
Theoretical Computer Science 250 (2001) 83–99
www.elsevier.com/locate/tcs

A predicative and decidable characterization
of the polynomial classes of languages(

S. Caporaso a;∗, M. Zito b, N. Galesi c

a Univ. di Bari, Dip. di Informatica, v. Amendola 173, I-70126, Italy
bUniversity of Warwick, Department of Computer Science, Coventry, CV4 7AL, UK

cUniv. Politecnica de Catalunya, Dept. LSI, Barcelona, Spain

Received September 1995; revised October 1997
Communicated by J. D��az

Abstract

Characterizations of PTIME, PSPACE, the polynomial hierarchy and its elements are given,
which are decidable (membership can be decided by syntactic inspection to the constructions),
predicative (according to points of view by Leivant and others), and are obtained by means of
increasing restrictions to course-of-values recursion on trees (represented in a dialect of Lisp).
c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Computational complexity; Predicative recursion; Functional programming; Lisp

1. Introduction

1.1. Impredicativity

The naive comprehension principle states that a set exists for every collection of sets
admitting a description. According to Poincar�e [14, p. 307], a description of entity E is
impredicative if it uses a variable whose domain includes E. Impredicativity and com-
prehension, when united, produce sets of increasing size (e.g., Pow(x) := {y |y⊆ x}),
and may lead to paradoxes. In rami�ed set theory comprehension is ruled by means of
stages [16]. All sets used to form a new set must have been formed at earlier stages. If
N has been formed at �, then the real numbers R exist only at stages �¿�. Moving
by levels from N to R is the kernel of predicative [9, 17] analysis. In particular, we

(The second and third co-authors mainly contributed to this paper when they were post-graduate students
at Bari, with the �nancial support of Dip. d’ Informatica and of the Italian MURST “funds 60%”.

∗ Corresponding author.
E-mail addresses: caporaso@di.uniba.it (S. Caporaso), m.zito@dcs.warwick.ac.uk (M. Zito), galesi@lsi.

up.es (N. Galesi).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(99)00116 -4

84 S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99

used [6] in�nitary proof-theoretical methods and a relativized programming language
to study the sets reachable within !ck

1 — the Church–Kleene limit for the constructive
ordinals. Since 1990, complexity is indebted to Leivant for discovering the analogy
between, on one side, growth of sets, predicativity and comprehension, and, on the
other, growth of functions and nested recursion.
A primitive recursive (PR) description of class (function) f like

f := {(x + 1; y) | ∃z[(x; z)∈f and (x; z; y)∈ h]}

is impredicative, though harmless in itself. The critical point is reached when compre-
hension is adopted to take that description into a de�nition, thus implying the perfect
existence of f, and, via further PR’s, of very large functions.

1.2. Recursion schemes

Function f(x; y) is de�ned by PR on notations (PRN) in (the step-function) h(x; y; s),
with parameters x and principal (auxiliary) variable y(s) if we have f(x; y)= h(x; y;
f(x; by=2c)). f is de�ned by PRN with parameter substitution (PRNPS) in h and in the
tuple g if we have f(x; y)= h(x; y; f(g(x; y); by=2c)). Finally, f is de�ned by full
course-of-values recursion (VR) in h and in the decreasing functions di; : : : ; dq if we
have di(y)¡y and f(x; y)= h(x; f(x; d1(y)); : : : ; f(x; dq(y))). We say that a function
is (essentially) boolean if its range consists of objects of length 1.

1.3. Main result

Boolean PR and full VR are equivalent, with respect to the class of all elementary
functions, in the sense that this class is closed under both schemes. Since in [7], we
show that PTIMEF is not, and all sub-elementary classes do not appear to be closed under
full VR, we introduce in this paper a sequence VR3, VR2, VR1 of progressive retrictions
to full VR. Let VRi(C) denote the class of all functions which can be de�ned: (a) by a
single application of VRi to functions in C; or (b) by substitution inside functions in
VRi(C) of functions from a class I of initial functions over a tree algebra A (which
includes an analogue, called clone, of smash(x; y) := 2|x|·|y|); we have

PTIME=VR1(I); �n=VR2(�n); �n+1 =VR1(�n); PSPACE=VR3(PTIME):

Since only one recursion is needed to de�ne PTIMEF and to move to next class, these
characterizations may be viewed as analogues for the polynomial classes of Kleene’s
normal form for PR functions. However, to give to our characterizations a chance as
programming languages, in the sense discussed below, we show that PTIME is closed
under VR1, and PSPACE under VR1, VR3.
In schemes VRi no distinction between variables is made; by certain purely syntactic

conditions, such schemes produce boolean functions only. The general idea is to use
clone in order to assign the variables with initial values large enough; at each recursive
step, a single digit is returned, but, at the same time, some constructors are applied

S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99 85

to certain variables and some destructors to certain others (not necessarily the same at
each step). The key condition is that the overall balance of such con=destructions must
be negative. In the Conclusion we discuss rationale under the choice of these schemes
(in the following referred to as SVR,OR-VR,FVR) and their naturalness.

1.4. Contrast with literature

In [12] Leivant translates his original proof theoretic formulation [11] in terms of a
programming language; the idea was to assign a lower tier to the auxiliary variable of
a PRN than to the principal. If for example, s′ is used as step function to de�ne addition
by +(x′; y) :=+(x; y)′, then tier(x)¿tier(y). This avoids using +(s; s) as step function
in 2y+1 := 2y+2y; the reason is that +(s; s) is de�ned by substitution of a same variable
for two di�erently tiered arguments. The independent approach by Bellantoni and Cook
[1, 3] was more di�erent in principle than in practice. A distinction is de�ned between
safe and unsafe variable: all recursion variables of previous PRN’s are unsafe, while the
auxiliary variable of every recursion must be safe. PTIMEF is de�ned by closure under
safe PRN and under a restricted form of substitution.
Recently [4], PTIMEF with the Grzegorczyck hierarchy En at and above the elementary

level E3, have been harmonized by counting the number of times an unsafe variable is
used as principal. The same harmonization was in [5] (together with a characterization
of NP) by means of a new machine model of predicative computation. According to
a comment by Bellantoni, “the nesting depth of iterations in this model corresponds
to the number of tiers in a multi-tiered recursion system such as that of Leivant.” A
main di�erence was that Leivant’s tiers collapse at level 2, while in this system depth
n=1; 2; 3; : : : characterizes LINTIMEF, PTIMEF, E3; : : : :
The �rst predicative characterization of a space class is the de�nition of LINSPACEF

in Bellantoni’s thesis; he showed that when “unary numerals [are] used, the functions
de�nable by rami�ed recurrence are precisely the ones computable in linear space” [12].
In [13], Leivant and Marion characterize PSPACEF by using tiered PRNPS. In [2] Bellantoni
obtains the polynomial hierarchy PH by adding un-bounded minimization to PTIMEF —
a striking confutation of the widely accepted asymmetry: arithmetic hierarchy = (PR,
¬, unbounded ∃) versus PH = (PTIME, ¬, bounded ∃). We are not aware of predicative
characterizations of the classes of languages PTIME, PSPACE. A di�culty with the classes
of languages is that they are not inductive: if f is an acceptor, de�ned by PR in g and
h, function h does not need to be an acceptor too.
The proof that scheme VRi characterizes a class Ci, which was already characterized

by the recursion scheme Ri, implies the equivalence of Ri and VRi with respect to Ci.
Besides its possible interest on its own, this kind of results may be regarded as adding
robustness to the predicative approach.
Instead of mere extensional equality between functions, let us consider the intension

implicit in their algorithms. In this case, each VRi may be regarded as intensionally
stronger with respect to Ci than the homologue schemes Ri de�ning predicatively class
Ci in the reported literature. Indeed each Ri is a restriction of VRi, and this statement

86 S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99

holds even if we ignore: (a) the di�erence between trees and words; and (b) the fact
that all our variables have the same status, since all of them may be recursed upon in
a same recursion. For example: in safe or tiered PRN f(x) depends on the single value
f(bx=2c), instead than on an n-ple of the form f(bx=2t1c); : : : ; f(bx=2tqc) (t1;6tq¿1).
In PRNPS we may change the parameters, not the previous value of the principal variable.
A separation problem C1⊂ ?C2 might be better understood if we compare the strongest
scheme for C1 with the weakest one for C2.
The program of revisiting complexity in a predicative framework appears to be now

involving several scholars. An approach to complexity in terms of predicative operators
should aim at collecting as many classes as possible in a uni�ed taxonomy, based on
the same and single criterion. After all, the approach in terms of machines and resources
actually is a taxonomy. In [1, 2, 4] several classes are indeed reduced to the same rule;
but LINSPACEF does not match it, and PSPACEF is missing. In [12, 13] we can compare
two important classes, but PH is missing in this case.
Insight to a class C could be increased by a programming language allowing an

easy representation of the single elements of C. Notations, as well as �-calculus, are
not the best way, for both authors and readers, to show the structure of an algorithm.
For example (cf. Note 22), we did not succeed in extending our characterization of
PSPACE to a word-algebra (without nested recursion).
A is introduced and handled in the usual mathematical mode, but notations are

curbed in a way allowing anybody familiar with Lisp to immediately translate all
schemes and functions into the equivalent constructs and programs of this language.
Though no previous knowledge of Lisp is needed to read this paper, we feel that it may
contribute in gaining to complexity a language which o�ers the obvious advantages of
its high level, and suits, at the same time, mathematical methods of investigation like
induction on constructions and on data.

2. Preliminaries

A list is an element of the tree algebra without empty word which is de�ned by
r¿2 0-ary generators T; F; : : : (called atoms, and denoted by sequences of capital
letters and digits) and by the binary generator ◦.
We write (x; y) for ◦xy and (x1; : : : ; xn) for ◦x1(x2; : : : ; xn) (n¿3). xi is the ith

component of list y=(x1; : : : ; xn), and n is its number of components. A list is simple
if all its components are atoms. Special roles are assigned to atoms T and F (the
truth-values true and false) and to the simple list nil := (F; F) (see Example 3). For
example, nil has two components, and (nil) is not a list.
In Note 25 we show that two atoms are enough for all results in this paper.

Notation 1. Without further notice, except for emphasis:
1. i; j; m; : : : ; r are natural numbers; a; b are atoms; s; : : : ; z; s1; : : : are lists.
2. f; g; h; f1; : : : are functions, taking lists into lists; in particular, d; d1; : : : are unary.

S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99 87

By a composite notation like f[x1; : : : ; xn] we mean that the actual arguments of f
occur among the x’s.

3. Whenever a variable E has been de�ned on a class C of syntactical entities, E;E1; : : :
are tuples of elements in C; if E j has been already introduced in the discourse,
then Ej

i is its ith element, if any.

For example a; x; f ; d are tuples of atoms, lists, functions and unary functions.
If a4 is A; B; A then a42 is B, and a44 does not exist.

De�nition 2. (1) The length |x| of x is the number of atoms occurring in (the value
assigned to) x. |f[x]| is the length of f[x] when a system of values is assigned to x.
The length |E| of the tuple of variables or functions E is ∑i |Ei|.
(2) Tuple y is minimal if some yi is an atom.
(3) For every n, de�ne the following partial orders on the n-ples

u≺� w i� u is minimal; or both u and w are not minimal and |u|¡|w|;
u≺occ w i� for each 16i6n we have that ui occurs in wi:

We show substitutions in the most rudimental way, by just replacing the substituted
variables with the substituted functions. In this way we get simpler de�nitions, at the
price of a systematic ambiguity between functions and values: deciding whether f[x]
and g[y] are the same thing is left to context.

Notation 3. Given an n-ple d of unary functions, and an n-ple y, we write d[y] for
the n-ple d1[y1]; : : : ;dn[yn].

Thus, given the n-ples d[u] and y together with function f[y], we have

f[d[y]] =f[d1[y1]; : : : ;dn[yn]]:

2.1. Initial functions

The class I of all initial functions is the closure under substitution of:
(1) the predicates x=y and at[x], which are true i� x and y are the same atom, and,

respectively, x is an atom;
(2) the constructors app (appending its second argument to the �rst), cons, clone; and

the destructors H and T, returning the head and tail of their argument:

app[(x1; : : : ; xm); (xm+1; : : : ; xm+n)]= (x1; : : : ; xm+n); cons[x;y] = (x; y);

clone[x; (y1; : : : ; yn)]= (x; : : : ; x) (n times);

H ◦ xy= x; T ◦ xy=y; H[a] =T[a] = a;

we often write Hx for H[x], and Hx for Hx1; : : : ; Hxn; similarly for T;
(4) the conditional cond[x;y; z] =y(z) i� x=(6=)T ;

88 S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99

(5) the identity id[x] = x, and, for all list y, the unary constant function y[x];
we often let these functions be replaced by their results (for example, we write
not[x] := cond[x;F ;T] (instead of cond[id[x];T [x];F[x]]).

2.2. Decreasing tuples

Notation 4. (1) (x)ni is short for HT
i−1 x (16i¡n) (that is H applied to the result of

i− 1 T’s), and for Tn−1[x] (n= i); for 16i6n we have (x1; : : : ; xn)ni = xi; we omit the
superscript when n is known.
(2) For every atom a, the pre�x 〈a;y〉 is the unary function returning app[a;y] if

y is not an atom, and y itself otherwise.

De�nition 5. A decreasing tuple is an n-ple d of unary functions, such that
1. each di (i6n) is in the form di1[di2[id[x]], where di1 is a sequence of ni¿0
pre�xes, di2 is a sequence of mi¿0 destructors, and id is present only if both dij

are absent.
2. its rate of growth
(d) :=

∑
16i6n(ni − mi) is negative.

Let d be decreasing. We have that either y is minimal, and then so it is d[y] too, or
that |d[y]|= |y|+
(d). This proves the

Lemma 6. If d is a decreasing tuple and y is not minimal; we have d[y]4�y.

2.3. Boolean functions

De�nition 7. The class B of all boolean functions consists of all f[x] such that each
occurrence of every xi is in the scope of a predicate or of a constant function of the
form a[xi].

Note 8. f∈B obviously implies that f[y] is an atom. Though such atoms are not
necessarily truth-values, as the term “boolean” would suggest, we see from Note 25
that this point may be regarded as inessential.

De�nition 9. (1) Function f[x] is de�ned by substitution of g[x] inside h[x;y] if we
have f[x] = h[x; g[x]].
(2) For every class C of functions, C# is the class of all functions de�ned by

substitution of functions in I inside a function ∈ C ∪ C#.

Notice that, for every B0⊆B we have B#
0⊆B. In other words, substitutions of

initial functions inside boolean functions yield boolean functions.

Example 1. In B we may de�ne x or y := cond[x;T ; cond[y;T ;F]] and x and
y := cond[x; cond[y;T ;F];F].

S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99 89

3. Course-of-values recursion

We now introduce three VR schemes. The main di�erence is that in the �rst the value
f[y] of the function being de�ned may depend on q values f[d1[y]]; : : : ; f[dq[y]] such
that di[y] ≺� y, for all i; hence the overall number of repetitions of the step function
may be exponential in |y|. In the second, the form of the step function is drastically
restricted to an obvious equivalent of non-determinism. In the last one, we may choose
between: q=1; or else q¿1 and tuples di such that for all i6q we have di[y]¡occ y
(instead of ≺�).

De�nition 10. (1) Assume given
(a) r principal variables y, and q auxiliary variables s;
(b) a basis function g[y] and a step function h[y; s], both boolean;
(c) q decreasing r-ples d1; : : : ; dq.
(2) Function f is de�ned by

(a) short course-of-values recursion (SVR) in g; h, with decreasing tuples d i if we have

f[y] =

{
g[y] if y is minimal;

h[y;f[d1[y]]; : : : ;f[dq[y]]] otherwise:

(b) or-course-of-values recursion if it is de�ned by SVR in the form above, and the
form of the step function is s1 or : : : or sq;

(c) fast course-of-values recursion (FVR) if it is de�ned by SVR in the form above,
and either q=1, or q¿1 and no pre�x occurs in any di.

Example 2. De�ne the equality between lists by

equal[y1;y2]=

{
y1 =y2 if y is minimal;

equal[Hy] and equal[Ty] otherwise:

equal is FVR in the basis function y1 =y2, and in the step function h[y; s] = s1 and s2,
with the two decreasing couples d1j [u] =Hu and d2j =Tu (j=1; 2), which consist of
destructors.

In the following we use the SVR and OR-VR schemes to characterize PSPACE and NP.
However, the essence of the related proofs may be seized by the following examples
showing how the acceptors for a PSPACE- and for an NP-complete language may be
de�ned by SVR or OR-VR, applied to basis functions in PTIME.

Notation 11. To improve readability we often display a de�nition like

h[x] := cond[f1[x]; g1[x]; cond[: : : ; cond[fn[x]; gn[x]; gn+1[x]] : : :]]

90 S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99

by means of a, so to say, de�nition by cases of the form

h[x] :=

∣∣∣∣∣∣∣∣∣∣

g1[x] if f1[x]

: : : : : :

gn[x] if fn[x]

gn+1[x] otherwise:

Example 3. QBF and SVR. Let the code �∗ for the quanti�ed boolean formulas � be
de�ned by (�; �1; : : : are literals, �i is i in binary, OR; EX; : : : are atoms) 0∗=T ; 1∗=F ;
�∗i =(VAR; �i); ¬�∗=(N; �∗); ∀��∗=(ALL; �∗; �∗); ∃��∗=(EX; �∗; �∗); � ∧ ∗
=(AND; �∗; ∗); � ∨ ∗=(OR; �∗; ∗). De�ne

qb[x; u; z] :=

if z=T; F then z else val[x; u] if x; u; z minimal∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qb[x; 〈L; u〉; (z)2] and qb[x; 〈R; u〉; (z)3] if (z)1 =AND

qb[x; 〈L; u〉; (z)2] or qb[x; 〈R; u〉; (z)3] if (z)1 =OR

qb[x; 〈T ; u〉; (z)3] and qb[x; 〈F ; u〉; (z)3] if (z)1 =ALL

qb[x; 〈T ; u〉; (z)3] or qb[x; 〈F ; u〉; (z)3] if (z)1 =EX

not[qb[x; u; (z)2]] if (z)1 =N

qb[x; u; (z)1] if (z)1 =VAR

otherwise:

We now outline the computation implicit in the de�nition above. x is the instance to
be decided, and it is the intended initial value for z; u is the history of the current
value of z. qb parses z, and calls itself recursively, by assigning a subformula to z, and
by up-dating the history with: (i) atom L(R) if z begins by a binary connective, and
we are choosing the left (right) subformula; (ii) atom T (F) if z begins by a quanti�er
Q�, and we are assigning true (false) to �. Assume de�ned (in the class PL of next
section) a function val[x; u] which: uses the history u to identify an occurrence �̂ of
a literal �; localizes the innermost quanti�er Q� having �̂ in its scope; recovers from
u the truth-value V assigned to � (and, therefore, to �̂) when Q� was cancelled; and
returns V . When the parsing reduces z to a constant or to a literal, qb returns it, or,
respectively, uses val to return the truth-value previously assigned to that literal.
The above de�nition is by SVR, with step function de�ned by 6 cases, and 10 de-

creasing tuples. The ith case consists of a boolean function in two (i64) auxiliary
variables or in one (i=5; 6). The �rst 8 tuples are given by

d ij[y] = id[y]; 〈Zj;y〉; (y)l;

where if i=1; 2 then Zj =L; R; l=2; 3; and where if i=3; 4 then Zj =T; F ; l=3. We
have
(d ij)= − 1 (two destructors and a pre�x in the �rst 8 of them; an id and one
destructor in the last two).

S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99 91

Language QBF is accepted (cf. De�nition 14) by

qbf [x] := qb[x; nil; x];

where nil=(F; F) is used (in this and in further constructions) as a dummy su�x,
preventing inappropriate exits from a recursion, due to atomic values. Accordingly,
our functions are tacitly assumed to take nil as a not meaning-conveying entity (this
applies for example to function val above).

Example 4. SAT and OR-VR. Let us code the sentential formula � by a list x, whose
jth component is L; R; AND; OR; NOT; �i if the jth symbol of � is, respectively, a
parenthesis, a connective or literal �i. Assume de�ned (in the class PL of next section)
a function true[x; u] which, by input a list of atoms u and x: (a) assigns true (false) to
the ith literal of x if the ith component of u is (not) T ; (b) returns T (F) if x is true
(false) under this truth-assignment. De�ne by ORVR in true and h[x; u; z; s] = s1 or s2,
with 4-ples (whose rate of growth is -1) id[y]; 〈V ; u〉; (z)2 (V =T; F)

st[x; u; z1; z2]=

{
true[x; u] if x; u; z is minimal;

st[x; 〈T ; u〉; (z)2] or st[x; 〈F ; u〉; (z)2] otherwise:

De�ne sat[x] := st[x; nil; x; x].
The computation implicit in this de�nition is similar to and simpler than the one

for QBF. u is a truth-assignment, constructed recursively. At each step, st calls recur-
sively itself twice: in the �rst call it adds a T to u, in the other it adds an F . Let
n be the number of components of x. When the recursion height reaches n, function
true is applied to every truth assignment of length 6n. The number of distinct lit-
erals occurring in the formula coded by x is obviously 6n). Thus SAT is accepted
(cf. De�nition 14) by sat.

4. Characterizations

Notation 12. Given a class of functions C and a recursion scheme R, we write R(C)
for the class of all functions de�nable by a single R in functions in C; and we write
R+(C) for the closure under R of R(C).

De�nition 13. De�ne (cf. Notation 3.6)

PTIME Lisp(PL; also �p
1L)= FVR(I)#;

PSPACE Lisp(PSL)= SVR(PL)#;

�p
nL=ORVR(�p

nL)
#;

�p
n+1L=FVR(�p

nL)
#;

PH Lisp(PHL)= ORVR
+(PL)#:

92 S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99

Observe that f∈C does not imply not[f[x]]∈C. We have SAT ∈�p
2L, and SAT ∈

PHL, since we may de�ne by both FVR and ORVR

not∗[x] =
{

not[x] if x is minimal;

F or F otherwise:

De�nition 14. f ∈ B accepts language L if we have f[x] =T i� x∈L.

Next theorems prove that (1) all classes above are equivalent (in the sense of last
de�nition) to the complexity classes their names suggest; (2) class PL is closed under
FVR, while PSL is closed under FVR and SVR.

5. Simulation by TMs

Lemma 15. PSPACE and PTIME are respectively closed under SVR and FVR.

Proof. Let f[y] be de�ned by SVR (FVR), with q decreasing tuples, r principal variables,
and with all other notations like in De�nition 10. Let �(y) be the q-ary tree: (a) whose
root is (labelled by) y; (b) whose leaves are minimal; and (c) whose internal nodes z
have q children di[z] (16i6q). Its height is 6|y|.

Case 1: f is de�ned by SVR with q¿1 or by FVR with q=1.
Simulation: Let g; h; di be simulated by the TMs G; H; Di. f is simulated by a TM

F , using the Di to visit �(y) in the mode known as post-order. It records in a stack �1
the sequence of recursive calls (under the form of records containing the current values
of the principal variables and the number i of the decreasing tuple yielding them); and
it stores in a second stack �2 the values f[di[: : :]] needed to compute f[: : :].
Space: In addition to space used by G; H; Di ; F needs space for the stacks; the

amount for �1 is quadratic in |y|, since we have to store 6q|y| records; and since, by
Lemma 6, the length of each record is 6|y|+ log(q). When in �1 there are m6q|y|
records, in �2 there are 6qm6q2|y| values of f; thus, since these values are atoms,
|�2| is linear in |y|.
Time: If q=1, then �2 is always empty; �(y) has a single path of length 6|y|,

visited top-down in a straightforward way. Thus, runtime is polynomial, since G;H
and D are applied less than |y| times.
Case 2: f is de�ned by FVR with q¿1 tuples consisting of destructors and id’s

only. Observe that the number of all lists which can be obtained from z by means of
destructors is 62|z|. Hence, for a given r-ple y, the number of the possible values for
all the possible di[y] is 62r|y|r . We use a TM F∗, which di�ers from the F above by
the following changes. Stack �2 is replaced by a table T in which all couples z; f[z]
already computed are stored. When F∗ visits a node � associated with z, it looks �rst
in T for z and: (a) if the corresponding value is already in T , it returns it, and moves

S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99 93

to the brother or father of �, ignoring the nodes below it; otherwise (b) it continues
to visit �(y) in the same way as F , and we have the

Claim. F∗ adds a new couple to T after visiting at most 6q|z| nodes.

Proof of the claim. Assume (ad absurdum) not empty the set � of all nodes not
satisying the claim. Since � is �nite there exists a z∈� which is minimal with respect
to the partial order ≺�. Observe that z is not a leaf, and there exists j6q, such that
the jth son u of z is not in T (since else F∗ computes f[x; z], and adds it to T , after
respectively 0 or q visits). But then, since u ≺� z, we have u 6∈�; hence, F∗ adds a
new value to T before j + q|u|6q|z| visits.
Time is now polynomial in y, since F∗ applies G; H; Di for less than 2r|y|r times;

since, by the claim, �lling T requires at most q|y| · 2r|y|r searches through a table of
length 6|y|2r|y|r; and since, when T is full, it returns f[y].

Theorem 16. We have PL⊆ PTIME, and PSL⊆ PSPACE.

Proof. By last lemma, by closure of PTIME and PSPACE under substitution, and since all
functions in I can be simulated in DTIME(n2).

6. Simulation of TMs

TMs, tapes, codes. We restrict ourselves to tapes and (not empty) words X over
alphabet {0; 1}. The code x for X is the simple list whose ith component is 0(1) i�
the i-th last bit of X is 0(1). Thus, since we always have #(x)= |x|= |X |, we may
identify words and tapes with their codes. This allows saying, for example, that a
TM, by input x∈L, stops operating within time T (|x|). In addition to the semi-tape
and to the p + 1 ordinary states 0; : : : ; p of ordinary TMs, an oracle TM has: (a) 3
oracle states p + 1; : : : ; p + 3); and (b) a push-down oracle tape O. When in state
p+ 1 (p+ 2), an oracle TM pushes the observed symbol (kills the top symbol), and
enters state p. When in state p+3, it enters state p−1 (p−2) if O is (not) accepted
by the oracle. All TMs, by input x on their �rst |x| cells, start operating in state 1
over a 0 in cell |x| + 1, with O empty; they accept by writing a 0 in some cell, and
by entering, in state 0, an endless loop over that cell.
We use 1 and 0 for the tape symbols, plus 2(p + 4) atoms X i

j . An atom in this
form represents the core of an istantaneous description, in the sense that it says that
M scans a j and is in state i.
Given M; Pii∗

jj∗ and Pii∗
j;± (i6p; i∗6p+3; j; j∗61) are predicates, which are true

i�, when X i
j is the current core, (their argument) M enters state i∗, and, respectively,

writes j∗, moves right, left. P0000 ensures that, when M accepts, the cores of its id’s
reduce to X 0

0 .
MA is a TM with oracle A, and cA is a boolean function accepting A.

94 S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99

Lemma 17. For every MA there exists function simMA ∈ FVR(I∪{cA}) accepting x
and a list y whose components are all 0; i� MA accepts x within |y| steps.

Proof. Let the boolean-ization f̃ of a given f be given by f̃[x] := cond[f[x];T ;F]:
De�ne (one line for each system of values for i; i∗; j; j∗; l; r, de�ned as above)

sm[w1;w2;w3; z; u1; u2] :=

∣∣∣∣∣∣
T if (z)1 =X 0

0

F otherwise
if w; z; u is minimal; else:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s̃m[w; 〈X i∗
j∗ ; Tz〉; Tu] if (z)1 =X i

j and Pii∗
jj∗

s̃m[〈j;w1〉; T w2;w3; 〈X i∗
r ; Tz〉; Tu] if adjlr[w1;w2]; (z)1 =X i

j and Pii∗
j;+

s̃m[T w1; 〈j;w2〉;w3; 〈X i∗
l ; Tz〉; Tu] if adjlr[w1;w2]; (z)1 =X i

j and Pii∗
j;−

s̃m[w1;w2; 〈j;w3〉; 〈Xp
j ; Tz〉; Tu] if (z)1 =Xp+1

j

s̃m[w1;w2; T w3; 〈Xp
j ; Tz〉; Tu] if (z)1 =Xp+2

j∣∣∣∣∣∣
s̃m[w; 〈Xp−1

j ; Tz〉; Tu] if cA[w3]=T

s̃m[w; 〈Xp−2
j ; Tz〉; Tu] if cA[w3] 6= T

if (z)1 =Xp+3
j

where adjlr[w1;w2] :=Hw1 = l and Tw2 = r.
De�ne further simMA [x;y] := sm[x;y; nil; 〈X 1

0 ; nil〉; app[y;F]; app[y;F]]]:
Variable w1 gives the part of the tape, at the left of o, read backward (so that its

�rst atom gives the symbol at the left of o); w2 and w3 give the part at the right and
O, read in the usual way; thus functions adjlr are accepting i� l; r are the symbols
adjacent to o. We have z=(X; nil) if X is the current core. The u’s are counters.
Assume that, by step t ¡ |y|, MA is in state i6p, scans a j, and that the cells at the
left and right of o contain, say, a 0 and a 1, respectively. Assume further that we have
Pii∗
j;+, and that, therefore, M

A has to move right. The line corresponding to l=0; r=1
applies. It says that now o=1, the tail of w2 is at the right of o, while j is the head
of the part of tape now at its left. Assume that we are visiting o for the �rst time;
since t ¡ |y| and since y consists of zeroes, we have o=0.
By scanning the above de�nition, we see that all functions used to construct sm, but

cA, are in I. To see that sm is FVR in these functions, observe that the rate of growth
of all tuples used for the recursive calls is 6 − 1 (3 or 2 destructors versus 2 or 1
pre�x).
The lemma follows by observing that if y is simple, then its second and third

occurrences among the arguments of simMA reduce to an atom after |y| recursive steps,
and that the �rst copy of y ensures room enough to move right |y| times.

Lemma 18. For every j there exists f�
j [x]∈I; which associates each simple list with

a list of length ¿j|x| j + j; whose components are all 0.

S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99 95

Proof. De�ne f�
j [x] := clone[0; clone[x; x]]. If x is simple we have that |f�

j [x]|= |x|2.
The result follows, since addition in unary is ensured by function app, and since I is
closed under substitution.

Theorem 19. We have PTIME⊆PL.

Proof. Let language L be given, together with an instance X , coded by x. Let L be
accepted within time jnj + j by the ordinary TM M respecting the conventions at the
beginning of this section. By last two lemmas, L is accepted by simM [x;f�

j [x]]. This
function is in FVR(I)#, since it is de�ned by substitution of a function in I inside a
function ∈ FVR(I) (since cA is absent).

Theorem 20. PL is closed under FVR.

Proof. By Theorem 19, since, by Lemma 15, PTIME is closed under this scheme.

Theorem 21. We have PSPACE⊆PSL.

Proof. Let language L∈ PSPACE be given, together with a function � reducing L to
QBF. Code (the value of) �(x) and de�ne the history u of a subformula of � like
in Example 3. Let us denote by u the formula whose history is u, and by Zxu its
outermost atom. We can de�ne the following poly-time TMs:
(a) Mprs, which is a parser, taking x; u into Zxu; for technical reasons we �nd expedient

to assume that Mprs, when a literal is reached, stops its parsing to enter an invariant
cycle always returning atom VAR;

(b) M�, which computes �(x) within time n|x|n+ n, for some n; and Mprs;� which, by
input x; u, yields the output of Mprs by input �(x); u;

(c) Mvl which, by input x; u, returns T (F) if u is the history of a true (false) occur-
rence �̂ of literal � in �(x).

By Theorem 19 we can de�ne in PL the functions main[x; u] =Zxu and val∗[x; u]
simulating the TMs Mprs(M�(x); u) and Mvl. De�ne g[x; u; z1; z2]=



if z=T; F then z else val[x; u] if x; u; z minimal; else:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g[d11[x; u; z]] and g[d12[x; u; z]] if main[x; u] =AND

g[d41[x; u; z]] or g[d42[x; u; z]] if main[x; u] =EX

similarly if main[x; u] =OR; ALL

not[g[x; u; Tz]] if main[x; u] =N

g[x; u; Tz] if main[x; u] =VAR;

96 S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99

where, for example, d11[v] = id; 〈L; v〉;Tv;Tv; d42[v] = id; 〈F ; v〉;Tv;Tv. De�ne further
(cf. Lemma 18)

f[x] = g[x; nil;f�
n [x];f

�
n [x]]:

By an input in this form, g behaves in the following way. While z1 is not an atom
(that is for n|x|n+n times) and while u is not a literal, it queries Zxu to main. Assume
for example main[x; u] =EX . We then have

g[x; u; z] = g[x; 〈T ; u〉; Tz] or g[x; 〈F ; u〉; Tz]:

When a literal is found, Mprs starts returning identically VAR, and g enters an invariant
cycle which leaves un-changed the history. When z1 reduces to an atom, a truth-value
is returned.

g is de�ned by SVR in val∗; main∈PL and is, therefore, in PSL. The result
follows, since f is de�ned by substitution of functions in I inside functions in PSL.

Note 22. This proof is crucial for our choice of a tree-algebra. Other proofs in this
paper can be adapted to a word algebra having a pairing and two unpairing functions
among its initial functions. However, if pairing is de�ned via concatenation (see the
ternary notations used by Schwichtenberg [18]), un-pairing is di�cult with functions
whose ranges reduce to atoms: we did not succeed in accepting QBF with un-nested
analogues for notations of SVR. If codes are de�ned by means of triangular numbers,
instead of word-algebraic constructors, then reduction of L∈ PSPACE to QBF requires an
exponential space, which is incompatible with the proof of last theorem.

Theorem 23. PSL is closed under FVR and SVR.

Proof. By Theorem 21, since by Lemma 15 PSPACE is closed under these schemes.

7. Equivalence of the two hierarchies

Theorem 24. (1) For all n; �p
n and �p

n are resp. equivalent to �p
nL and �p

nL.
(2) The polynomial hierarchy and PHL are equivalent.

Proof. (1) Induction on n. We have to show four points.
(i) �p

n ⊆�p
nL. Basis. By Theorem 16. Step. Let L be accepted in polynomial time by

ML∗
, with L∗ ∈�p

n . By the ind. hyp. cL∗ is de�nable in �p
nL. The result follows

by Lemma 17, by arguments like in proof of Theorem 19.
(ii) �p

n ⊆�p
nL. Let L∈�p

n be given. There exist j and L∗ ∈�p
n such that

x∈L ⇔ ∃ywz(|y|6j|x|j + j and y= 〈w; z〉 and words x; w belong to L∗):

S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99 97

By part (i) of this proof, cL∗ is de�nable in �p
nL. De�ne

f[x;y; u1; u2]=

{
cL∗ [x;y] if x;y; u is minimal;

f[x; 〈1;y〉; Tu] or f[x; 〈0;y〉; Tu] otherwise:

The above de�nition is by ORVR in cL∗ , by reasons repeteadly used in previous proofs
and examples. We then have cL[x] =f[x; nil;f�

j [x];f
�
j [x]]:

(iii) �p
nL⊆�p

n . Let f[x; y] be de�ned by ORVR in cL ∈�p
nL and h, with decreasing

tuples dij. A nondeterministic TM ML
f can be de�ned, which: (a) iterates an

invariant cycle, including, at each or of hi, the choice of a j, and the simulation of
dij; (b) at each call to cL, queries the oracle. Runtime for ML

f is polynomial (6|y|
simulations of functions dij, and one application of cL for each nondeterministic
computation).

(iv) �p
nL⊆�p

n . Closure of �p
n under de�nitions by FVR can be proved by the same

arguments as in proof of Lemma 15.
(2) PHL⊆ PH follows by part (1). To prove the other half, let L∈ PH be given.

There exist a relation R(y; x; z), a polytime boolean function � and a j such that we
have

R(y; x; z) ⇔ Q1(y1)6z : : : Qm(ym)6z(�(y; x)); Qi=∃;∀; Qi 6= Qi+1;

x∈L ⇔ R(y; x; j|x|j + j):

Let cR[x; z] be the characteristic function of R. We have that cR is de�nable in PHL

(by part (1) if Q1 =∃; by part (1) and by recalling that negation can be de�ned by
ORVR if Q1 =∀). The result follows by de�ning (by substitution of a function in I

inside a function in PHL)

cL[x] = cR[x;f�
j [x]]:

Note 25. Two atoms only are su�cient to prove our characterizations. To this purpose,
in proofs of Lemma 17, and Theorems 21 and 24 replace: (1) all atoms Z like X i

j or
AND; VAL; : : : by simple lists xZ of a pre-assigned length n (depending on the simulated
TM, in the former case); (2) some destructors and pre�xes in the decreasing tuples
by sequences of n destructors and pre�xes — this does not a�ect the rates of growth;
(3) some tests of the form y=Z by sequences of n alternate cond’s and destructors
deciding test y= xZ .

8. Conclusion

A main di�erence between variants of VR is the adopted order. For reasons men-
tioned in the Introduction, full VR (that is, with an order isomorphic to ordinary ¡

98 S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99

on natural numbers) is unfeasible. Stricter orders have, therefore, to be selected. If
comparability and naturalness have to be the main criteria, then the obvious candi-
date is x≺� y=df|x|¡|y|. If applications have to be considered too (and VR may be
regarded as a mathematical explanation of de�nability of recursive procedures), then
“x occurs in y” quali�es as adequate sub-order of ≺�. If parsing is a worth re�nement
of mere occurrence, then a tree-algebra better copes with data’s very structure than the
kind of coding tricks more or less unavoidable with word algebras. Add that certain
asymmetries may disturb the simultaneous treatment of notations with ≺� and ≺occ,
since, for example, we may have |2x=23y=252z|¿|2x3y5z|.
A �rst validation of our vote in favour of trees (and Lisp) may come by compar-

ing our simple-minded proofs with, for example, the di�culty of those in [3], or in
the implementation of Cobham’s ideas in [15], p. 126. Or it may come by scanning
[10, Sections 51, 57]: all algorithms for the �rst G�odel theorem and for predicate T
(a universal function) are written in a language quite close to PL (the only essential
change is replacing all bounded quanti�cations by an easy FVR de�nition of a function
for search of sub-expressions).

References

[1] S.J. Bellantoni, Predicative recursion and computational complexity, Ph.D. Thesis, Toronto, 1992.
[2] S.J. Bellantoni, Predicative recursion and the polytime hierarchy, in: P. Clote, J. Remmel (Eds.), Feasible

Mathematics II, Birkh�auser, Basel, 1994.
[3] S. Bellantoni, S. Cook, A new recursion-theoretic characterization of the poly-time functions, Comput.

Complexity 2 (1992) 97–110.
[4] S.J. Bellantoni, K.-H. Niggl, Ranking primitive recursion: the low Grzegorczyck classes revisited, 1997,

submitted for publication.
[5] S. Caporaso, Safe Turing machines, Grzegorczyk classes and Polytime, Int. J. Found. Comp. Sci. 7.3

(1996) 241–252.
[6] S. Caporaso, G. Pani, Undecidability vs trans�nite induction for the consistency of hyperarithmetical

sets, Arch. Math. Logik Grundig. 22 (1982) 19–26.
[7] S. Caporaso, M. Zito, On a relation between uniform coding and problems of the form DTIME(F)= ?

DSPACE(F), Acta Inform. 35 (1998) 1–8.
[8] A. Cobham, The intrinsic computational di�culty of functions, in: Y. Bar Hillel (Ed.), Proc. Int. Conf.

Logic, Methodology and Philosophy Sci., North-Holland, Amsterdam, 1965, pp. 24–30.
[9] S. Fefermann, Systems of predicative analysis I and II, JSL 29 (1964) 1–30 and JSL 33 (1968)

193–200.
[10] S.C. Kleene, Introduction to Metamathematics, North-Holland, Amsterdam, 1952.
[11] D. Leivant, A foundational delineation of computational feasibility, Proc. 6th Annual IEEE Symp. Logic

in Computer Science, IEEE Computer Society Press, Silver spring, MD, 1991.
[12] D. Leivant, Rami�ed recurrence and computational complexity I: word recurrence and polytime,

in: P. Clote, J. Remmel (Eds.), Feasible Mathematics II, Birkh�auser, Basel, 1994.
[13] D. Leivant, J.-Y. Marion, Rami�ed recurrence and computational complexity II: substitution and

polyspace, in: J. Tiuryn, L. Pacholski (Eds.), Computer Science Logic, Lecture Notes in Computer
Science, Vol. 133, Springer, Berlin, 1994, pp. 486–500.

[14] H. Poincar�e, Les math�ematiques et la logique, Rev. M�etaphis. Morale 14 (1906) 297–317.
[15] H.E. Rose, Subrecursion: Functions and Hierarchies, Oxford Press, Oxford, 1984.

S. Caporaso et al. / Theoretical Computer Science 250 (2001) 83–99 99

[16] J.R. Schoen�eld, Axioms of set theory, in: J. Barwise (Ed.), Handbook of Mathematical Logic,
North-Holland, Amsterdam, 1977.

[17] K. Sch�utte, Beweistheoretische Untersuchung der Verweigten Analysis, Math. Ann. 124 (1952) 123–147.
[18] H. Schwichtenberg, Rekursionszahlen und die Grzegorczyk-Hierarchie, Arch. Math. Logik Grundig

12 (1969) 61–74.

