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Abstract. We consider a modification of the pigeonhole principle, MPHP , introduced by
Goerdt in [7]. MPHP is defined over n pigeons and log n holes, and more than one pi-
geon can go into a hole (according to some rules). Using a technique of Razborov [9] and
simplified by Impagliazzo, Pudlák and Sgall [8], we prove that any Polynomial Calculus
refutation of a set of polynomials encoding the MPHP , requires degree �(log n). We also
prove a simple Lemma giving a simulation of Resolution by Polynomial Calculus. Using
this lemma, and a Resolution upper bound by Goerdt [7], we obtain that the degree lower
bound is tight.

Our lower bound establishes the optimality of the tree-like Resolution simulation by the
Polynomial Calculus given in [6].

1. Introduction

Polynomial Calculus (PC) is a refutational proof system defined in [6], that works
with sets of unsatisfiable clauses translated to polynomials over some field. The
inference rules of the calculus are additions of polynomials, and products of poly-
nomials by variables. The main complexity measure of this system is the degree of
the polynomials. An important feature of this system is that it has a proof search
algorithm, called the Gröbner basis algorithm, that works in time polynomial in the
minimal degree of polynomials refuting a contradiction. Our work studies degree
lower bounds, and also draws some conclusions on the performance of the Gröbner
basis algorithm.

Razborov in [9] proved that any Polynomial Calculus refutation of a polynomi-
al encoding of the pigeonhole principle (PHP ) requires degree at least �(n).
While other techniques were developed to prove degree lower bounds in PC
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[5, 2, 1] for other combinatorial principles, the technique introduced by Razbo-
rov and simplified by [8] wasn’t successfully applied to other principles different
from the PHP .

The core of Razborov’s technique is to produce an explicit characterization
of the vector space of all polynomials derivable from the polynomial encoding of
PHP , using low degree Polynomial Calculus refutations. This way one can study
what is the minimal degree d for which refutations of PHP of degree d exist.

A contribution of our result is extending Razborov’s technique to a combina-
torial principle somewhat different from PHP . We consider a modification of the
pigeonhole principle (MPHP ), introduced by Goerdt [7]. MPHP is defined over
n pigeons and log n holes, and differs from PHP since in some cases it allows more
than one pigeon to go into the same hole (see Definition 2.1 for further details).
Notice that Razborov’s theorem doesn’t apply to this version of the pigeonhole
principle.

We introduce a polynomial formulation of the MPHP principle, and we prove
that any Polynomial Calculus refutation of this set of polynomials requires degree
O(log n) over any field. Following Impagliazzo Pudlák and Sgall [8], we define
a new pigeon dance tailored for the MPHP principle and we prove those prop-
erties that we need to define an explicit characterization of the vector space of all
polynomials derivable from the MPHP using low degree PC refutations. As a
consequence we prove that the minimal degree for refuting the polynomial trans-
lation of MPHP in PC over any field is of the order of the number of holes in
MPHP (i.e �(log n)).

The Resolution system is also an important calculus studied from the point of
view of proof complexity and automated deduction. Following [3], we consider
the width (i.e. the size of the largest clause used in a refutation) as a complexity
measure and we show a Polynomial Calculus simulation of Resolution. Under a
fixed standard translation of CNF formulas to polynomials our simulation produces
PC refutations of degree bounded by the width plus 1. This result has two con-
sequences: (1) the width based proof-search algorithm of [3] cannot have a better
performance than the Gröbner Basis proof-search algorithm of [6], and (2) under
a fixed translation into polynomials a linear degree lower bound in Polynomial
Calculus implies an exponential lower bound for size in Resolution.

We prove that our lower bound for MPHP is tight. This is also a consequence
of the previously mentioned simulation, and a O(log n) upper bound for the width
of Resolution refutations of the MPHP sketched by Goerdt in [7]. The same paper
contains a tree-like Resolution refutation of MPHP of polynomial size and linear
width. Our lower bound result and this last upper bound estabilishes the optimality
of the tree-like Resolution simulation by the Polynomial Calculus given in [6].

In Section 2 we give some preliminary definitions. In Section 3 we give the de-
gree lower bound for a polynomial translation of MPHP . In Section 4 we give the
Polynomial Calculus simulation of Resolution. In Section 5 we prove upper bounds
for the polynomial version of MPHP and the optimality of the lower bound, and
in Section 6 we have a discussion and give some open problems.
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2. Preliminaries

The Polynomial Calculus (PC) is a refutation system for formulas in CNF. We ex-
press a CNF formula F as a sequence of polynomials p1 = 0, . . . , pm = 0 over
some field K . To force 0-1 solutions we always add among the initial polynomials
the axioms x2 − x = 0 for all variables x. A PC refutation is a sequence of poly-
nomials ending with 1 = 0 such that each line in the sequence is either an initial
polynomial or is obtained from two previous polynomials in the sequence by the
following rules: (1)

f g
αf +βg

for α, β ∈ K; and (2)
f
xf

, for any variable x. The
degree of a refutation is the maximal degree of a polynomial used in the proof.
The complexity of a PC refutation is given by its degree.

We define a standard mapping tr from formulas in CNF to sets of polynomials
in the following way: (1) tr(x) = 1−x; (2) tr(x̄) = x; (3) tr(x∨y) = tr(x)·tr(y).
We denote by [n] the set {1, 2, . . . , n}.

We will use a tautology encoding a modification of the pigeon hole principle
defined in [7]. Let n be a natural number of the form 2m, for some m. For each
j = 1, . . . , m, let Part (j) be the partition of [n] induced by j the following way:
Part (j) := {{i, i+1, . . . , i+(2j−1)} | i = 1, 1+2j , 1+2·2j , . . . , 1+( n

2j −1)·2j }
If we consider [n] as a set of pigeons and [m] a set of holes, then for each hole
j ∈ [m], Part (j) contains sets of pigeons, e.g.

Part (1) = {{1, 2}, {3, 4}, . . . {n − 1, n}}
Part (2) = {{1, 2, 3, 4}, . . . , {n − 3, n − 2, n − 1, n}}
...

P art (log2 n) = {{1, 2, . . . , n}}

Consider the following definition:

Definition 2.1. For all i, i′ ∈ [n], i and i′ are j -compatible if and only if they are
in different sets of Part (j).

We consider the following property for n pigeons and log2 n holes. If each pi-
geon is sitting in some hole, then there must exist an hole j and two pigeons i and i′
that are not j -compatible sitting in hole j . Our CNF formula MPHPn expresses
the negation of the previous property with the further restriction that each pigeon
must sit in exactly one hole.

(1)
∨m

j=1 xi,j i ∈ [n]
(2) x̄i,j ∨ x̄i′,j j ∈ [m], i �= i′ ∈ [n] , not j -compatible
(3) x̄i,j ∨ x̄i,k i ∈ [n], j �= k ∈ [m]

Notice that the set of clauses defining our MPHPn subsumes the set of clauses
defining the MPHPn of [7]. First, we add clauses encoding the restriction that each
pigeon must sit in exactly one hole. Second, Goerdt considered a more complicated
version of the notion of compatibility.
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3. Degree lower bounds for the modified PHP

In this section we show that any polynomial calculus refutation of the MPHPn

requires degree �(log n). We will use the same technique of [9, 8]. Recall the fact
that m = log n, the definition of j -compatible pigeons and the definition of the set
Part (j), for all j ∈ [m] (see Section 2). Given Qi := 1−∑

j∈[m] xi,j we adopt the
following polynomial formulation of the MPHPn, that we call Poly-MPHPn:

(1) Qi = 0 i ∈ [n]
(2) xi,j xi,k = 0 i ∈ [n], j, k ∈ [m]
(3) xi,j xk,j = 0 j ∈ [m], i, k ∈ [n] not j -compatible
(4) x2

i,j − xi,j = 0 i ∈ [n], j ∈ [m]

For a polynomial x which is a product of xi,j , let P igeons(x, j) be the set of
i’s such that xi,j is a factor in x.

Definition 3.1. T is the set of the monomials x = xi1,j1 . . . xil ,jl
such that all ik

are distinct and for all jk ∈ [m] and for all i and i′ in P igeons(x, jk) i and i′ are
jk-compatible. Td is the set of monomials in T of degree at most d.

Using the identities (2), (3) and (4) any polynomial can be represented, with-
out increasing its degree, as a linear combination of monomials in T . Therefore
any polynomial calculus refutation carried on modulo the ideal I generated by the
polynomials (2), (3) and (4), is in the vector space Span(T ) generated from the
monomials in T . From now on we assume that all the computations are modulo
the ideal I .

We want to build a basis Bd for the vector space Span(Td) such that the elements
of Bd are products of the form

∏
i,j xi,j

∏
i Qi . As in [8] (and [9]) the definition

of Bd is obtained from a process that maps partial assignments into partial assign-
ments: the pigeon dance. We consider a dummy hole 0, and we represent elements
of Bd as partial assignments according to the following definition:

Definition 3.2. A is the set of the partial mappings a from [n] to [m]∪{0} such that
for all i, i′ ∈ [n], i �= i′, if a(i) = a(i′) = j �= 0 then i and i′ are j -compatible.

Let Ad := {a ∈ A : |a| ≤ d}. For a ∈ A with a = {(i1, j1), . . . (ik, jk), (i
′
1, 0),

. . . , (i′l , 0)}, let â denote the restriction {(i1, j1), . . . (ik, jk)} of a. Any element
a ∈ A defines a polynomial xa the following way: xa =∏

a(i)=j,j �=0 xi,j

∏
a(i)=0 Qi .

Therefore by definition of T any polynomial xâ associated to â ∈ Ad is in Td .
Our pigeon dance differs from that of [9, 8] since sometimes a pigeon can be

sent to an occupied hole. Consider the following definition:

Definition 3.3. Given a ∈ A, we say that a hole j is Good for the pigeon i in a,
and we write j ∈ Good(i, a), if j > a(i) and for all i′ ∈ a−1(j), i and i′ are
j -compatible.

Given a ∈ A, our pigeon dance works the following way: starting from the first
pigeon in dom(a) we try to move all the pigeons i ∈ dom(a) into a hole j which
is good for i in a.
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Definition 3.4 (Dance). Let a ∈ A and consider dom(a). A pigeon dance on a is
a sequence of mappings a0, a1, . . . an in A with the same domain as a, defined the
following way: a0 = a and for all 0 < t ≤ n, if a(t) is undefined, then at = at−1,
otherwise {

at (j) = at−1(j) j �= t

at (t) ∈ Good(t, at−1)

Definition 3.5 (Minimal Dance). Let a ∈ A be given and let t be a pigeon index
in [n]. By Dt(a) we denote a mapping b ∈ A such that dom(b) = dom(a), and
defined as follows:

b(i) = a(i) i ∈ dom(a), i �= t

b(t) = minj∈[m][j ∈ Good(t, a)]

If minj∈[m][j ∈ Good(t, a)] does not exists, then Dt(a) is undefined. The minimal
pigeon dance Dmin(a) on a is: Dmin(a) = Dn(Dn−1(· · · (D1(a)) · · ·)

The minimal dance has two main properties. It can be always defined whenever
a dance is defined, and it defines a one-to-one mapping from partial assignments to
partial assignments. We show these properties in the following lemmas.

Lemma 3.1. If there exists a dance on a, then there always exists a minimal dance
on a.

Proof. We prove by induction on t = 1, . . . , n that there is dance b = b0, b1, . . . , bn

where b0 = a such that its first t steps correspond to the first t steps of the minimal
dance on a. The lemma hence follows for t = n. Assume to have proved the claim
for t − 1, and let b = b0, b1, . . . , bn the correct dance having the first t − 1 steps as
in the minimal dance. We show how to build a new correct dance c = c0, c1, . . . , cn

having its first t steps as in the minimal dance.
Let jmin = minj∈[m][j ∈ Good(t, bt−1)] and suppose j = bt (t). Observe

that since b is a correct dance, then jmin always exists and moreover jmin ≤ j . If
j = jmin, then b is making the right choice at the t-th step. In this case we have no
need to change b, so we define ci = bi for all i = 0, . . . , n. Assume instead that
jmin < j . In this case we define c = c0, c1, . . . , cn the following way: in the first
t − 1 steps c and b are the same, that is, for all i, i = 1, . . . , t − 1, ci = bi ; at the
t-th step, ct is defined by:

ct (i) =
{

jmin if i = t

bt (i) otherwise

The definition of ci for for i > t is as follows:

ci(j) = ci−1(j) for j �= i

ci(i) =
{

j if bi(i) = jmin and i and t are not jmin-compatible
bi(i) otherwise

We have to prove that c = c0, c1, . . . , cn is a properly defined dance and its first
t steps are minimal. Observe that the first t − 1 steps of c are correct and minimal
since they are the same of b. The t-th step is correct and minimal by definition of
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jmin. Therefore it remains to prove that the steps strictly greater than t define a
correct dance. By the definition of ci , for i > t , we have to prove that for all i > t

ci(i) ∈ Good(i, ci−1). ��

Claim 3.1. For all i > t , ci(i) ∈ Good(i, ci−1).

Proof (of Claim 3.1). By the definition of ci(i) for i > t , it is easy to see that we
have to prove that for all i > t such that bi(i) = jmin and i and t are not jmin-com-
patible, then j ∈ Good(i, ci−1). We obtain the Claim showing that: (1) there is at
most one i such that bi(i) = jmin and i and t are not jmin-compatible; and (2) for
this i we have that j ∈ Good(i, ci−1).

The first property easily follows since if there exist two different pigeons i and i′
both not jmin-compatible with t , then i, i′ and t are in the same set D ∈ Part (jmin).
But this is not possible since b is a correct dance and therefore i and i′ must be
jmin-compatible.

For the second point, assume we have an i such that bi(i) = jmin and i and t are
not jmin-compatible. We prove that i is j -compatible with all elements in c−1

i−1(j),

which proves that j ∈ Good(i, ci−1). If c−1
i−1(j) = ∅, the result is trivial. Assume,

for the sake of contradiction, that there is a i′ ∈ c−1
i−1(j), which is not j -compatible

with i. Therefore i and i′ are in the same set B ∈ Part (j). Since i is the only
pigeon on which we have modified the dance b (except for t), then it follows that
i′ was already sent to j in b, that is bi′(i

′) = j . Observe that, since i and t are
not jmin-compatible, then i and t are in the same set C ∈ Part (jmin). But since
jmin < j , then C ⊂ B and therefore t ∈ B. This is a contradiction since b is a
correct dance and we cannot have that bt (t) = j and bi′(i

′) = j , for two pigeons
i′ and t not j -compatible. ��

Lemma 3.2. The minimal dance is a one-to-one mapping.

Proof. We show that for all t = 1, . . . , n, Dt(·) is a 1-1 mapping. The result then fol-
lows since the minimal dance is a composition of the Dt mappings. We show that if
Dt(a) = Dt(a

′) then a = a′. Suppose Dt(a) = Dt(a
′). Then dom(a) = dom(a′)

and a(i) = a′(i) for all i ∈ dom(a), i �= t . It remains to show that a(t) = a′(t).
We show that neither a(t) < a′(t) nor a′(t) < a(t). Suppose the former. We show
the following two inequalities:

Dt(a)(t) ≤ a′(t) a′(t) < Dt(a
′)(t)

This leads to a contradiction since Dt(a
′)(t) = Dt(a)(t) and by previous two in-

equalities we have that Dt(a)(t) < Dt(a)(t). The second inequality just follows
from the definition of Dt(a

′). To obtain the first inequality, observe that since for all
i �= t , a(i) = a′(i), and a and a′ preserve compatibility, then a′(t) ∈ Good(t, a).
The other case a′(t) < a(t) is completely symmetric. ��

Consider the following fact:
Fact. If a pigeon dance ends successfully on an a ∈ A, then the polynomial asso-
ciated to the dance is in T (this is because we are moving to always strictly greater
holes and therefore at the end the dummy hole 0 has disappeared).
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Lemma 3.3. If d ≤ log n
2 and a ∈ Ad , then there exists a dance on a if and only if

there exists a dance on â.

Proof. If there is a dance for a then obviously there is a dance for â, so one impli-
cation is easy. For the other implication, assume that the number of pigeons sent
to 0 by a is l different from 0, since otherwise there is nothing to prove. Assume
that â = {(i1, j1), . . . , (ik, jk)} and k + l < d = log n

2 . The factor 1/2 is required
because the dance on â may require two holes for each pigeon. Notice that after
excuting the dance on â we remain with at least l holes unused. We will use these
unused holes to define a dance on the whole a. That is, if the pigeon i is in dom(â),
then a(i) = â(i). If the pigeon i ∈ dom(a) − dom(â), then we assign one of
the unused l holes to move i in. Since these are completely new holes and since
|dom(a)| − |dom(â)| ≤ l, then the dance on a is well defined. ��

We can now proceed to the definition of the basis Bd .

Definition 3.6.

Bd = {xa : a ∈ Ad and there is a dance on â}
It is easy to prove that the following monotonicity properties hold for Bd : (1)

Bd−1 ⊆ Bd ; (2) xa ∈ Bd−1 if and only if for all i �∈ dom(a), xaQi ∈ Bd . In
order to show that Bd is a basis for Span(Td) we need to define an order ≺ on
polynomials in Td . We will do it as in [8].

Definition 3.7. Let xa and xb be two polynomials in Td . Then xa ≺ xb if and only
if deg(xa) < deg(xb), or if deg(xa) = deg(xb), then for the largest pigeon i such
that a(i) �= b(i), we have that a(i) < b(i).

Lemma 3.4. Bd is a basis for Span(Td) for any d ≤ log n
2 .

Proof. Under the hypothesis that the degree d is less than log n
2 we show: (1) that

|Bd | ≤ |Td | and (2) that any xa ∈ Td can be expressed as a linear combination of
elements of Bd , from which the Lemma follows. The first property follows because
the minimal dance defines a 1-1 into mapping from Bd to Td . More precisely, if
xa ∈ Bd then we have a dance on â and since d ≤ log n

2 , then by Lemma 3.3, there
is dance on a and therefore by Lemma 3.1 there is a minimal dance on a that by
Lemma 3.2 is a 1-1 mapping. Finally the observation in the previous Fact proves
the first part. For the second part we work by induction on ≺. Assume that for all
x′ ≺ xa , x′ ∈ Span(Bd). We show that xa ∈ Span(Bd). If there is a dance on a

then xa is in Bd . Otherwise we show how to express xa as a linear combination
of the elements of Bd . Let Pt be the set of all possible correct first t steps of the
dance on a. We prove that xa ∈ Span(Bd) iff

∑
b∈Pt

xb ∈ Span(Bd) by induction
on t = 0, . . . , n. Since there is no dance on a, then Pn = ∅ and therefore the claim
follows. The base of the induction t = 0 follows since P0 = a. For the induction
step observe that if t �∈ dom(a) then Pt = Pt−1 and so the claim follows by in-
duction on t . Otherwise for any b ∈ Pt−1, xb is of the form xt,j xc. We rewrite xt,j

with respect to the relation Qt , so that xb can be rewritten as

(1) xc − xcQt −
∑

j ′ �=j

xcxt,j ′
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equation 1 can be rewritten as:

xc − xcQt −
∑

j ′<j

xcxt,j ′ −
∑

j ′>j,j ′∈Good(t,b)

xcxt,j ′ −
∑

j ′>j,j ′ �∈Good(t,b)

xcxt,j ′

Each monomial in the last term is equal 0, therefore in Span(Bd). The first
three terms in the above sum are in Span(Bb) by induction on ≺. The first by the
base case of the definition of ≺. The second by the induction case of ≺ and by the
monotonicity property of Bd . The third by (the second case of the definition) ≺.
The fourth term corresponds exactly to all the possible correct first t steps of b.
Therefore if we sum over all xb for b ∈ Pt−1 we have that

∑

b∈Pt

xb ∈ Span(Bd) iff
∑

b∈Pt−1

xb ∈ Span(Bd)

This concludes the proof of the Lemma. ��

Theorem 3.1. Any polynomial calculus refutation of MPHPn has degree not less
than log n

2 .

Proof. The proof is as in [8]. That is, we prove by induction on the length of the
proof that each polynomial derivable from the initial polynomials Qi with at most
degree d is a linear combinations of polynomials in Bd − Td (i.e a combination of
the elements of Bd that are multiples of some axioms Qi). Therefore since 1 ∈ Td

and it has a unique representation in each basis, we cannot derive the polynomial
1 with a proof of degree less than or equal to d.

Recall that we are considering refutations modulo the ideal I . Therefore in the
base case an axiom is always of the form Qi for some i ∈ [n], and the claim follows.

In the inductive step, if a line is inferred by the sum rule the result is immediate.
For the case of product, say we have xa

xaxk,j
, with |a| ≤ d −1. We want to prove that

xk,j xa ∈ Span(Bd − Td). By induction, xa can be written as a sum of elements in
Bd −Td (i.e. sum of multiples of Qi). Therefore distributing xk,j along elements of
this sum, we can write xaxk,j as a sum of multiples of Qi’s. By the monotonicity
properties of Bd , it is easy to see that this is a sum of scalar multiples of Qi’s and
therefore in Span(Bd − Td). ��

4. Resolution lower bounds via degree lower bounds

In this Section we will prove a simulation of Resolution by Polynomial Calculus,
that together with an upper bound for MPHP , will allow us to prove the tightness
of our lower bound.

Resolution is a refutation proof system for formulas in CNF form based on the
following resolution rule: C∨x x̄∨D

C∨D
where if C and D have common literals, they

appear only once in C ∨ D. A resolution proof of a CNF formula F is a derivation
of the empty clause from the clauses defining F , using the above inference rule.
Following [3] the width w(F) of a CNF formula F is defined to be the number
of literals of the largest clauses in F . The width w(R) of a refutation R is defined
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as the size of the greatest clause appearing in R. The width w( F) of refuting a
formula F is defined as min

RF
w(R).

We prove that degree lower bounds imply width lower bounds as long as the
initial polynomials of the PC proofs are obtained by the standard mapping tr of
the initial clauses of the resolution proofs.

Lemma 4.1. Given a set of unsatisfiable clauses F and a resolution refutation of
F , there is a polynomial calculus refutation of tr(F ) of degree less than or equal
to w( F)+1.

Proof. Observe that given two clauses A and B, it is easy to obtain a PC derivation
of

tr(A) = 0  tr(A)tr(B) = 0

with degree w(A) + w(B).
We show that for each clause A in the resolution proof we find a PC derivation

of tr(A) = 0 with degree at most the width of deriving A plus one. If A is an initial
clause the result follows by definition of tr . Now assume that at a resolution step
we are in the following situation

A ∨ x x̄ ∨ B

D

We will simulate the resolution rule by a few PC steps. Assume that A = A′ ∨ C

and B = B ′ ∨ C, i.e. C is the clause formed by the literals that belong to both A

and B. D = A′ ∨ B ′ ∨ C. By induction we have derived

tr(A)(1 − x) = tr(A′)tr(C)(1 − x) = 0 and tr(B)x = tr(B ′)tr(C)x = 0

By the previous observation we can obtain the refutations

tr(A′)tr(C)tr(B ′)(1 − x) = 0 and tr(B ′)tr(C)tr(A′)x = 0

An application of the sum rule gives tr(D) = 0. Note that the premises and con-
clusion of the resolution rule get translated by polynomials of the same degree as
the width of the clauses. The steps added in the simulation can increment by 1 the
degree respect to the width. ��

As a consequence of the previous lemma and the width-size trade-off of [3], a
linear (in the number of variables) degree lower bound in polynomial calculus can
give us an exponential lower bound in resolution size.

5. Upper bounds for the modified pigeonhole principle

In this section we prove that the lower bound obtained in Section 3 is tight giving
degree O(log n) PC refutations of Poly-MPHPn. We use the simulation Lemma
4.1 of the previous section.

First consider the following definition and Lemma from [5].
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Definition 5.1 ([5]). Let P(�x) and Q(�y) be two sets of polynomials over a field F .
Then P is (d1, d2)-reducible to Q if :

1. For ever yi , there is a degree d1 definition of yi in terms of �x. That is for every
i, there exist a degree d1 polynomial ri such that yi can be viewed as defined
by yi = ri(�x);

2. There exists a degree d2 PC derivation of the polynomials Q(�r(�x)) from the
polynomials P(�x)

Lemma 5.1 ([5]). Suppose that P(�x) is (d1, d2)-reducible to Q(�y). Then if there
is a degree d3 PC refutation of Q(�y), then there is a degree max(d2, d3d1) PC

refutation of P(�x).

Let tr(MPHP) be the set of polynomials obtained applying the standard
mapping tr to the clauses in MPHP . We’ll use the previous Lemma to obtain
PC refutations of Poly-MPHPn from PC refutations of the set of polynomials
tr(MPHPn).

Lemma 5.2. Poly-MPHPn is (1, log n)-reducible to tr(MPHPn).

Proof. Since the variables in PC take 0/1 values, then for all i = 1, . . . m,∑m
j=1 xi,j = 1 implies

∏m
j=1(1 − xi,j ) = 0. Hence by the completeness of Poly-

nomial Calculus we have PC derivation of degree at most m = log n of the set of
polynomials

∏m
j=1(1 − xi,j ) = 0 from the set of polynomials

∑m
i=1 xi,j = 1 using

the axiom polynomials. ��
In order to use Lemma 4.1 to obtain O(log n) degree upper bounds for

tr(MPHPn) we need to prove O(log n) width upper bounds (in resolution) for
MPHPn. We adapt a proof sketched by Goerdt from [7].

Lemma 5.3. There are resolution refutations of MPHPn of size nO(log n) and width
O(log n).

Proof. The proof goes by induction on k = 4, . . . , log n. The case MPHP4 is
easy and can be also found in [7]. Assume to have, by induction, a refutation of
MPHP2k , for k ≥ 4. We give a proof of MPHP2k+1 .

Consider the intial clauses of MPHP2k+1 of the form

xi,1 ∨ . . . ∨ xi,k+1 (1)

for all i = 1, . . . , 2k+1. Resolve all of these clauses in parallel with the initial
clauses x̄i,k+1 ∨ x̄i′,k+1 (notice that i and i′ are not (k + 1)-compatibles). This
leaves us with the following clauses

xi,1 ∨ . . . ∨ xi,k ∨ x̄i′,k+1

for all i = 1, . . . , 2k+1 and for all i′ �= i not (k + 1)-compatibles. Applying to
these clauses the proof of MPHP2k we have by induction, we produce the single-
ton clauses x̄i′,k+1. Now we use these clauses and resolve with clauses in (1) to
obtain for al i = 1, . . . , 2k the clauses

xi,1 ∨ . . . ∨ xi,k



Degree complexity for a modified pigeonhole principle 413

With another application of the proof of MPHP2k applied to these clauses we
obtain the empty clauses.

It is straigthforward to see that in the refutation we never use clauses of width
greater than O(log n) and that the total number of clauses derived is at most quasi-
polynomial in n. ��

Theorem 5.1. There are O(log n) degree PC refutations of Poly-MPHPn.

Proof. Lemma 4.1 and the previous Lemma gives us O(log n) degree PC refuta-
tions of tr(MPHPn). Then Lemma 5.2 implies the claim of the Theorem. ��

6. Discussion and open problems

Consider the following two Theorems proved in [6].

Theorem 6.1 ([6]). If a set of clauses F over n variables and of width at most k

has a tree-like resolution refutation of size S, then the set of polynomials tr(F ) has
a PC refutation of degree k + O(log S).

Theorem 6.2 ([6]). If a set of clauses F over n variables and of width at most k,
has a dag-like resolution refutation of size S, then the set of polynomials tr(F ) has
PC refutation of degree at most 3

√
n loge S + k + 1.

It is easy to see that the simulations of the previous theorems are optimal. This
is because, for instance Random formulas over n variables require degree �(n) [2,
1] for PC refutations, but have Resolution refutations of tree-like size O(2n). No-
tice that this optimality results use formulas that require exponential size. It would
also be interesting to prove the optimality of the previous simulations also in the
case when S is “small” (i.e. polynomial in the size of the formula). This would
give us some interesting information about the performance of the Grobner basis
algorithm, on formulas that have polynomial size Resolution refutations. We would
see that the Grobner basis would not perform in polynomial time in such case.

As a consequence of our degree lower bound for PC refutations of MPHP

(see Theorem 3.1) and the polynomial size tree-like Resolution upper bound of
Goerdt [7] (see Theorem below), we get the optimality of the first simulation for
small size Resolution proofs. It is still open whether the same can be done for the
second simulation. We propose the graph tautology GT (see [4]) as a candidate for
such a result.

Moving to a different but related topic, consider Lemma 5.3, and the following:

Theorem 6.3 ([7]). There are tree-like resolution refutations of MPHPn of size
nO(1) and width O(n).

By the size-width tradeoff of [3] for tree-like Resolution and the previous Theo-
rem, there are polynomial size O(log n) width Resolution refutations of MPHPn,
and this is an improvement over Lemma 5.3. However, the proofs produced by this
transformation are not tree-like. We don’t know, for the case of MPHPn, if there
exist tree-like refutations of O(log n) width and polynomial size. It is possible that
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to reduce the width from O(n) to O(log n) the tree-like size should increase con-
siderably. It could be interesting to study such questions also for other tautologies
or even in a general setting analyzing the relationship between optimal size and
optimal width in Resolution.

Finally notice that there is no simulation of Polynomial Calculus by Resolution.
Therefore it would be also interesting to obtain the opposite direction of Lemma
4.1.
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