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Abstract. We study the complexity of proving the Pigeon Hole Principle (PHP) in a mono-
tone variant of the Gentzen Calculus, also known as Geometric Logic. We prove a size-depth
trade-off upper bound for monotone proofs of the standard encoding of the PHP as a mono-
tone sequent. At one extreme of the trade-off we get quasipolynomial-size monotone proofs,
and at the other extreme we get subexponential-size bounded-depth monotone proofs. This
result is a consequence of deriving the basic properties of certain monotone formulas com-
puting the Boolean threshold functions. We also consider the monotone sequent expressing
the Clique-Coclique Principle (CLIQUE) defined by Bonet, Pitassi and Raz [9]. We show
that monotone proofs for this sequent can be easily reduced to monotone proofs of the one-
to-one and onto PHP, and so CLIQUE also has quasipolynomial-size monotone proofs. As
a consequence of our results, Resolution, Cutting Planes with polynomially bounded coeffi-
cients, and Bounded-Depth Frege are exponentially separated from the monotone Gentzen
Calculus. Finally, a simple simulation argument implies that these results extend to the
Intuitionistic Gentzen Calculus. Our results partially answer some questions left open by
P. Pudlák.
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1 Introduction

One of the main approaches to attack the NP �= co-NP question is that of studying the
length of proofs in propositional calculi. In a well-known result, Cook and Reckhow

[17] proved that if all propositional proof systems are not polynomially bounded, that
is, if they have families of tautologies whose shortest proofs are superpolynomial in
the size of the formulas, then NP �= co-NP. In spite of the simplicity of propositional
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proof systems such as the Hilbert Calculus (Frege system) or the Gentzen Sequent
Calculus, we are admittedly far at present from proving that these systems are not
polynomially bounded. Surprisingly, one of the main difficulties is that there are not
very many tautologies candidate to be hard for these systems.

Nevertheless several important results have been obtained for less powerful but
nontrivial proof systems. Strong lower bounds are actually known for systems such as
Resolution [19, 14, 6, 36, 15], Bounded-Depth Frege [1, 7, 27, 24, 4], and Polynomial
Calculus [32]. The common point among these results is the family of formulas that
is considered to give the exponential lower bounds. These formulas encode a basic
combinatorial principle known as the Pigeon Hole Principle (PHPm

n ), saying that
there is no one-to-one mapping from a set of m elements into a set of n elements,
whenever m > n. Resolution was the first proof system for which an exponential lower
bound was proved for the size of refutations of the PHPn+1

n , a well-known result due
to Haken [19]. This result was generalized to PHPm

n , for m linear in n, by Buss

and Turan [14]. The same formula, PHPn+1
n , was later used by Ajtai [1] to give a

superpolynomial size lower bound for a system that subsumes Resolution: Bounded-
Depth Frege. This result was simplified and improved up to a subexponential lower
bound by Beame et al. [7, 27, 24, 4]. The complexity of the PHPm

n is also well-
studied in algebraic-style propositional proof systems. Recently, Razborov [32] (see
also [20]) showed that PHPm

n is also hard for the Polynomial Calculus (notice that
Riis [34] showed that a different encoding of PHPn+1

n restricted to bijective maps has
constant degree proofs in the Polynomial Calculus). Actually, the exact complexity

of Resolution refutations of PHPm
n , when m ≥ n2

logn
, remains an interesting open

problem [6, 13, 33]. Thus, in spite of its simple intuitive meaning, PHPn+1
n is one of

the most fruitfully used principles to give proof complexity lower bounds. For this
reason, in studying the complexity of a new proof system, it is important to consider
the complexity of proving PHPn+1

n as a first step. After Haken’s lower bound, it
was conjectured that PHPn+1

n would also be hard to prove for more powerful proof
systems, such as Frege. The conjecture was refuted by Buss [10], who exhibited
polynomial-size proofs in Frege, or equivalently, in the Gentzen Calculus. It is also
known that PHPn+1

n has polynomial-size proofs in Cutting Planes [18], and that the
slightly weaker form PHP2n

n has quasipolynomial-size proofs in Bounded-Depth Frege
[26, 25].

Monotone proof systems, that is, proof systems restricted to propositional formulas
over the monotone basis {∧,∨}, were considered by Pudlák and Buss [30], and more
recently, by Pudlák [28], and Clote and Setzer [16]. There are several alternative
definitions of monotone proof systems. Here we consider the Monotone Gentzen
Calculus, called Geometric Logic in [28]. Although the only monotone tautological
formula is the true constant 1, Pudlák suggests the study of tautological sequents of
the form A→ B, where A and B are Boolean formulas built over the monotone basis
{∧,∨}. Several interesting combinatorial principles can be put in this form, among
them PHPn+1

n .

The correspondence between circuit complexity classes and proof systems inspires
new techniques to obtain both upper and lower bounds for proofs. Examples are the
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lower bound of Beame et. al. [4] for Bounded-Depth Frege (also known as AC0 Frege),
in which they used an adaptation of Hastad’s Switching Lemma, and the polynomial
upper bound of Buss [11] for PHPm

n in Frege (or NC1-Frege) using an NC1 circuit
for addition. While strong lower bounds for monotone circuits were given more than
ten years ago [31, 3] non-trivial lower bounds for monotone proof systems are not
known yet. Hence, one of the basic questions is whether PHPn+1

n can be used to
obtain exponential lower bounds for these systems. This question is also important
since the (non-monotone) Frege proofs of PHPn+1

n given by Buss [10] formalize a
counting argument, and it is not clear how to formalize counting arguments into
short monotone proofs. See the paper by Pudlák [28] for a further discussion on this
topic (see also [16]).

In this work we exhibit a size-depth trade-off upper bound for monotone proofs
of PHPn+1

n in the Monotone Gentzen Calculus. At one extreme of the trade-off
we get quasipolynomial-size monotone proofs of PHPn+1

n . At the other extreme of
the trade-off we get subexponential-size bounded-depth monotone proofs of PHPn+1

n .
This comes close to known lower bounds for Bounded-Depth Frege (or LK) of the
Pigeon Hole Principle [22], although the dependence on the depth parameter is still
substantially different in upper and lower bounds.

In general, the trade-off may be expressed as follows: for every s ≤ n, the PHPn+1
n

admits monotone proofs of size ns logs(n) and depth 2 logs(n). The abovementioned
extremes occur when s = 2 and s = nε, respectively. To obtain this result, we con-
sider explicit monotone formulas to compute the Boolean threshold functions, that
in the extreme cases mentioned above, have quasipolynomial-size in one case, and
subexponential-size and bounded-depth in the other. While polynomial-sizemonotone
formulas are known for these functions [37, 2], Pudlák remarks that it is not clear
whether their basic properties have short monotone proofs. First, Valiant’s con-
struction [37] is probabilistic, and therefore, it does not provide any explicit formula
to work with. Second, the sorting network of Ajtai, Komloś, and Szemerédi [2]
makes use of expanders graphs, and there is little hope that their basic properties
will have short monotone proofs. Here we address the difficulty raised by Pudlák by
considering explicit monotone formulas thn

k (x1, . . . , xn) to compute threshold func-
tions. We show that the basic properties of thn

k (x1, . . . , xn) admit monotone proofs
within the specified trade-offs. In particular, we prove that for any permutation π the
sequent thn

k(x1, . . . , xn) 	 thn
k (xπ(1), . . . , xπ(n)) has monotone proofs of the required

size.

We remark that our proofs can be put in tree-like form, but the straightforward
details are left to the interested reader. For non-monotone Gentzen Calculi, Kraj́ıček

[21] proved that tree-like proofs are as powerful as the unrestricted ones. It is not
known at present, however, whether this holds for the monotone case since the same
technique does not apply.

We also consider the formula CLIQUEn
k expressing the (n, k)-Clique-Coclique

Principle, used by Bonet, Pitassi and Raz [9], and for which an exponential
lower bound in Cutting Planes with polynomially bounded coefficients (poly-CP) was
proved (notice the difference with the Clique Principle with common variables intro-
duced by Kraj́ıček in [23], and used by Pudlák in [29] to obtain exponential lower
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bounds for Cutting Planes with unrestricted coefficients; the latter is not a monotone
tautology of the form A → B). We show that monotone proofs for the monotone
sequent obtained from the formula CLIQUEn

k can be reduced to monotone proofs of
the onto version of PHPk

k−1, which in turn can be easily reduced to the standard
PHPk

k−1. This way, we obtain quasipolynomial-size monotone proofs of CLIQUEn
k .

Our results imply that Resolution, Bounded-Depth Frege, and poly-CP are ex-
ponentially separated from the (tree-like) Monotone Gentzen Calculus. Finally, as
remarked in [28], a simple simulation argument shows that every proof in the Mono-
tone Gentzen Calculus, is also a proof in the Intuitionistic Gentzen Calculus. Hence,
all our results also hold for this system.

2 Preliminaries

A monotone formula is a propositional formula without negations. The Monotone
Gentzen Calculus (MLK), also called Geometric Logic [28], is obtained from the stan-
dard Gentzen Calculus (LK [35]) when only monotone formulas are considered, and
the negation rules are ignored. For completeness, we present the rules and axioms of
MLK. For monotone formulas A and B, and sequences of monotone formulas Γ, Γ′,
∆, and ∆′:
Axioms:

A 	 A , 0 	 Γ
,

Γ 	 1
.

Left Structural Rules:
Γ, A, A,∆ 	 Γ′

Γ, A,∆ 	 Γ′ ,
Γ, A, B,∆ 	 Γ′

Γ, B, A,∆ 	 Γ′ ,
Γ 	 Γ′

Γ, A 	 Γ′ .

Right Structural Rules:
Γ′ 	 Γ, A, A,∆
Γ′ 	 Γ, A,∆

,
Γ′ 	 Γ, A, B,∆
Γ′ 	 Γ, B, A,∆

,
Γ′ 	 Γ

Γ′ 	 Γ, A
.

Cut Rule:
Γ 	 ∆, A A,Γ′ 	 ∆′

Γ,Γ′ 	 ∆,∆′ .

Left Logical Rules:
A,B,Γ 	 ∆

(A ∧ B),Γ 	 ∆
,

A,Γ 	 ∆ B,Γ′ 	 ∆′

(A ∨ B),Γ,Γ′ 	 ∆,∆′ .

Right Logical Rules
Γ 	 ∆, A, B

Γ 	 ∆, (A ∨ B)
,

Γ 	 ∆, A Γ′ 	 ∆′, B
Γ,Γ′ 	 ∆,∆′, (A ∧ B)

.

As usual, a proof in MLK is a sequence of sequents, or lines, of the form Γ 	 ∆ each
of which is either an initial axiom, or has been obtained by a rule of MLK from two
previous lines in the sequence. The sequence constitutes a proof of the last sequent.
When we restrict the proofs in such a way that each derived sequent can be used only
once as a premise in a rule of the proof, we say that the system is tree-like.

The depth of a formula is the maximum number of alternations between conjunc-
tions and disjunctions. The depth of a proof is the maximum depth of a formula in it.
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The size of the proof is the overall number of symbols used in it. Let A and B1, . . . , Bn

be formulas, and let x1, . . . , xn be propositional variables that may or may not occur
in A. We let A(x1/B1, . . . , xn/Bn) denote the formula that results from A when all
occurrences of xi (if any) are replaced by Bi (replacements are made simultaneously).
Observe that if A and B are monotone formulas, then A(x/B) is also monotone. The
non-monotone version of the following lemma appears in [8, 11] (monotonicity is only
needed in part (v), and the proof is straightforward).

L e mma 1. If A is a monotone formula, the sequents (i) A, x 	 A(x/1), (ii)
A 	 x, A(x/0), (iii) A(x/1), x 	 A, (iv) A(x/0) 	 x, A, and (v) A(x/0) 	 A(x/1),
have MLK-proofs of size quadratic in the size of A and the same depth as A.

For every n and k ∈ {0, . . . , n}, let THn
k : {0, 1}n −→ {0, 1} be the Boolean func-

tion such that THn
k(a1, . . . , an) = 1 if and only if Σk

i=1ai ≥ k, for each (a1, . . . , an)
in {0, 1}n. Each THn

k is called a threshold function. Valiant [37] proved that ev-
ery threshold function THn

k is computable by a monotone formula of size polyno-
mial in n. The proof is probabilistic, and so the construction is not explicit. In
the same paper, Valiant mentioned that a divide and conquer strategy leads to
explicit quasipolynomial-size monotone formulas for all threshold functions. The
same construction appears in the book Wegener [39], and in the more recent book
Vollmer [38]. Here we revisit that construction with a minor modification to achieve
a size-depth trade-off.

Let s be a natural number. In the following, we use the notation ı to denote a
sequence (i1, . . . , il). The length l of the sequence will be clear from context. Define
th11,s(x) := x and th10,s(x) := 1. For every exact power of s, say n = sr , and for every
k ≤ n, we let thn

k,s(x1, . . . , xn) be the formula

∨
ı∈In

k,s

∧s
j=1 thn/s

ij,s(x(j−1)n/s+1, . . . , xjn/s),

where In
k,s = {(i1, . . . , is) ∈ N

s : 0 ≤ ij ≤ n/s, Σjij ≥ k}. It is straightforward
to prove that when n is an exact power of s, the formula thn

k,s(x1, . . . , xn) computes
the Boolean function THn

k . The depth of thn
k,s(x1, . . . , xn) is bounded by 2 logs(n).

Moreover, the maximum size of thn
k,s(x1, . . . , xn), say S(n, s), satisfies the recurrence

S(n, s) ≤ nsS(n/s, s), so we have S(n, s) ≤ ns logs(n). Observe that when s = 2, the
depth is bounded by 2 log2(n) and the size is bounded by n2 log2(n), and that when
s = n2/d for a constant d > 2, the depth is bounded by d and the size is bounded
by 2n3/d

.

3 Basic properties of threshold formulas

We establish a number of lemmas stating that the elementary properties of the thresh-
old formulas admit short MLK-proofs. Here, “short” means size polynomial in the
size of the formula thn

k,s(x1, . . . , xn).

To simplify notation, in this and following sections we omit the the subscript s in
proofs, as it is always the same.

The first properties are easy.
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L e mma 2. Let s ∈ N and let n ∈ N be an exact power of s. Let i1, . . . , is ≤ n/s,
let k = Σs

j=1ij , and let h, l ∈ N with n ≥ h ≥ l. The sequents

(i) 	 thn
0,s(x1, . . . , xn),

(ii) thn
n,s(x1, . . . , xn) 	 ∧n

i=1 xi,
(iii)

∧s
j=1 thn

ij,s(x(j−1)n/s+1, . . . , xjn/s) 	 thn
k,s(x1, . . . , xn),

(iv) thn
h,s(x1, . . . , xn) 	 thn

l,s(x1, . . . , xn)

have MLK-proofs of size polynomial in ns logs(n) and depth 2 logs(n).
In the next lemmas we give MLK-proofs of the basic properties relative to the

symmetry of the threshold formulas (Theorem 1 below).
L e mma 3. Let s ∈ N and let n ∈ N be an exact power of s. Let m, k, l ∈ N with

0 < m ≤ n, 0 ≤ k < n, and 0 ≤ l ≤ n. The sequents
(i) thn

k+1,s(x1, . . . , xl/1, . . . , xn) 	 thn
k,s(x1, . . . , xl/0, . . . , xn),

(ii) thn
m−1,s(x1, . . . , xl/0, . . . , xn) 	 thn

m,s(x1, . . . , xl/1, . . . , xn)

have MLK-proofs of size polynomial in ns logs(n) and depth 2 logs(n).
P r o o f . In the following, let xj = (x(j−1)n/s+1, . . . , xjn/s) for every j ∈ {1, . . . , s},

and let x′j be the result of replacing xl by 0 in xj. We first show (i). We use induction
on n, where the base case is th11(1) 	 th10(0). Assume without loss of generality that
l ≤ n/s, that is, xl is in the first block of variables x1. Recall the definition of
thn

k+1(x1, . . . , xn):
∨

ı∈In
k+1

∧s
j=1 thn/s

ij
(xj). Fix (i1, . . . , is) ∈ In

k+1. If i1 = 0, then

Σs
j=2ij ≥ k + 1 so that iq > 0 for some q ∈ {2, . . . , s}. Then, thn/s

iq
(xq) 	 thn/s

iq−1(xq)

by part (iv) of Lemma 2. On the other hand, clearly thn/s
ij

(xj) 	 thn/s
ij

(xj) for every

j ∈ {2, . . . , s}−{q}. Moreover, we have 	 thn/s
0 (x′1) by part (i) of Lemma 2. Note, by

the way, that x′j = xj for every j ∈ {2, . . . , s}. Right ∧-introduction, left weakening,
and left ∧-introduction gives then
∧s

j=1 thn/s
ij

(x′j) 	 thn/s
0 (x′1) ∧ ∧

2≤j<q thn/s
ij

(x′j) ∧ thn/s
iq−1(x

′
q) ∧ ∧

q<j≤s thn/s
ij

(x′j).

A cut with part (iii) of Lemma 2 gives
∧s

j=1 thn/s
ij

(x′j) 	 thn
t−1(x

′
1, . . . , x

′
s), where

t = Σs
j=1ij . Finally, since t−1 ≥ k+1−1 = k, a cut with part (iv) of Lemma 2 gives

the result.
If i1 > 0, we use the induction hypothesis on n to get thn/s

i (x′1) 	 thn/s
i−1(x

′
1).

Easy manipulation as before gives
∧s

j=1 thn/s
ij

(x′j) 	 thn/s
i1−1(x

′
1) ∧ ∧

2≤j≤s thn/s
ij

(x′j).
Finally an application of parts (iii) and (iv) of Lemma 1 gives the desired result.

The proof of (ii) is very similar. ✷

L e mma 4. Let s ∈ N and let n ∈ N be an exact power of s. Let m, k, l ∈ N with
1 ≤ k < l ≤ n, and m ≤ n, the sequents

(i) thn
m,s(x1, . . . , xk/1, . . . , xl/0, . . . , xn) 	 thn

m,s(x1, . . . , xk/0, . . . , xl/1, . . . , xn),
(ii) thn

m,s(x1, . . . , xk/0, . . . , xl/1, . . . , xn) 	 thn
m,s(x1, . . . , xk/1, . . . , xl/0, . . . , xn)

have MLK-proofs of size polynomial in ns logs(n) and depth 2 logs(n).
P r o o f . We use the same notation as in the proof of Lemma 3. Both proofs are

identical. It is enough to prove (i) when xk and xl fall in different blocks of variables.
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The complete proof of (i) would then be a simple induction on the recursive definition
of thn

m(x1, . . . , xn) whose base case is when that happens. Notice that the base case
is eventually reached, at latest, when n = s. So assume xk and xl fall in blocks
a and b, respectively. In the following, let xa/1 be the result of replacing xk by 1
in xa, and define the notation xa/0, xb/1 and xb/0 analogously. Recall the definition
of thn

m(x1, . . . , xs):
∨

ı∈In
m

∧s
j=1 thn/s

ij
(xj) Fix (i1, . . . , is) ∈ In

m. If ia > 0, then Lem-

ma 3 shows that thn/s
ia

(xa/1) 	 thn/s
ia−1(xa/0). Similarly, whenever ib < n/s we have

thn/s
ib

(xb/0) 	 thn/s
ib+1(xb/1). From these two sequents, the result follows easily when

ia > 0 and ib < n/s. Consider next the case in which either ia = 0 or ib = n/s. If
ib = n/s, then thn/s

ib
(xb/0) is just provably false by part (ii) of Lemma 2, and the

result follows easily. If ia = 0, then thn/s
ia

(xia/1) is just provably true by part (i)
of Lemma 2. On the other hand, thn/s

ib
(xb/0) 	 thn/s

ib
(xb/1) follows by part (v) of

Lemma 1, and the result follows too. ✷

L e mma 5. Let s ∈ N and let n ∈ N be an exact power of s. Let m, i, j ∈ N with
m ≤ n and 1 ≤ i < j ≤ n. The sequent

thn
m,s(x1, . . . , xi, . . . , xj, . . . , xn) 	 thn

m,s(x1, . . . , xj, . . . , xi, . . . , xn)

has an MLK-proof of size polynomial in ns logs(n) and depth 2 logs(n).
P r o o f . We split the property according to the four possible truth values of xi

and xj. Namely, we will give proofs of the following four sequents from which the
lemma is immediately obtained by the cut rule.

(i) thn
m,s(x1, . . . , xi, . . . , xj, . . . , xn), xi, xj 	 thn

m,s(x1, . . . , xj, . . . , xi, . . . , xn),

(ii) thn
m,s(x1, . . . , xi, . . . , xj, . . . , xn), xi 	 xj, thn

m,s(x1, . . . , xj, . . . , xi, . . . , xn),
(iii) thn

m,s(x1, . . . , xi, . . . , xj, . . . , xn), xj 	 xi, thn
m,s(x1, . . . , xj, . . . , xi, . . . , xn),

(iv) thn
m,s(x1, . . . , xi, . . . , xj, . . . , xn) 	 xi, xj, thn

m,s(x1, . . . , xj, . . . , xi, . . . , xn).

We only show sequent (ii), the rest of sequents have similar proofs. Two applications
of Lemma 1 give thn

m(x1, . . . , xi, . . . , xj, . . . , xn), xi 	 xj, thn
m(x1, . . . , 1, . . . , 0, . . . , xn).

Lemma 4 gives thn
m(x1, . . . , xi, . . . , xj, . . . , xn), xi 	 xj, thn

m(x1, . . . , 0, . . . , 1, . . . , xn).
Two more applications of Lemma 1 give

thn
m(x1, . . . , 0, . . . , 1, . . . , xn), xi 	 xj , thn

m(x1, . . . , xj, . . . , xi, . . . , xn).

Finally, a cut between the last two sequents gives (ii). ✷

Since every permutation on {1, . . . , n} can be obtained as the composition of
(polynomially many) permutations in which only two elements are permuted (trans-
positions), Lemma 5 easily implies the following theorem.

Th e o r em 1. Let s ∈ N and let n ∈ N be an exact power of s. Let m ∈ N, with
m ≤ n, and let π be a permutation over {1, . . . , n}. The sequent

thn
m,s(x1, . . . , xn) 	 thn

m,s(xπ(1), . . . , xπ(n))

has an MLK-proof of size polynomial in ns logs(n) and depth 2 logs(n).
The next two properties state that the smallest threshold formulas are provably

equivalent to their usual formulas. The proof is omitted.
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L e mma 6. Let s ∈ N and let n ∈ N be an exact power of s. The sequents

(i)
∨

i xi �	 thn
1,s(x1, . . . , xn),

(ii)
∨

i �=j(xi ∧ xj) �	 thn
2,s(x1, . . . , xn)

have MLK-proofs of size polynomial in ns logs(n) and depth 2 logs(n). ✷

The next lemma states that threshold functions split by cases:
L e mma 7. Let s ∈ N and let n ∈ N be an exact power of s. Let m ∈ N be an

exact multiple of s with m ≤ n. The sequents

(i) thn
m+1,s(x1, . . . , xn) 	 thn/s

m/s+1,s(x1), . . . , th
n/s
m/s+1,s(xs),

(ii) thn
m,s(x1, . . . , xn) 	 thn/s

m/s+1,s(x1), . . . , th
n/s
m/s+1,s(xs−1), th

n/s
m/s,s(xs),

where xj = (x(j−1)n/s+1, . . . , xjn/s), have MLK-proofs of size polynomial in ns logs(n)

and depth 2 logs(n).
P r o o f . We first prove (i). Fix (i1, . . . , is) ∈ In

m+1. Since m is an exact multiple
of s, there exists a q ∈ {1, . . . , s} such that iq ≥ m/s+ 1 for otherwise Σs

j=1ij ≤ m.

Then, thn/s
iq

(xq) 	 thn/s
m/s+1(xq) by part (iv) of Lemma 2. The sequent

∧s
j=1 thn/s

ij
(xj) 	 thn/s

m/s+1(x1), . . . , th
n/s
m/s+1(xs)

follows by right weakening, left weakening, and left ∧-introduction. Since this hap-
pens for every ı ∈ In

m+1, the result follows by left ∨-introduction. The proof of
(ii) is extremely similar: If (i1, . . . , is) ∈ In

m, then either iq ≥ m/s + 1 for some
q ∈ {1, . . . , s− 1}, or is ≥ m/s for otherwise Σs

j=1ij < m. Manipulation as in part
(i) gives property (ii). ✷

4 Monotone proofs of PHP

The Pigeon Hole Principle states that if n + 1 pigeons go into n holes, then there
is some hole with more than one pigeon sitting in it. It is encoded by the following
(non-monotone) formula

PHPn+1
n :=

∧n+1
i=1

∨n
j=1 pi,j → ∨n

k=1

∨
1≤i<j≤n+1(pi,k ∧ pj,k).

Observe that the Pigeon Hole Principle can be obtained as a monotone sequent simply
replacing the symbol → above by the symbol 	. From now on we refer to the left
part of the sequent as LPHPn, and to the right part of the sequent as RPHPn. The
sequent itself is denoted PHPn. We need a technical lemma saying that PHPn can
be reduced to the case in which n is an exact power of s.

L e mma 8. There exists a polynomial p(n) such that, for every m, S ∈ N, if
the sequent PHPm has an MLK-proof of size at most S, then, for every n ≤ m, the
sequent PHPn has an MLK-proof of size at most S + p(n).

P r o o f . Suppose that there is a monotone proof Ψ1,Ψ2, . . . ,PHPm of size at
most S, where each Ψi is a monotone sequent Σi 	 Γi. We get a proof of PHPn

from the proof of PHPm by replacing some variables by constants as follows. Define
a partial truth assignment σ as indicated next. We set σ(pk+1,k) = 1 for every
k ∈ {n+ 1, . . . , m}. Similarly, for every k ∈ {n+2, . . . , m+ 1} and i ∈ {1, . . . , k− 2},
let σ(pk,i) = 0, and for every i ∈ {n + 1, . . . , m} and k ∈ {1, . . . , i}, let σ(pk,i) = 0.
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Any other variable remains undefined by σ. Given a sequent Σ 	 Γ, let [Σ 	 Γ][σ] be
the result of replacing each occurrence of the variable x ∈ dom(σ) in Σ or Γ by σ(x).
The sequence [Σ1 	 Γ1][σ], [Σ2 	 Γ2][σ], . . ., [PHPm][σ] is a valid proof of [PHPm][σ].
To see this, observe that the initial axioms of the form pi,j 	 pi,j become 0 	 0, 1 	 1,
or stay pi,j 	 pi,j, which are all true sequents. Moreover, it is not difficult to give a
proof of

[
∧n+1

i=1

∨n
j=1 pi,j 	

∧m+1
i=1

∨m
j=1 pi,j][σ]

and
[
∨m

k=1

∨
1≤i<j≤m+1(pi,k ∧ pj,k) 	

∨n
k=1

∨
1≤i<j≤n+1(pi,k ∧ pj,k)][σ]

from the axioms 0 	 and 	 1. For example, [	 ∨m
j=1 pn+2,j][σ] is derivable since

σ(pn+2,n+1) = 1. Two cuts give a proof of PHPn of size at most S + p(n) for some
polynomial p(n), as desired. ✷

Th e o r em 2. Let s ∈ N and let n ∈ N be such that s ≤ n. The sequents PHPn

have MLK-proofs of size polynomial in ns logs(n) and depth 2 logs(n).
P r o o f . We first outline the idea of the proof. From the antecedent of PHPn we

easily derive that for each pigeon i there is at least one variable pi,j that is true (in sym-
bols, thn+1

1 (pi,1, . . . , pi,n)). We prove that among all variables grouped by pigeons, at
least n+ 1 are true (in symbols, thn(n+1)

n+1 (p1,1, . . . , p1,n, . . . , pn+1,1, . . . , pn+1,n)). The
symmetry of the threshold allows us to show that the same holds when the variables
are grouped by holes (in symbols, thn(n+1)

n+1 (p1,1, . . . , pn+1,1, . . . , p1,n, . . . , pn+1,n)).
Thus, at least one hole contains two pigeons (in symbols, thn+1

2 (p1,i, . . . , pn+1,i) for
some i ∈ {1, . . . , n}), and this implies RPHPn.

According to Lemma 8, we may assume that n+1 is an exact power of s since there
always is such a number between n and sn. So let us assume that n = sr −1 for some
r ∈ N. For technical reasons in the proof we will consider a squared form (instead of
rectangular form) of PHPn, where we assume the existence of an (n + 1)-st hole in
which no pigeon can go. So, we introduce n+1 new symbols p1,n+1, . . . , pn+1,n+1 that
will stand for the constant 0. For every i ∈ {1, . . . , n+ 1}, let pi = (pi,1, . . . , pi,n+1),
and let qi = (p1,i, . . . , pn+1,i) (hence qn+1 = (0, . . . , 0) is the sequence of n+ 1 zeros).
Consider the following four sequents.

LPHPn 	 ∧n+1
i=1 thn+1

1 (pi),(1)
∧n+1

i=1 thn+1
1 (pi) 	 th(n+1)2

n+1 (p1, . . . , pn+1)(2)

th(n+1)2

n+1 (p1, . . . , pn+1) 	 th(n+1)2

n+1 (q1, . . . , qn+1)(3)

th(n+1)2

n+1 (q1, . . . , qn+1) 	 RPHPn(4)
In the next lemmas we show how to prove these sequents in MLK. An MLK-proof of
LPHPn 	 RPHPn will follow by three applications of the cut rule. ✷

L e mma 9. Sequent (1) has MLK-proofs of size polynomial in ns logs(n) and depth
2 logs(n).

P r o o f . For each i ∈ {1, . . . , n+ 1} derive the sequents
∨n

j=1 pi,j 	 ∨n
j=1 pi,j ∨ 0

using right weakening and right ∨-introduction. Then, n right ∧-introductions and n
left ∧-introductions give LPHPn 	 ∧n+1

i=1 thn+1
1 (pi) by the definition of LPHPn and

cuts on part (i) of Lemma 6. ✷
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L e mma 10. Sequent (2) has MLK-proofs of size polynomial in ns logs(n) and depth
2 logs(n).

P r o o f . Recall that n + 1 = sr . Let N = (n + 1)2. The idea of this proof is to
successively pack the conjuncts of antecedent into a unique threshold formula, follow-
ing a complete s-ary tree structure of height logs(n+ 1) = r. Let Σ = {0, . . . , s− 1}.
For every w ∈ Σr, let pw = pw, where w is the position of w in the lexicographi-
cal order on Σr . Therefore, p0

r

= p1 and p(s−1)r

= pn+1. For every w ∈ Σ<r let
pw = (pw0, . . . , pw(s−1)). Observe that pλ = (p1, . . . , pn+1), where λ is the empty
word. For each t ∈ {1, . . . , r}, we exhibit an MLK-proof of

∧
w∈Σtth

N/st

(n+1)/st(pw) 	 ∧
w∈Σt−1th

N/st−1

(n+1)/st−1(pw).(5)

Once we have all these proofs, we only have to cut sequentially to obtain the lemma.
We prove sequent (5). For a fixed t ∈ {1, . . . , r} and a fixed w ∈ Σt−1, an application
of part (iii) of Lemma 2 gives

∧s−1
i=0 thN/st

(n+1)/st(pwi) 	 thN/st−1

(n+1)/st−1(pw). We put all
these formulas in a unique conjunction using ∧-introduction to get sequent (5). ✷

L e mma 11. Sequent (3) has MLK-proofs of size polynomial in ns logs(n) and depth
2 logs(n).

P r o o f . Immediate from Theorem 1 because q1, . . . , qn+1 is a permutation of
p1, . . . , pn+1. ✷

L e mma 12. Sequent (4) has MLK-proofs of size polynomial in ns logs(n) and depth
2 logs(n).

P r o o f . The idea of this proof is to unfold the threshold formula in the antecedent
into disjunctions of threshold formulas computing the number of pigeons going into
each hole. The unpacking process follows the structure of a complete s-ary tree of
height logs(n + 1) = r in reverse order of that of Lemma 10. We use properties (i)
and (ii) of Lemma 7 to perform this process.

Recall that n + 1 = sr . Let N = (n + 1)2. Let Σ = {0, . . . , s − 1}. Define
qw = qw for every w ∈ Σr , where w is defined as in the proof of Lemma 10. For every
w ∈ Σ<r define qw = (qw0, . . . , qw(s−1)). Observe that qλ = (q1, . . . , qn+1). For every
t ∈ {0, . . . , r − 1} and w ∈ Σt, properties (ii) and (i) of Lemma 7 give

thN/st

(n+1)/st(qw) 	 thN/st+1

(n+1)/st+1+1(q
w0), . . . , thN/st+1

(n+1)/st+1(qw(s−1)),

thN/st

(n+1)/st+1
(qw) 	 thN/st+1

(n+1)/st+1+1
(qw0), . . . , thN/st+1

(n+1)/st+1+1
(qw(s−1)).

Appropriate cuts and the definition of qw for w ∈ Σr show then that

thN
n+1(q

λ) 	 thn+1
2 (q1), thn+1

2 (q2), . . . , thn+1
2 (qn), thn+1

1 (qn+1).

Since qn+1 = (0, . . . , 0), we immediately have that thn+1
1 (qn+1) 	 0 by part (i) of

Lemma 6, so that the result follows by a cut on 0 	, successive cuts on part (ii) of
Lemma 6, and right ∨-introduction. ✷

Setting s = 2 and s = n2/d in Theorem 2, we obtain the main results of this
section.

C o r o l l a r y 1. The sequent PHPn has MLK-proofs of size nO(log n).
Co r o l l a r y 2. The sequent PHPn has depth-d MLK-proofs of size 2O(n3/d) for

every constant d > 2.
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Corollaries 1 and 2 obviously hold also for bounded-depth LK. The lower bound
for the size of depth-d LK proofs of the pigeonhole principle is Ω(2n(1/6)d

) (see [22]).
Thus, the dependence on d is an exponential higher than in Corollary 2. This makes a
noticeable difference: Corollary 2 implies that there are proofs of quasipolynomial size
and depth O(logn/ log logn); the lower bound implies only that proofs of quasipoly-
nomial size must have depth Ω(log logn). It would be interesting to narrow this gap.

5 Separation results

A graph G is a k-clique if there is a set of k nodes of G such that any two distinct
nodes of the set are connected by an edge, and no other edge is present in G. A graph
G is a k-coclique if there is a partition of the nodes of G into k disjoint sets in such a
way that any two nodes that belong to different sets are connected by an edge, and
no other edges are present in G.

The (n, k)-clique-coclique principle of [9] says that, given a set V of n nodes, if G
is a k-clique over V and H is a (k−1)-coclique over V , then there is an edge in G that
is not present inH . This principle may be stated as a monotone sequent CLIQUEn

k as
follows. For every l ∈ {1, . . . , k} and i ∈ {1, . . . , n}, let xl,i be a propositional variable
whose intended meaning is that i is the l-th largest node of the fully connected set
which forms a fixed k-clique over {1, . . . , n}. Similarly, for every l ∈ {1, . . . , k − 1}
and i ∈ {1, . . . , n}, let yl,i be a propositional variable whose intended meaning is that
the i-th node is in the l-th disjoint set of a fixed (k− 1)-coclique over {1, . . . , n}. The
principle is then expressed as follows

∧k
l=1

∨n
i=1 xl,i ∧ ∧n

i=1

∨k−1
l′=1 yl′ ,i

	 ∨k−1
t=1

∨
1≤l<l′≤k

∨
1≤i<j≤n(xl,i ∧ xl′,j ∧ yt,i ∧ yt,j)

∨∨
1≤l<l′≤k

∨n
i=1(xl,i ∧ xl′,i).

We show how to reduce CLIQUEn
k to PHPk−1 in the monotone sequent calcu-

lus. The reduction was first given in [9]; here we provide proofs of correctness for
completeness. The strategy will be to show that the sequents

LCLIQUEn
k 	 LPHP′

k−1,(6)
RPHP′

k−1 	 RCLIQUEn
k(7)

have MLK-proofs of size polynomial in n, where LPHP′
k−1 and RPHP′

k−1 are obtained
from LPHPk−1 and RPHPk−1, respectively, by replacing the variable pl,l′ by the for-
mula

∨n
i=1(xl,i ∧ yl′ ,i) for every l ∈ {1, . . . , k} and l′ ∈ {1, . . . , k − 1}.

L e mma 13. Sequent (6) has MLK-proofs of size polynomial in n.
P r o o f . Consider the following sequence of sequents with easy MLK-proofs (the

notation A 	 B 	 C stands for the sequence A 	 B, B 	 C):
∧k

l=1

∨n
i=1 xl,i ∧ ∧n

i=1

∨k−1
l′=1 yl′ ,i 	

∧k
l=1(

∨n
i=1 xl,i ∧ ∧n

i=1

∨k−1
l′=1 yl′ i)

	∧k
l=1

∨n
i=1(xl,i ∧ ∨k−1

l′=1 yl′,i)

	∧k
l=1

∨n
i=1

∨k−1
l′=1(xl,i ∧ yl′,i)

	∧k
l=1

∨k−1
l′=1

∨n
i=1(xl,i ∧ yl′,i).
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The first derivation follows by left weakening, left ∧-introduction, and commutativity;
for the second derivation use distributivity and the derivable sequent A ∧ B 	 A; for
the third derivation use distributivity; and for the last derivation use commutativity.
Finally observe that the first formula is LCLIQUEn

k and the last formula is LPHP′
k−1

(recall the substitution of pl,l′ by
∨n

i=1(xl,i ∧ yl′,i)). ✷

L e mma 14. Sequent (7) has MLK-proofs of size polynomial in n.
P r o o f . Let us write down the full expression for RPHP′

k−1:
∨k−1

t=1

∨
1≤l<l′≤k[

∨n
i=1(xl,i ∧ yt,i) ∧ ∨n

j=1(xl′,j ∧ ytj)]
	 ∨k−1

t=1

∨
1≤l<l′≤k

∨
1≤i<j≤n(xl,i ∧ yt,i ∧ xl′,j ∧ yt,j)

	 [
∨k−1

t=1

∨
1≤l<l′≤k

∨
1≤i<j≤n(xl,i ∧ yt,i ∧ xl′,j ∧ yt,j)]

∨ [
∨k−1

t=1

∨
1≤l<l′≤k

∨n
i=1(xl,i ∧ yt,i ∧ xl′,i ∧ yt,i)]

	 [
∨k−1

t=1

∨
1≤l<l′≤k

∨
1≤i<j≤n(xl,i ∧ yt,i ∧ xl′,j ∧ yt,j)]

∨ [
∨

1≤l<l′≤k

∨n
i=1(xl,i ∧ xl′,i)].

The first derivation follows by distributivity, the second derivation follows by com-
mutativity, and the third one follows by straightforward manipulation and the use of
A ∧ B 	 A. Observe that the last formula is simply RCLIQUEn

k , and the proof is
complete. ✷

Co r o l l a r y 3. The sequents CLIQUEn
k have MLK-proofs of size nO(log n).

Putting together our upper bounds for PHPn+1
n and for CLIQUEn

k with the ex-
ponential lower bounds in Resolution [19], Bounded-Depth Frege [1, 4], and poly-CP
[9], we obtain the following separations result:

T h e o r em 3. Resolution, Bounded-Depth Frege and poly-CP are exponentially
separated from the Monotone Gentzen Calculus.

The Intuitionistic Gentzen Calculus forbids sequents with more than one formula
in their consequent (see [35] for a precise definition). As observed by Pudlák [28],
there is a simple simulation of the Monotone Gentzen Calculus by the Intuitionistic
Gentzen Calculus. The simulation consists in replacing consequents with more than
one formula by the disjunction of these formulas. This simple simulation implies that
all our results also hold for the Intuitionistic Gentzen Calculus.

In [28], Pudlák proves that the Intuitionistic Gentzen Calculus enjoys a feasible
interpolation property. It is also asked in [28] whether the feasible interpolation can be
made monotone. While we have been able to provide a quasipolynomial upper bound
for the size of intuitionistic proofs of an encoding of the Clique-Coclique Principle,
it is not clear whether the encoding of the Clique Principle on which to apply the
interpolation property (the one with common variables as in [23]) enjoys the same
upper bound. The reason is that the resulting sequent is not monotone anymore,
and our reduction method does not apply. On the other hand, a positive answer
would imply that the disjointness property for the Intuitionistic Gentzen Calculus
would belong to P/poly − mP/poly. In fact, the disjointness property would be
computable by a (uniform) polynomial-size circuit (see [12] for a proof of this fact),
but would not be computable by a monotone polynomial-size circuit, since otherwise
the Intuitionistic Gentzen Calculus would admit the monotone feasible interpolation
property.
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