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ABSTRACT 
 

The problem of the estimation of thermal conductivities of multi-layer walls is studied using genetic algorithms and simulated annealing. 

Parameter estimation is shown for the cases of three- and five- layer walls, comparing the two stochastic approaches and also contrasting 

them with deterministic gradient-based methods. It is shown how stochastic methods permit better performances than classical ones when 

initial estimations of parameter values are not available or when the problem becomes complex. 

 

1. INTRODUCTION 

The estimation of thermophysical parameters of building 

components, in particular their thermal resistance, has 

important practical applications for thermal loads 

calculation and sizing of air-conditioning systems. 

When trying to determine building thermal resistance 

with on-site measurements, an important role is played by 

the type of processing applied to temperature and heat 

flux data. The simplest method for thermal resistance 

determination is to employ a progressive average [1]. 

In [2] Aureli and Grignaffini proposed a method based on 

linear regression of experimental data. The advantage of 

such a method is the possibility of using a shorter data 

acquisition time compared to what is required by the 

progressive average method. A simulated extension of the 

test period to calculate the thermal resistance was 

suggested in [3]. In this way, thermal resistance 

estimation is possible also for walls with high heat 

capacity and for large temperature excursions. In both 

previous cases, a global value of thermal resistance is 

determined, even in the case of composite walls.  

In this paper, we intend to analyze the problem of the 

simultaneous estimation of thermal conductivities of the 

materials composing a multilayer wall. This problem will 

be studied in the framework of parameter estimation in 

inverse heat conduction problems. 

In short, it can be said that solving a direct problem 

describes effects obtained for the application of given 

causes, whereas the inverse problem has to deal with the 

determination of unknown causes given their effects. 

From a mathematical point of view, this type of problems 

are usually ill-posed, because it is not assured that there is 

a unique solution and they are not stable under 

perturbations on data. 

A wide range of methods has been applied in literature 

for thermophysical parameter estimation in the context of 

inverse problems. Usually, space- and/or temperature-

dependent heat capacity and thermal conductivity are 

determined by minimizing the least-squares difference 

between measured and computed data [4,5], possibly with 

Tikhonov regularization [6]. Examples include the use of 

a modified Newton-Raphson method [7], of the conjugate 

gradient method with adjont problem [8-10], of the 

Levenberg-Marquardt method [11], of the Broyden-

Fletcher-Goldfarb-Shanno algorithm [12], of Kalman 

filtering [13]. 

The present work is devoted to the use of stochastic 

optimization methods for the thermophysical parameter 

estimation of multilayer masonry walls. The simultaneous 

estimation of the values of such parameters for different 

media represents an inverse problem in which it may be 

 

necessary to minimize functions showing more than one 

minimum. In this case, deterministic optimization 

methods are not capable of solving the problem if a 

sufficiently accurate starting estimation of parameter 

values is not available. Even in cases in which the 

function to be minimized is monomodal, classical 

methods may not lead to convergence because the 

problem is ill-posed. Also, unknown parameters may be 

correlated and therefore be difficult to estimate through 

gradient-based methods using a sensitivity matrix. For all 

these reasons it can be useful to study the application of 

stochastic methods like genetic algorithms and simulated 

annealing to parameter estimation. 

A few works exist regarding applications of genetic 

algorithms to thermophysical parameter estimation. 

Raudenský et al. [14] showed the possibility of using 

genetic algorithms and neural networks for estimating 

thermal conductivity and heat capacity of a steel plate by 

determining the coefficients of an assumed linear 

temperature dependence. 

Garcia et al. [15,16] employed genetic algorithms for 

estimating thermophysical properties of composite 

materials and optimizing the experimental design of the 

measurement set up. Genetic algorithms have also been 

employed for function estimation problems in inverse 

heat conduction [17]. 

To the best of our knowledge, no application of simulated 

annealing to estimate thermophysical parameters has 

appeared in literature. 

 

2. DIRECT PROBLEM 
In all methods used for solving an inverse problem, it is 

necessary to solve the corresponding direct problem with 

guess values of the unknown parameters. This usually 

represents a computationally expensive task in the whole 

process. The direct problem we are interested in can be 

modeled by a monodimensional heat conduction equation 

 

                   (1)

      
with the boundary and initial conditions 

 

 

   

 

 

 

The solution of the direct problem requires the 

determination of the temperature as a function of space 



and time , and therefore also the heat flux  in 

, given the values of the thermophysical parameters 

,  and  and given initial and boundary 

conditions. Thermophysical parameters are here supposed 

to be temperature-independent and piecewise constant in 

space. 

In a practical building application, a useful model to solve 

Eq. (1) is that of periodic regime. In these hypotheses, the 

problem presents an analytical solution in the one-

dimensional case, briefly recalled in Appendix. 

A numerical solution of Eq. (1), employing the control 

volumes method [18], has been also implemented to deal 

with more general transient heat conduction problems. 

 

3. GENETIC ALGORITHMS AND SIMULATED 

ANNEALING 

Genetic algorithms and simulated annealing are stochastic 

optimization methods [19], meaning that they employ a 

controlled degree of randomness to explore the solution 

space. This allows a global optimization, differently from 

what happens with gradient-based local search 

techniques. 

Genetic algorithms are based on the concepts of 

Darwinian evolution and survival of the fittest [20,21]. 

They try to maximize an objective function, called 

fitness, by evolving a set of trial solutions through the 

genetic operators of selection, crossover and mutation. 

The trial solutions are called chromosomes or individuals 

and constitute a population. Chromosomes are made of 

genes, that are a representation of the parameters to be 

determined, usually realized with a binary coding. Using 

the genetic operators, a new generation is created from 

the current population. The process is iterated until a 

proper stopping criterion (number of generations, error 

tolerance) is not satisfied. Selection chooses the parents 

whose mating has to give rise to the next generation. 

There are several types of selection; in this work we used 

tournament selection [22]: a subset of  individuals 

( in most cases) is chosen in a random way and 

their fitness is compared; the winner of the competition is 

inserted in the set of parents and the subset of  

individuals is reinserted in the current population. The 

process is repeated until enough parents have been 

created for breeding. The latter is realized using the 

crossover operator, single-point crossover being the most 

frequently used: a random number  in the interval [0,1] 

is generated; if  (where  is the crossover 

probability, usually set in the range 0.6-0.9) a random 

position in the string representing the chromosome is 

chosen and an offspring is created from the parents 

swapping the part of the chromosome after the crossover 

point; if, instead,  then the offspring is a copy of 

the parents. There also other forms of crossover in which 

the crossover points are more than one. After that, the 

mutation operator is applied to the offspring: it allows the 

exploration of portions of the parameter space that are not 

accessible with the simple crossover of the chromosomes 

existing in a given moment. Mutation is applied with a 

probability  (usually set in the range 0.01-0.1): if a 

randomly generated number  is less than , a random 

location in the chromosome is chosen and the 

corresponding bit is negated; if , the 

chromosome remains unaltered. Also used in this work is 

an elitist strategy: if the best individual of current 

generation has a fitness lower than that of the best 

individual of previous generation, the latter is inserted in 

the present population substituting the less fit individual. 

This helps in not loosing good genetic material. 

Simulated annealing [23] is the other stochastic 

optimization method employed in this work. It takes as a 

model the thermodynamical process of annealing of a 

solid. Let us consider a system with a large number of 

interacting particles, as atoms in a solid, at thermal 

equilibrium at temperature . The configuration of the 

system is represented by the set of the spatial coordinates 

of its constituent particles. At temperature  the 

probability  that the system is in a configuration  

depends on the energy of the configuration  and 

follows Boltzmann distribution law 

 

 

     

The behavior of the system at thermal equilibrium at 

temperature  is simulated with a stochastic relaxation 

technique, the Metropolis algorithm [24]. Suppose the 

system to be in the configuration  at ; a possible 

configuration  at  is generated in a random way 

and is accepted according to the difference between the 

energies of  and . In detail, the ratio  between the 

probability of the system to be in  and in  is computed; 

if , that is the energy of  is lower than the energy 

of , then the configuration  is accepted as the new 

configuration at . If, instead, , then the 

configuration  is accepted with probability . This 

means that higher-energy configurations are temporarily 

acceptable. It is just this mechanism that allows the 

system to tend to a global minimum without being stuck 

in a local minimum. Because of Boltzmann distribution 

law, low-energy configurations have higher probability at 

low temperature. To reach low-energy configurations it is 

necessary to proceed as in the physical annealing process: 

the temperature of the system is first raised and then 

gradually lowered, keeping the system at each 

temperature enough time for it to reach thermal 

equilibrium. Simulated annealing steps are therefore the 

following: 

• A starting temperature  is prescribed so to let almost 

all initial configurations to be accepted. 

• A temperature decrease law and the time to spend at 

each temperature are set. 

• For each temperature and for the number of iterations 

selected, the Metropolis algorithm is executed on random 

configurations. 

• The process is stopped when a given number of 

iterations is reached or a prescribed error tolerance is 

satisfied. 

Critical points for the minimization effectiveness are the 

selection of the temperature decrease law and the way a 

configuration is varied. Both points depend on the 

problem under examination and are empirically 

determined. 

 

4. RESULTS 

To test the performances of the various parameter 

estimation methods, a known case of periodic regime will 

be considered: thermophysical parameters and time-

dependent temperatures on the two sides of a multi-layer 

wall, as well as the heat flux at one side of the wall are 

known quantities. 



Simulated values are those reported in the annex A of the 

PrEN 12494 [1] regulation, presenting reference cases to 

be employed to test estimation methods for determining 

building components thermal resistance. We analyze in 

particular a three-layer and a five-layer walls, whose 

characteristics are described in Tab. 1.  

 

Table 1. Reference walls properties as reported in 

PrEN12494 regulation. 
Layer Material Thickness 

(m) 
Density 
(kg/m3) 

Specific 
heat 
(J/kg K) 

Thermal 
Conductivity 
(W/m K) 

Wall 

1 

     

1 Covering 0.01 600 1000 0.100 

2 Insulation 0.40 30 1000 0.035 

3 Covering 0.01 600 1000 0.100 

Wall 

2 

     

1 Covering 0.01 600 1000 0.100 

2 Insulation 0.05 30 1000 0.035 

3 Masonry 0.30 1800 1000 0.700 

4 Insulation 0.15 30 1000 0.035 

5 Covering 0.01 600 1000 0.100 

 

Temperature and heat flux are provided through their 

Fourier series expansion. 

The function to be minimized for an -layer wall is the 

least-squares norm 

 

 

 

where  is calculated with trial values of parameters and 

 is measured (in the present case is known from data 

tabulated in the PrEN regulation). 

 

4.1. Three-layer wall 

The first example of parameter estimation is the 

determination of the thermal conductivities of the three-

layer wall in Tab. 1. 

 

     Sensitivity study. Before carrying on the parameter 

estimation, it is useful to perform a sensitivity analysis to 

evaluate the possibility of success in the solution of the 

inverse problem and the number of parameters that can be 

simultaneously determined. In our problem we have to 

consider the variations of the heat flux with respect to 

thermal conductivity. A dimensionless normalized 

version of the sensitivity coefficient is considered to 

allow quantitative comparisons between coefficients 

 

 

 

In the frequency domain, the expression of  for a 

homogeneous wall in periodic regime is derived in the 

Appendix and is given by Eq. (A.3). As it can be seen, the 

sensitivity coefficient depends on λ through the 

dependence on . The inverse problem is 

therefore nonlinear and its solution with a classical 

method requires a linearization and an iterative solution 

process. Using a stochastic optimization method to solve 

the inverse problem, instead, it is not necessary to go 

through a linearization step, because a sensitivity matrix 

does not have to be calculated for the solution of the 

problem. Nonetheless, as we said, sensitivity coefficients 

are usefully calculated to gain insight into the problem. 

Also in the case of a multi-layer one-dimensional 

structure, it is possible to obtain analytic expressions of 

the heat flux at the edge of it (see Appendix) and 

therefore of the respective sensitivity coefficients. 

 

 
Figure 1: Sensitivity coefficients for the heat flux at  (a) 

and at  (b) with respect to thermal conductivities of the 

three layers of the wall. 

 

For the three-layer wall, their normalized values versus 

time are shown in Fig. 1a for the heat flux at . The 

calculation has been done by summing expressions like 

(6) for the various frequencies composing the temperature 

signals and employing the actual values of the wall's 

thermophysical parameters. As it can be seen, there is a 

difference of two orders of magnitude among the values 

of the three coefficients: mean , 

mean  and mean . This is 

reflected in the different accuracy with which it is 

possible to determine the values of the three thermal 

conductivities.  Parameters with sensitivity coefficients 

lower than 0.1 are extremely difficult to determine [25]. It 

is not surprising that the parameter that influences most 

heat flux variations is the conductivity of the intermediate 

insulating layer, that also has a thickness much larger 

than the other two layers. 

The possibility of simultaneous estimation of the n 

parameters can be related to their correlation coefficients 

[26] 

 

 

 

where  and  is the sensitivity 

matrix. As a rule of thumb, two parameters are considered 

correlated when the modulus of their correlation 

coefficient is larger than 0.9; in this case their 

simultaneous estimation is extremely difficult. In our 

case,  and . Given the 

low sensitivity to its value and its high correlation with λ2, 

λ1 is therefore the most difficult parameter to determine. 

We can also consider the other point of the wall which is 

accessible to measurements, that is  (see Fig. 1b). It 

is seen that the roles of  and  are swapped in the 

sense that in this case the most difficult parameter to be 

determined simultaneously with the other two is . 

Indeed, we have: mean , mean  



and mean , and  

and . 

 

     Deterministic methods. In order to motivate the need 

to go beyond classical optimization methods, a few 

estimation tests for the three-layer wall problem have 

been performed with conjugate gradient and Levenberg-

Marquardt algorithms. Being optimization methods that 

are capable of detecting local minima, they are sensitive 

to the starting values of the unknown parameters. 

 

 
Figure 2: Evolution of least-squares norm  (a) and thermal 

conductivities (b) with the conjugate gradient method. Dotted 

lines indicate actual parameter values. 

 

Fig. 2 shows the result of the application of the conjugate 

gradient method: the evolution during the optimization 

process of residuals (a) and of parameters (b) when the 

starting point is given by , 

 and . The expression used 

for the conjugation coefficient has been that of Polak-

Ribiere [27]. Even if  gets also negative values, which 

is physically meaningless, after a quite large number of 

iterations parameter values tend to converge to actual 

values. The different convergence speed of the three 

parameters is expected given the values of their 

sensitivity coefficients. A slight variation in the starting 

point (e.g. ,  and 

) has the consequence that convergence 

to the actual parameter values is not achieved. 

The application of Levenberg-Marquardt method has 

proven to be even more critical because it is more 

sensitive to the inverse problem ill-conditioning (

). 

  
     Genetic algorithms. As it has been shown, there are 

cases where convergence to actual parameter values is not 

achieved, in particular when the starting point is too far 

from the solution. It makes sense, therefore, to apply 

stochastic methods to the considered problem as it is the 

very stochastic nature of the procedure that allows a 

certain degree of independence on the starting point in the 

parameter space. 

Since genetic algorithms employ a binary coding of 

parameters, there are optimal values uniquely determined, 

toward which the algorithm has to go, which are the best 

approximation obtained of the actual parameter values, 

given the number of bits in the coding. In our example, 

therefore, there are bit sequences representing the optimal 

values of thermal conductivities. 

The calculation amount can be roughly quantified by 

estimating how many times the fitness function has to be 

evaluated by solving the direct problem, since this 

requires the larger part of the calculation. For populations 

of 100 individuals and with 100 generations, the fitness 

function has to be evaluated 10000 times, that is much 

larger than what is required by classical optimization 

methods. On the other side, as already said, stochastic 

methods can be the only solutions when tackling complex 

problems. They can also be employed to provide a first 

rough parameter estimation, to be improved afterwards 

with the use of classical optimization methods (hybrid 

genetic algorithms [28]) or through the synergy with 

other heuristic methods [29]. 

To apply genetic algorithms, each one of the three 

unknown conductivities has been coded with 10 bits 

(giving rise to a chromosome with 3 genes and 30 bits) 

and different combinations of crossover type and 

mutation probability have been evaluated. The algorithm 

parameters which are common to the various examples 

have been synthesized in Tab. 2.  

 

Table 2. Parameters of the genetic algorithm employed 

for the three-layer wall problem. 

     selection  

0.01 1 10 100 100 tournament 0.9 

 

Since genetic algorithms are used to maximize functions, 

the fitness function has to be chosen as the opposite of 

Eq. (4). 

The sensitivity analysis showed that the simultaneous 

estimation of the three conductivities is a hard task to be 

performed. To allow a wide exploration of the parameter 

space, two options have been tested to differentiate the 

genetic material: multipoint crossover and high mutation 

probability.  

 

Table 3. Parameter estimation with genetic algorithms for 

three-layer wall. Heat flux at . 

Crossover  Parameter % mean 

error 

% std 

error 

Single-

point 
0.1 

 

 

 

127.8 

1.8 

94.9 

284.6 

4.5 

215.7 

Single-

point 
0.5 

 

 

 

1.9 

0.0 

0.3 

7.1 

0.0 

0.9 

Three-

point 
0.1 

 

 

 

90.9 

0.1 

16.1 

229.2 

0.6 

39.1 

Three-

point 
0.5 

 

 

 

131.9 

0.3 

9.0 

322.0 

0.8 

23.8 

 

As it is shown in Tab. 3, the algorithm with best 

performances proved to be that using single-point 

crossover and mutation probability equal to 0.5. In this 

case, the error in the determination of  equal to zero 

means that the algorithm always converges to the optimal 

value of the parameter in the 10 bit coding. All results in 

Tab. 3 are average values for 20 runs of the program. The 

difference in the errors on the three parameters clearly 

reflects the diversity of their sensitivity coefficients seen 

in the previous paragraph. In particular, the thermal 

conductivity of the first layer is extremely difficult to 

determine, because of the low sensitivity coefficient  

and of the high correlation between  and . 



It is interesting to analyze the convergence behavior in 

the four cases considered. The convergence to the optimal 

values is never reached in the first case shown in Tab. 3, 

is reached 17 times out of 20 in the second case, 4 out of 

20 in the third case, and 16 out of 20 in the fourth case. 

This means that, even if the errors obtained in the third 

and fourth cases are comparable, a larger mutation 

probability seems to be beneficial for the convergence 

effectiveness of the algorithm. 

Figure 3: Convergence to the optimal values (dashed lines) of 

the thermal conductivities for the three-layer wall using genetic 

algorithms. 

 

Fig. 3 shows the evolution toward the optimal values of 

the parameters in a typical example of the third case. 

What is shown is the result for the best individual in each 

generation. 

The genetic algorithm parameters that provided the best 

estimation results have been employed in a second 

example of solution of the inverse problem. In this case 

the simulated heat flux is that at the  edge of the 

wall. Tab. 4 shows the results of the estimation (average 

on 20 runs) for this case. The performances are similar to 

those obtained in the previous case. We can say, 

therefore, that, for the considered problem, a proper 

combination of crossover and mutation allows a quite 

accurate determination of parameters. 

 

Table 4. Parameter estimation for three-layer wall with 

genetic algorithms. Heat flux at . 

Crossover  Parameter % mean 

error 

% std 

error 

Single-

point 
0.5 

 

 

 

0.6 

0.0 

0.5 

1.2 

0.0 

1.0 

 

To further characterize the performances of genetic 

algorithms, we realized some tests of robustness against 

noise. In this case, however, given the very high 

correlation  between  and  and the extremely low 

sensitivity of the heat flux at  with respect to , the 

presence of the noise makes almost impossible to 

determine simultaneously the three parameters. 

Therefore, the attention has been concentrated on the 

estimation of just  and . Different amounts of 

Gaussian white noise have been added to heat flux and 

temperature data to simulate measurement errors. 

Wavelet denoise, as implemented in the Wavelet Toolbox 

of Matlab®, has been used to filter data before applying 

the estimation. The results are shown in Tab. 5 and refer 

to ten runs for each case. 

Table 5. Estimation of the parameters  and  for three-

layer wall with genetic algorithms and noisy data. Heat 

flux at . 
 

(K) 

 

(W/m2) 

Parameter % mean 

error 

% std 

error 

0.1 

0.1 

0.5 

0.5 

0.5 

0.5 

0.1 

0.1 

0.1 

0.1 

0.5 

0.5 

 

 

 

 

 

 

0.0 

27.3 

0.0 

24.4 

1.1 

58.3 

0.0 

0.6 

0.0 

0.4 

1.4 

18.2 

 

It is seen that genetic algorithms provide quite good 

results also in this case for the insulator thermal 

conductivity. They are less effective in the estimation of 

the covering thermal conductivity, but this is not 

surprising given the very low value of the corresponding 

sensitivity coefficient. 

 

     Simulated annealing. As it has been said in section 3, 

critical points in the use of simulated annealing are the 

selection of the temperature variation law and of the 

criterion to modify trial values of parameters. Regarding 

the first point, we selected the following temperature law 

[30]: 

 

 

 

In the examples seen in this paragraph . The 

value of , clearly, has no meaning from a physical 

point of view, but it has been chosen so that, in the first 

part of the process almost all configurations are accepted, 

even if they entail a considerable energy increase, so that 

the parameter space is sampled extensively. In this way it 

is possible to avoid the algorithm to ‘freeze’ in a state 

with an energy not sufficiently low, or, in other terms, to 

avoid it to be trapped in a local minimum. 

The variation of parameter values has been realized by 

adding or subtracting to the current value a random 

quantity comprised within a given percent of it. The new 

value of the thermal conductivity can then be expressed 

as a function of the old one as: 

 

 

 

where  is the signum function, that is  for 

, -  for  and  for , 

while  and  are random numbers uniformly 

distributed between 0 and 1.  is the percentage of which 

the current value is changed and has been varied with the 

temperature with the law: 

 

 

 

where  and  are proper constants and  is the index 

associated to the temperature variation. The starting 

temperature and the constants that appear in (10) have 

been empirically selected. Each run performs 500 

temperature steps and 40 iterations for each temperature.  

The first part of Tab. 6 shows the results obtained when 

the heat flux is simulated at . The second part of 

Tab. 6 shows instead the results obtained for heat flux at 

.  All the errors obtained are statistical values for 20 

program runs. As happens for sensitivity coefficients, in 

the latter case the roles of  and  are interchanged and 



 becomes the parameter whose determination presents 

the larger error. If it is possible to acquire heat flux 

measurements both at  and at , the two 

estimations can be performed together to provide accurate 

values for all three parameters. 

 

Table 6. Parameter estimation for three-layer wall with 

simulated annealing. 

Heat flux at . 

 Eq. (10) 

constants 

Parameter % mean 

error 

% std 

error 

 

3000 

 

 

 

 

 

 

 

20.2 

0.2 

1.3 

16.3 

0.2 

1.2 

Heat flux at . 

 Eq. (10) 

constants 

Parameter % mean 

error 

% std 

error 

 

3000 

 

 

 

 

 

 

 

0.3 

0.8 

43.2 

0.5 

0.4 

17.4 

 

 

Figs. 4a-b show the evolution of the energy and of the 

parameters in a typical run. It is seen that in the first part 

of the process large energy oscillations are allowed. It is 

just this mechanism that provides a way to escape from 

local minima. 

 

Figure 4: Evolution of energy (a) and thermal conductivities (b) 

in the three-layer wall problem for the estimation with simulated 

annealing. 

 

 

4.2. Five-layer wall 

The problem of the determination of thermal 

conductivities of a five-layer wall (wall 2 in Tab. 1) is 

now presented. 

 

     Sensitivity coefficients. Fig. 5 shows the sensitivity 

coefficients of the heat flux with respect to variations of 

the five thermal conductivities at  (upper row) and 

at  (bottom row). As in the case of the three-layer 

wall, they present a trend that is specular in the two 

situations. This property can be exploited to obtain 

accurate estimations. They differ by orders of magnitude: 

the sensitivity analysis suggests that the simplest 

parameters to be determined should be  and  in both 

cases. Almost completely correlated parameters are  

and  for measurements at ,  and  for 

measurements at  (correlation coefficients almost 1 

in both cases). 

 
Figure 5: Sensitivity coefficients of the heat flux at  

(upper row) and at  (bottom row) with respect to thermal 

conductivities. 

 

 

     Genetic algorithms. To employ genetic algorithms, the 

unknown parameters have been represented with 10 bit 

genes, for a whole chromosome length of 50 bits. The 

other parameters of the genetic algorithm are reported in 

Tab. 7. 

 

Table 7. Parameters of the genetic algorithm employed 

for the five-layer wall problem. 

     selection  

0.01 1 10 100 300 tournament 0.9 

 

Different options regarding mutation probability and 

crossover type have been tested. The best results, that 

however are not satisfying, are reported in Tab. 8. The 

values shown refer to 10 runs of the genetic algorithm. 

 

Table 8. Parameter estimation for a five-layer wall with 

genetic algorithms. 

Crossover  Parameter % mean 

error 

% std 

error 

 

Single-

point 

 

 

0.5 

 

 

 

 

 

465.6 

400.2 

50.0 

16.4 

16.8 

403.8 

601.2 

45.8 

18.8 

21.4 

 

 

     Simulated annealing. For this application, 500 

temperature steps (with the variation criterion in Eq. (7)) 

and 40 iterations for each temperature have been 

considered. The results are shown in Tab. 9. Satisfactory 

estimations are obtained for , , and  at  and 

for , , and  at . This is not in complete 

agreement with the sensitivity study and the difference is 

probably due to the nonlinear character of sensitivity 

coefficients. 

Also in this case, as in the three-layer wall problem, it is 

possible to achieve an accurate estimation of all 

parameters if a supplementary heat flux measurement is 

performed at . Moreover, the overall results show 

an improvement compared to those obtained with genetic 

algorithms. This means that, when problems become 

complex, simulated annealing appears more efficient in 

avoiding premature convergence, that is one of the typical 

inconveniences of genetic algorithms. 

 



 

Table 9. Parameter estimation with simulated annealing 

for a five-layer wall problem. Statistical values for 10 

runs. 

Heat flux at . 

 Eq. (10) 

constants 

Parameter % mean 

error 

% std 

error 

 

 

3000 

 

 

 

 

 

 

 

 

 

69.3 

67.7 

3.3 

0.3 

1.0 

64.2 

75.9 

2.3 

0.3 

1.4 

Heat flux at . 

 Eq. (10) 

constants 

Parameter % mean 

error 

% std 

error 

 

 

3000 

 

 

 

 

 

 

 

 

 

0.8 

0.2 

1.4 

15.9 

76.6 

1.0 

0.2 

1.7 

9.5 

21.5 

 

 

5. CONCLUSIONS 

We investigated the problem of determining the unknown 

thermophysical parameters of multilayer walls starting 

from temperature and heat flux measurements on the edge 

walls. 

Two stochastic optimization methods have been 

employed with this aim: genetic algorithms and simulated 

annealing. It has been shown that both methods are 

capable of providing solutions of the problem when 

classical methods fail. With both types of stochastic 

algorithms it is necessary to empirically select a few 

parameters to tailor the performances of the optimization 

method to the problem under examination. For more 

complex problems, as the five-layer wall, simulated 

annealing seems to provide better performances, in 

particular when supplementary measurements at the outer 

edge of the wall can be acquired. 

Hybrid methods could be applied where a first rough 

parameter estimation is performed with a stochastic 

method and a second, more accurate estimation is realized 

using conjugate-gradient like methods. This would 

combine global optimization and accuracy. 

Future work should take into account the temperature 

dependence of thermophysical parameters. The 

estimation methods can be easily extended to this case if 

known functional forms of temperature dependence are 

assumed. Thermophysical and functional parameters 

should be therefore determined. However, the 

computational burden would increase due to the solution 

of the direct problem which becomes non linear. 
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APPENDIX 
For a homogeneous wall subject to heat conduction in 

periodic regime, solutions of Eq. (1) can be assumed in 

the form , which, 

inserted in eqs. (1) and (2), gives the solution 

 

 

 

where . The heat flux at  is therefore: 

 

 

 

At frequency , the non-normalized sensitivity coefficient 

of the heat flux  with respect to variations of the 

thermal conductivity  results from Eq. (A.2) 

 

 

 

To obtain the spatial temperature distribution and the heat 

flux at  for an -layer wall, it is useful to start from 

the homogeneous case and evaluate Eq. (A.2) at  

and at  as 

 

 

 

 

where  and . 

Rearranging terms in Eq. (A.4), we can set 

 

 

 

For an -layer wall with lengths , Eq. (A.5) can 

be extended as 

 

 

 

Summing over all the frequencies, it is therefore possible 

to obtain  and  as a function of  and 

 (or  and  as a function of  and 

). 
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Nomenclature 
 specific heat J / kg K 

 thermal diffusivity m2 / s 

 energy of a configuration J 

 

 

frequency 

number of measurements 

Hz 

 

 sensitivity coefficient K / m 

 dimensionless sensitivity coefficient  

 dimensionless sensitivity matrix  

 Boltzmann constant J / K 

 wall length  m 

 
number of individuals in tournament 

selection 
 

 number of temperature levels  

 probability  

 heat flux W / m2 

 heat flux vector W / m2 

 correlation coefficient  

 set of all possible configurations  

 configuration in solution space  

 least-squares norm W2 / m4 

 time s 

 temperature K 

 space m 

Greek symbols 

 percent variation of parameter value  

 thermal conductivity W / m K 

 spatial frequency 1 / m 

 
probability of a configuration at 

temperature  
m 

 
 

 

density 

std deviation of noise on heat flux 

std deviation of noise on temperature 

kg / m3 

W / m2 

K 

Superscripts 

 frequency domain  

 calculated with trial parameter values  

Subscripts 

 crossover  

 external  

 internal  

 

 

Initial 

maximum value 

 

 
 

mutation 

old value 

 

 


