamiltonian case), then there exists a cyclic ðKv;CkÞ-design if and only
if k is an odd integer not belonging to M.

The first part of the above theorem is a consequence of the second part
(Hamiltonian case), which has required a careful proof. Furthermore, it is a short
exercise to prove that no cyclic ðK9;C3Þ-design exists.

We recall the following definitions.

Definition 1.1. The type of a cycle B is the cardinality of the stabilizer of B under
the action of Zv defined by zðBÞ ¼ Bþ z:

Definition 1.2. If B ¼ ðb0; b1; . . . ; bk�1Þ is a k-cycle of type d, the list of partial
differences from B is the multiset @B ¼ f�ðbiþ1 � biÞ: 0 � i < k=dg, where bk ¼ b0:
More generally, if F ¼ fS1; S2; . . . ; Sng is a set of k-cycles, the list of partial
differences from F is the multiset @F ¼

S
i @Si:

Note that if B is a cycle of type 1, then @B is the list �B of differences from B in
the usual sense. The following assertion, as elementary as fundamental, is a
consequence of the theory developed in Ref. [7].

Proposition 1.1. Let F ¼ fS1; S2; . . . ; Sng be a set of k-cycles and let di be the
type of Si; i ¼ 1; . . . ; n. If @F covers Zvnf0g exactly once, then the cycles
fSi þ z: 1 � i � n; 1 � z � v=dig form a cyclic ðKv;CkÞ-design.

A set F as in the above proposition will be called a ðKv;CkÞ-difference system.
Each Si is called a starter cycle. Starter cycles can be constructed using particular
sequences (see also Ref. [9], Proposition 1.2).

Definition 1.3. Let v; k; d be positive integers such that k divides v and d
divides both v and k: A sequence ðc0; c1; . . . ; ck=dÞ of integers has the ðv; k; dÞ-
property if

(1) ci 6� cjðmod v=dÞ for 0 � i < j < k=d:
(2) ck=d � c0 ¼ xv=d with gcdðx; dÞ ¼ 1:
(3) ci � ci�1 6� �ðcj � cj�1Þ ðmod vÞ for 1 � i < j � k=d.

For example, assuming that v ¼ 45; k ¼ 15, and d ¼ 3, the sequence ð0;�13;
3; 24; 6; 15Þ has the (45,15,3)-property. We do not give the short proof of the
following basic fact.
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Lemma 1.1. Let the sequence ðc0; c1; . . . ; ck=dÞ have the ðv; k; dÞ-property, and
consider the extended sequence C ¼ ðc0; c1; . . . ; ck=d; . . . ; ck�1Þ such that

ci ¼ qðck=d � c0Þ þ cr;

where q and r are, respectively, the quotient and the remainder of the euclidean
division of i by k=d: Then, the pairs C is a cycle of type d, whose list of partial
differences has no repetitions.

The above cycle is also denoted by ½c0; c1; . . . ; ck=d�k (see Ref. [4]). Since in this
case @½c0; c1; . . . ; ck=d�k is not a multiset, in the present paper sequences having the
ðv; k; dÞ-property will be a basic ingredient for obtaining suitable families of cycles.

A further tool for our purposes will be Rosa sequences which, together with
Skolem sequences, have been used for example in Refs. [3] and [9].

We recall that the existence problem for cyclic k-cycle systems of the complete
graph Kv with v � 1 (mod 2kÞ has been exhaustively settled in Ref. [3] and,
independently, in [5,6,10].

Theorem 1.3. There exists a cyclic ðK2knþ1;CkÞ-design for any pair of positive
integers k; n:

The same has been done for cyclic k-cycle systems of the complete m-partite graph
Km�k with m and k odd (see Ref. [3] for details). Yet the existence problem restricted
to the case v � 1 (mod 2kÞ with k even was completely settled in the sixties, by
Kotzig [12] and by Rosa [16,18]. Rosa also settled the cases k ¼ 3; 5; 7 [17].
The earliest solution of the case k ¼ 3 was given by Peltesohn [14]. The existence
question for ðKv;CkÞ-designs (not necessarily cyclic) has been exhaustively settled by
Alspach and Gavlas [2] in the case of k odd (see also Ref. [8]) and by Šajna [19] in
the even case.

In the Conclusion of the present paper, Theorems 1.2 and 1.3 will contribute to
settle the existence question for cyclic ðKv;CkÞ-designs, with k a prime power.

2. THE CASE k ¼ pa

In the sequel, each set of numbers of the form f�n1; . . . ;�nsg will be denoted by
�fn1; . . . ; nsg: The first part of Theorem 1.1 can be stated in the following alternative
way.

Theorem 2.1 (Part I). For any prime p � 3 and any two integers m; a with m � 3
odd and a � 2, there exists a cyclic ðKmpa ;CpaÞ-design.

Proof. Having fixed p;m, and a, the following equality suggests the number of
starter cycles to use, as well as the corresponding types.

No: of cycles ¼ mpaðmpa � 1Þ
2pa

¼ m� 1

2
mpa þ p� 1

2

Xa�1

i¼0

mpi:

We will therefore look for ðm� 1Þ=2 starter cycles of type 1, (each one generating
2pa differences) and ðp� 1Þ=2 starter cycles of type pa�i (each one generating 2pi
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partial differences) where i ranges from 0 to a� 1: The above types are clearly
admissible.

Our construction can be summarized as follows. The cycles of type pa�i; with
0 � i � a� 1, generate almost all the partial differences which are divisible by m:
Moreover, their vertices consist of almost all the multiples of m: Though all the
required cycles generate as many differences as the ones which are divisible by m
(namely, pa � 1Þ; using all these multiples of m as differences and some multiples of
m as vertices (with no further vertex) would be equivalent to finding a cyclic
ðKpa ;CpaÞ-design, as it can be quickly seen. This is a contradiction because no such
design exists, according to Theorem 1.2. Therefore, we perform an approximation by
allowing some extra difference, as well as some extra vertex. Subsequently, we define
ðm� 1Þ=2 cycles of type 1, namely ��

1;�2;�3; . . . ;�ðm�1Þ=2; which generate all the
remaining differences. In particular, each set ��i consists of almost all the dif-
ferences of the form mz� i: The construction of �i coincides with the one performed
in Ref. [3] for obtaining the cycles of a cyclic ðKm�pa ;CpaÞ-design. Instead, ��

1

requires some more attention, as ���
1 is supposed to contain all those multiples of m

which are not generated by the above cycles of larger type. Thus, we slightly modify
the cycle �1, arising from the cited construction.

We begin with the cycles of largest type. For 1 � i � ðp� 1Þ=2, let Bi stand for
the k-cycle of type pa defined by Bi ¼ ð0; im; 2im; . . . ; ðk � 1ÞimÞ.

Clearly,

@B1 [ 	 	 	 [ @Bðp�1Þ=2 ¼ �fm; 2m; . . . ; ðp� 1Þm=2g : ð1Þ

Now we define the cycles of smaller type. Let us fix i; j such that 1 � i <
a; 0 � j � ðp� 3Þ=2 and assume that pi 6¼ 3 (the case pi ¼ 3 is postponed).

We consider the sequence ðcij0; cij1; . . . ; cijpiÞ defined by

ci;j;‘ ¼

‘
2
m if ‘ is even; 0 � ‘ � pi�1

2
;

ðpi�‘
2

þ ð jþ 1ÞpiÞm if ‘ is odd; 1 � ‘ < pi�1
2

;

ð2jþ 2Þpi � 1 � ‘
2
Þm if ‘ is even; p

i�1
2

< ‘ < pi � 1;

ðpiþ‘
2

þ jpiÞm if ‘ is odd; p
i�1
2

� ‘ < pi � 1;

8>>>><
>>>>:

ci;j;pi�1 ¼ �1 if pi � 1 ðmod 4Þ; ci;j;pi�1 ¼ ð2jþ 2Þpimþ 1 if pi � 3 ðmod 4Þ;
ci;j;pi ¼ ð jþ 1Þpim:

It is easy to check that the above sequence has the ðmpa; pa; pa�iÞ-property.
In particular, the 2pi partial differences from the resulting cycle (say CijÞ of type

pa�i are given by the formulas

@Cij \ mZmk ¼ � pi � 1

2
þ jpi þ s

� �
m: 1 � s � pi; s 6¼ pi � 1

2
þ "

� �
; ð2Þ

@Cij \ ðZmk � mZmkÞ ¼ �fðð jþ 1Þpi � 1 þ "Þmþ 1; ðð jþ 1Þpi þ "Þmþ 1g; ð3Þ
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where " ¼ 0 if pi � 1ðmod 4Þ; " ¼ 1 in the other case. Indeed, if pi � 1 (mod 4),

pi � 1

2
þ jpi þ 1

� �
m ¼ ci;j;ðpiþ1Þ=2 � ci;j;ðpi�1Þ=2;

pi � 1

2
þ jpi þ s

� �
m ¼

ð�1Þsðci;j;pi�s�1 � ci;j;pi�sÞ if 2 � s < p�1
2
;

ð�1Þsðci;j;pi�s � ci;j;pi�sþ1Þ if piþ1
2

< s � pi;

(

ðð jþ 1Þpi � 1Þmþ 1 ¼ ci; j;pi�2 � ci; j;pi�1 ; ð jþ 1Þpimþ 1 ¼ ci; j;pi � ci; j;pi�1:

Otherwise, if pi � 3 (mod 4),

pi � 1

2
þ jpi þ 1

� �
m ¼ ci;j;ðpi�1Þ=2 � ci;j;ðpi�3Þ=2;

pi � 1

2
þ jpi þ s

� �
m ¼

ð�1Þsðci;j;pi�s�1 � ci;j;pi�sÞ if 2 � s � p�1
2
;

ð�1Þsðci;j;pi�s � ci;j;pi�sþ1Þ if piþ3
2

< s � pi;

(

ð jþ 1Þpimþ 1 ¼ ci; j;pi�1 � ci; j;pi ; ðð jþ 1Þpi þ 1Þmþ 1 ¼ ci; j;pi�1 � ci; j;pi�2

(notice that, due to the pigeon-hole principle, no further difference is produced).
In Figure 1, we have represented two sequences which give rise to a cycle C2;0

(whose set of vertices is assumed to be Z5am; for some a � 3Þ and to a cycle C3;0

(whose set of vertices is Z3a
0
m0 ; for some a0 � 4Þ: Notice that only some vertices have

been depicted, so as to remind the ‘‘approximated’’ Hamiltonian construction.
The case pi ¼ 3 is managed by defining a sequence ðc100; c101; c102; c103Þ with the

ð3am; 3a; 3a�1Þ-property as ð0; 2mþ 1;�m; 3mÞ: Therefore, in this particular case we
have

@C10 \ mZmk ¼ �f4mg; @C10 \ ðZmk � mZmkÞ ¼ �f2mþ 1; 3mþ 1g: ð�Þ

Now we set

F ¼ fB1; . . . ;Bðp�1Þ=2g [ fCij: 1 � i < a; 0 � j � ðpi � 3Þ=2g;
X ¼ �fð jpi � 1 þ "Þm; ð jpi þ "Þm: 1 � i < a; 1 � j � ðp� 1Þ=2g;
Y ¼ �fð jpi � 1 þ "Þmþ 1; ð jpi þ "Þmþ 1: 1 � i < a; 1 � j � ðp� 1Þ=2g;

where " ¼ 0 also if pi ¼ 3 (the index j has been given two different ranges, for
convenience). Using (1), (2), (3), and ð�Þ we get

@F \ mZmk ¼ mZmk � X; @F \ ðZmk � mZmkÞ ¼ Y : ð4Þ

Now we construct the remaining cycles. If m � 5 such objects will be defined with
the help of Rosa sequences. The case m ¼ 3 is postponed.
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FIGURE 1. A cycle C2;0 and a cycle C3;0:
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Definition 2.1. Let n be a positive integer. A Rosa sequence of order n is a sequence
fr1; . . . ; rng of n integers such that

[n
i¼1

fri; iþ rig ¼ f1; 2; . . . ; 2nþ 1; 2nþ 2g � fnþ 1; sg

where s ¼ 2nþ 1 or 2nþ 2 according to whether n � 0; 3 or n � 1; 2 ðmod 4Þ;
respectively.

The following result is well known (see for example Ref. [1]).

Theorem 2.2. A Rosa sequence of order n exists for every integer n � 2:

A suitable Rosa sequence is utilized as follows. Let �1;�2; . . . ;�ðm�1Þ=2 denote the
starter cycles of the cyclic ðKm�k;CkÞ-design, as constructed in Ref. [3] (see Theorem
3.2; actually, the present cycles have been renamed). More precisely, let us set
h ¼ ðk � 1Þ=2; and define such cycles as �i ¼ ð�i0; �i1; . . . ; �i;k�1Þ with

�i;‘ ¼
‘m
2

if ‘ 6¼ k � 1 is even;

ðh� ‘þ1
2
Þm� i if ‘ is odd;

(

�i;k�1 ¼ ri þ hm� mþ 1

2
;

where fr1; . . . ; rðm�1Þ=2g is a Rosa sequence of order ðm� 1Þ=2: We have

@�1 [ 	 	 	 [ @�ðm�1Þ=2 ¼ ��1 [ 	 	 	 [��ðm�1Þ=2 ¼ Zmk � mZmk: ð5Þ

Now we define a k-cycle ��
1 by replacing certain vertices of �1: We distinguish two

kinds of vertex. If either pi � 1 (mod 4) or pi ¼ 3; with 1 � i � a� 1; then

ðaÞ �1;hþjpi�1 �! ��hþjpi�1 1 � j � ð p� 1Þ=2;

ðbÞ �1;h�jpi �! ��h�jpi 1 � j � ð p� 1Þ=2;

where

��hþjpi�1 ¼
h�jpi

2
m if jþ h is even;

hþjpi�1
2

m� 1 if jþ h is odd;

(

��h�jpi ¼
hþ3jpi�2

2
m� 2 if jþ h is even;

h�3jpiþ1
2

mþ 1 if jþ h is odd:

(

Otherwise, if pi � 3 (mod 4) and pi 6¼ 3; then

ða0Þ �1;hþjpi �! ��hþjpi 1 � j � ð p� 1Þ=2;

ðb0Þ �1;h�jpi�1 �! ��h�jpi�1 1 � j � ð p� 1Þ=2;
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where

��hþjpi ¼
hþjpi

2
m� 1 if jþ h is even;

h�jpi�1
2

m if jþ h is odd;

(

��h�jpi�1 ¼
h�3jpi�2

2
mþ 1 if jþ h is even;

hþ3jpiþ1
2

m� 2 if jþ h is odd:

(

Notice that the replacements ðaÞ; ða0Þ serve to decrease by 1 certain differences, so
as to generate the remaining multiples of m: More precisely, if either pi � 1 (mod 4)
or pi ¼ 3; then the 4 differences (from ��

1Þ related to ��hþjpi�1 are

�f��hþjpi�1 � �1;hþjpi ; �
�
hþjpi�1 � �1;hþjpi�2g ¼ �fð jpi � 1Þm; jpimg:

Such numbers replace the 4 differences (from �1Þ related to �hþjpi�1; namely

�f�1;hþjpi�1 � �1;hþjpi ; �1;hþjpi�1 � �1;hþjpi�2g ¼ �fð jpi � 1Þmþ 1; jpimþ 1g:

In the case pi � 3ðmod 4Þ; pi 6¼ 3, a similar analysis can show that the differences
�fjpim; ð jpi þ 1Þmg replace �f jpimþ 1; ð jpi þ 1Þmþ 1g: Moreover, it is not hard
to see that ��

1 has all distinct vertices. Indeed, as the only replacements (a), ða0Þ
produce some pairs of equal vertices, by the further replacements (b), ðb0Þ one
repeated vertex for each pair is changed into a new vertex, without altering the
involved differences. It can be easily checked that every resulting vertex is generated
by interchanging the two differences.

It is worth noting that the prescribed replacements are compatible with the
differences arising from the Rosa sequence. Indeed, the largest difference to modify
is smaller than every difference associated to the Rosa sequence, as the reader may
check by solving an elementary inequality.

Evidently,

Y 
 @�1 and @��
1 ¼ ð@�1 � YÞ [ X: ð6Þ

Therefore, using (4), (5), and (6) we deduce that F [ f��
1;�2; . . . ;�ðm�1Þ=2g is the

set of starter cycles of a cyclic ðKmpa ;CpaÞ-design.
Now we manage the case m ¼ 3: To this end, we first define the unique cycle

���1 ¼ ð���1;0; . . . ; ���1;k�1Þ as

���1;‘ ¼
‘m
2

if 0 6¼ ‘ 6¼ k � 1 and ‘ is even;

ðh� ‘þ1
2
Þm� 1 if ‘ 6¼ k � 2 and ‘ is odd;

(

���1;0 ¼ �3 ; ���1;k�2 ¼ �5 ; ���1;k�1 ¼ k � 3

2
	 3 � 4:

Subsequently we modify ���1 as in the general case, obtaining the cycle ����
1 (say).

The reader may check that the replacements ðaÞ; . . . ; ðb0Þ are allowed in all cases
except k ¼ 9, and that all the required differences are generated.
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Finally, if k ¼ 9 we avail ourselves of the cyclic ðK27;C9Þ-design, exhibited in Ref.
[4], namely the one generated by the starter cycles

½0; 6�9; ½0; 3; 25; 9�9; ð0; 1; 26; 3; 22; 4; 21; 8; 20Þ

of type 9, 3, 1 respectively. &

In the upper side of Figure 2, we have represented ��
1 with k ¼ 25: In the lower

side, we have sketched the case k ¼ 25;m ¼ 3: In both cases, we have put in
evidence some particular edges and vertices, according to the above constructions. In
particular, the dashed edges are related to either �i;k�1 or ���1;0; ���1;k�2; ���1;k�1:

3. THE CASE k ¼ 15

The second part of Theorem 2.1 can be stated as follows.

Theorem 2.1. (Part II). For any odd integer m � 3 there exists a cyclic ðK15m;C15Þ-
design.

Proof. In order to manage this case, we use the same techniques of the above
section. As

No: of cycles ¼ 15mð15m� 1Þ
2 	 15

¼ m� 1

2
15mþ 5mþ mþ m;

we will look for ðm� 1Þ=2 starter cycles of type 1, one of type 3 and two of type 15.
The three cycles of types 3 and 15 will be used to generate the partial differences
which are divisible by m, with some exception.

We postpone the case m ¼ 3: Assuming that m � 5, let fr1; . . . ; rðm�1Þ=2g be a
Rosa sequence of order ðm� 1Þ=2. Due to the cited Theorem 3.2 in Ref. [3], the
cycles �1�2; . . . ;�ðm�1Þ=2 defined by

�i ¼ ð0; 6m� i; m; 5m� i; 2m; 4m� i; 3m; 3m� i;

4m; 2m� i; 5m; m� i; 6m; �i; ri þ ð13m� 1Þ=2Þ

FIGURE 2. The cycles ��
1;

����
1 if k ¼ 25.
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are the starter cycles of a ðKm�15;C15Þ-design. Evidently,

@�1 [ 	 	 	 [ @�ðm�1Þ=2 ¼ ��1 [ 	 	 	 [��ðm�1Þ=2 ¼ Z15m � mZ15m: ð7Þ

Let us consider the cycle ��
1 obtained from �1 by replacing the vertex 6m� 1 with

�5mþ 1 and the vertex 6m with 6m� 1 :

��
1 ¼ ð0; �5mþ 1; m; 5m� 1; 2m; 4m� 1; 3m; 3m� 1;

4m; 2m� 1; 5m; m� 1; 6m� 1; �1; r1 þ ð13m� 1Þ=2Þ:

We have

���
1 ¼ ð��1 ��f5mþ 1; 6mþ 1gÞ [ �f5m; 6mg: ð8Þ

Furthermore, we introduce the following 15-cycles of types 15, 15, 3 respectively

A ¼ ½0;m�15; B ¼ ½0; 4m�15; C ¼ ½0; 2m; 14m; 4mþ 1; 13m; 5m�15:

It is straightforward to check that

@A [ @B [ @C ¼ �fm; 2m; 3m; 4m; 5mþ 1; 6mþ 1; 7mg: ð9Þ

Using (7), (8), (9) we can state that fA;B;C;��
1;�2; . . . ;�ðm�1Þ=2g is a set of starter

cycles of a ðK15m;C15Þ-design.
Concerning the case m ¼ 3; the 15-cycles (with vertices in Z45Þ

½0; 3�15; ½0; 6�15; ½0; 32; 3; 24; 6; 15�15;

ð0; 1; 42; 4; 39; 24; 36; 8; 34; 12; 37; 6; 40; 3; 43Þ

are easily seen to be the starter cycles (of types 15, 15, 3, 1 respectively) of a cyclic
ðK45;C15Þ-design. Thus, the statement is true for m ¼ 3 as well. &

4. CONCLUSION

Theorem 1.1, together with Theorem 1.2, enables us to state the following

Theorem 4.1. There exists a cyclic ðKv;CkÞ-design for every odd v; k such that
v � k (mod 2kÞ; with the only definite exceptions: ðv; kÞ ¼ ð9; 3Þ; v ¼ k ¼ 15;
v ¼ k ¼ pa with p prime and a > 1:

As a consequence of the above theorem and Theorem 1.3, we can settle the
existential question for all cyclic ðKv;CkÞ-designs with k ranging over all prime
powers.

Proposition 4.1. If k is a prime power, then there exists a cyclic ðKv;CkÞ-design for
any admissible v with the only definite exceptions of ðv; kÞ ¼ ð9; 3Þ; and v ¼ k with k
not a prime.

308 VIETRI



Proof. The admissible values of v for which there exists a ðKv;CkÞ-design with k a
prime power are those satisfying the following conditions:

v � 1 or kðmod 2kÞ if k is odd; v � 1 ðmod 2kÞ if k is even:

Then the result immediately follows from Theorem 4.1 and Theorem 1.3.
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