
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Graph-based reinforcement
learning for discrete cross-section
optimization of planar steel frames

Hayashi, Kazuki; Ohsaki, Makoto

Hayashi, Kazuki ...[et al]. Graph-based reinforcement learning for discrete cross-section
optimization of planar steel frames. Advanced Engineering Informatics 2022, 51: 101512.

2022-01

http://hdl.handle.net/2433/277035

© 2022 The Authors. Published by Elsevier Ltd.; This is an open access
article under the CC BY license.

Advanced Engineering Informatics 51 (2022) 101512

Available online 14 January 2022
1474-0346/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

Graph-based reinforcement learning for discrete cross-section optimization
of planar steel frames
Kazuki Hayashi ∗, Makoto Ohsaki
Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

A R T I C L E I N F O

Keywords:
Machine learning
Reinforcement learning
Graph embedding
Structural optimization
Cross-section optimization
Steel frame

A B S T R A C T

A combined method of graph embedding (GE) and reinforcement learning (RL) is developed for discrete cross-
section optimization of planar steel frames, in which the section size of each member is selected from a
prescribed list of standard sections. The RL agent aims to minimize the total structural volume under various
practical constraints. GE is a method for extracting features from data with irregular connectivity. While most
of the existing GE methods aim at extracting node features, an improved GE formulation is developed for
extracting features of edges associated with members in this study. Owing to the proposed GE operations, the
agent is capable of grasping the structural property of columns and beams considering their connectivity in a
frame with an arbitrary size as feature vectors of the same size. Using the feature vectors, the agent is trained
to estimate the accurate return associated with each action and to take proper actions on which members
to reduce or increase their size using an RL algorithm. The applicability of the proposed method is versatile
because various frames different in the numbers of nodes and members can be used for both training and
application phases. In the numerical examples, the trained agents outperform a particle swarm optimization
method as a benchmark in terms of both computational cost and design quality for cross-sectional design
changes; the agents successfully assign reasonable cross-sections considering the geometry, connectivity, and
support and load conditions of the frames.

1. Introduction

In the design of standard building frames composed of columns and
beams, the frame shape is often determined mainly from the building
plan, and determining the member cross-sections after fixing the shape
has an important role in the structural design process. Therefore, cross-
section optimization of frames in which the member cross-sections are
handled as design variables is one of the problems of great practical
interest. Although the support condition is also an important factor to
design steel frames, the supports are not the target of design changes
in this study.

If the section sizes can vary continuously, the optimization prob-
lem can be formulated as a nonlinear programming problem, and
mathematical programming approaches are available. Pezeshk [1] op-
timized frame cross-sections utilizing sensitivity analysis to minimize
the structural weight under displacement constraints considering non-
linear behavior of the structure. Kimura et al. [2] optimized the plate
thickness of square steel pipes and the flange-web thickness of I-beams
to minimize the roof displacement of the frame, in which the design
variables are continuous.

∗ Corresponding author.
E-mail addresses: hayashi.kazuki@archi.kyoto-u.ac.jp (K. Hayashi), ohsaki@archi.kyoto-u.ac.jp (M. Ohsaki).

However, considering that most of steel members used for gen-
eral buildings are standard products manufactured at a factory, it is
preferable that the design problem is described as a combinatorial
optimization problem in which each member’s cross-section is selected
from a prescribed list of standard sections [3]. Mathematical program-
ming approaches for continuous design problems cannot be directly
applied to a problem with discrete variables because the gradients
cannot be analytically obtained. In order to apply mathematical pro-
gramming to discrete design problems, the variables need to be relaxed
to continuous variables during optimization to compute the gradients
[4–6].

Metaheuristics are often used to solve combinatorial optimization
problems. Liu et al. [7] used genetic algorithm [8], and Balling [9] used
simulated annealing [10] to minimize the weight of a steel frame by
choosing the cross-sections from discrete standard sizes. Metaheuristic
methods require less computational cost to obtain promising results;
however, the solutions do not satisfy any theoretically defined optimal-
ity criteria, and the quality of the optimal solution strongly depends on
the initial solution and hyper-parameters of the algorithm.

https://doi.org/10.1016/j.aei.2021.101512
Received 1 September 2021; Received in revised form 12 December 2021; Accepted 21 December 2021

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://www.elsevier.com/locate/aei
http://www.elsevier.com/locate/aei
mailto:hayashi.kazuki@archi.kyoto-u.ac.jp
mailto:ohsaki@archi.kyoto-u.ac.jp
https://doi.org/10.1016/j.aei.2021.101512
https://doi.org/10.1016/j.aei.2021.101512
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2021.101512&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Advanced Engineering Informatics 51 (2022) 101512

2

K. Hayashi and M. Ohsaki

Apart from mathematical programming and metaheuristic
approaches, there is an increasing number of studies on applications of
machine learning (ML) to structural engineering problems that require
professional knowledge and skills. ML is a term first used by Arthur
Samuel [11], and can be regarded as a modeling process of computer
algorithms to learn tasks without explicit programming by humans.
Because of this automatic self-improvement property, ML is regarded
as a subset of artificial intelligence (AI).

Reinforcement learning (RL) is an area of ML, in which rewards for
giving feedback to an action taker called an agent are defined, and the
agent is trained to take appropriate actions through observed rewards.
The training is performed in an environment where a next state and a
reward are sequentially observed depending on the current state and
an action, which is called a Markov decision process (MDP) [12]. Since
RL does not require input–output pairs as training data, RL can be
applied to structural design problems where it is difficult to determine
the desired optimal solutions in advance. Although previous researches
showed that the trained agents overwhelmed the skilled players in Go
[13] and some arcade games [14], there are only a few examples of
using RL in the field of structural engineering.

The authors have developed an feature extraction method for truss
members and implemented RL for topology optimization of trusses
[15]. Here, a new feature extraction method categorized as graph
embedding (GE) is developed to capture the member features of trusses.
This method can handle both node and edge inputs simultaneously, and
can extract the member features of trusses while preserving topological
information of the structure. Owing to this GE property, the authors
successfully obtained a reasonable sparse topology from a densely
connected structure. However, this problem deals with binary variables
where the variables are either 0 or 1, and its effectiveness for discrete
problems with more possible variables has not yet been verified. In
addition, the agent in Ref. [15] was trained using only a 4 × 4-grid
truss due to limitation of the GE operations, which is explained in
Section 2.3.

In this paper, we re-formulate the graph-based RL method for dis-
crete optimization of planar steel frames as an extension of the method
in Hayashi and Ohsaki [15]. Two types of agents are trained according
to their role in the design change; one agent sequentially reduces the
size of frame members; the other agent sequentially increases the size
of frame members.

It is important to emphasize that this study is positioned as a
research to extract the knowledge about the design of the cross-sections
of frame members that has been shared among skilled structural en-
gineers. Unlike mathematical programming and metaheuristics, RL
methods can learn the causal relationship between variables of a design
problem and the objectives and constraints, and can acquire the special-
ized knowledge in making design changes to cross-sections. By using a
model that has learned the causal relationship, it is possible to reach
a reasonable solution with a small number of variable changes, which
is expected to improve the efficiency of optimization. The knowledge
extraction is achieved in a numerical manner through GE and RL where
the agent extracts latent features related to the design task and learns
to efficiently design the member cross-sections using the features.

For regular shaped 3D frames where torsional deformation is not
dominant, planar models with depth direction omitted are frequently
used in real-world applications. Therefore, if the proposed method is
shown to be effective for planar models, it can be expected to be
similarly effective for 3D models.

The main contributions of this study to the formalization of engi-
neering knowledge and practice are summarized as follows. Although
the structural design of plane frames is selected as a target of applica-
tion, the proposed concept and method can be extended to engineering
design problems of structures that are modeled as graphs consisting of
nodes and edges.

• In order to extract latent features that are shared among data with
various connectivity, GE is adopted to capture the connectivity of
data expressed as nodes and edges.

• The GE method is formulated to handle both node and edge
attributes. As a result, more known information can be processed
through nodes and edges, and complex features for knowledge-
intensive tasks can be extracted.

• In order to obtain generalization performance for a given
decision-making process, agents need to be trained with a variety
of data. Therefore, block matrix operation is introduced that can
simultaneously handle data with different connectivity.

• The agent’s performance is versatile, as the trained agent can
handle various data without re-training.

• By training agents using an RL method, any step of the trained
agent’s decision-making process can be queried, which enables
the collaboration between engineers and the agents during
knowledge-intensive decision-making processes.

The remainder of this paper is organized as follows. Section 2 is
a literature review on ML for structural engineering problems and GE
methods. In Section 3, the cross-section optimization problem of planar
steel frames under elastic and plastic design constraints is formulated.
In Section 4, the optimization problem formulated in the previous
section is converted to an RL task so that the proposed method can
be applied. In Section 5, the proposed method combining GE and RL is
explained in detail. In Section 6, the agent is trained using the proposed
method, and the performance and efficiency are comparatively evalu-
ated with particle swarm optimization (PSO). Section 7 is a concluding
remark that summarizes the above sections and findings in this study.

2. Literature review

2.1. Machine learning for building engineering problems

One field of ML is supervised learning, in which sets of input–
output pairs are given as training data so that the output can be
predicted from the input [16]. ML models such as neural networks
(NNs) are capable of approximating a highly nonlinear function, and
numerous attempts have been made to predict the complex response
and performance of structures using supervised learning to reduce the
computational cost for structural analysis. Examples of the prediction
target in civil engineering are diverse including the shear strength of
reinforced concrete beams [17], the compression strength of a concrete
material [18], and the ground vibration induced by blasting [19].
Supervised learning is also utilized for data classification, such as the
failure mode classification of reinforced concrete columns [20] and the
classification of construction documents [21].

By contrast, unsupervised learning solely requires inputs and infers
the structure in the inputs. Unsupervised learning is used for clustering,
which aims at finding hidden grouping in the data, and dimensionality
reduction of inputs. Chow et al. [22] and Pathirage et al. [23] utilized
an autoencoder, a method for reconstructing the original input, for
detection of concrete defects and structural damage identification,
respectively.

Reinforcement learning (RL) seeks to take actions in an environment
so as to maximize the cumulative reward. Similarly to unsupervised
learning, RL does not require desired outputs as training data; instead,
it requires a reward function that evaluates the current state. For in-
stance, Gu et al. [24] utilized RL to train robots to learn a door opening
task, in which the robot successfully learned the accurate sequence of
the manipulation, which is very difficult to provide explicitly.

There are a few examples of using RL in the field of civil engi-
neering. Nakamura and Suzuki [25] trained an RL agent to choose
initial or tangential stiffness for each step of iterative calculation of
nonlinear structural analysis for the purpose of accelerating conver-
gence. Chiba et al. [26] learned the control method of an actuator

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

3

K. Hayashi and M. Ohsaki

attached to the steel frame by RL and confirmed response reduction
against earthquakes. The authors have also implemented an RL method
for cross-section optimization of planar frames using a multi-layer
perceptron [27], which is a simplified class of NNs.

2.2. Graph embedding

One of the major difficulties in ML methods is how to capture the
structure of the input data. For problems in which regularly aligned
data become an input, such as detecting errors in images, there is
an established ML model called convolutional neural networks (CNNs)
[28], which can extract features that take into account the positional
relationships between pixels. On the other hand, it is difficult to apply
CNNs to structures such as trusses and frames, where linear members
have complex connectivity to transmit forces. Therefore, in order to
capture skilled structural engineers’ knowledge on the frame cross-
section design through ML, it is necessary to use an ML model that can
handle input data with arbitrary connectivity.

Feature extraction methods for graphs called graph embedding (GE)
have recently been proposed to deal with non-Euclidean data [29].
Here, a graph is a general term for data consisting of nodes and edges
connecting them. GE-based methods have shown remarkable results
for prediction of chemical properties of organic compounds [30,31]
and classification of users with multiple labels in social networking
services (SNS) [32]. GE is beginning to be used in the field of building
structures. Ross and Hambleton [33] applied a neural message-passing
model (NNConv) [31], which is one of the GE methods, to predict the
deflection of 3D lattices; however, they used periodic geometries whose
unit cell is composed of only 2 to 16 nodes.

There are a number of methods that combine RL and GE [34–38];
however, they are limited to the problem of selecting nodes.

2.3. Edge embedding

In the initial design phase of building structures, the cross-sections
of members are important rather than the design of joints, assuming
that the joints hold sufficient strength over the members. Hence, for
the problem of designing member sections, it is preferable to embed
the edge features rather than node features.

Methods for vector representations of the edges in a graph are
called edge embedding. Compared with node embedding methods,
there are few studies on edge embedding methods, which are explained
below. Bandyopadhyay et al. [39] obtained edge vector representation
utilizing a line graph, in which nodes represent the edge of the original
graph and two nodes are connected by an edge only if their correspond-
ing edges in the original graph share a common node. Wang et al.
[40] developed an edge embedding method that can directly extract
edge features. However, these methods are designed for standard edge
problems such as edge classification and link prediction, and node and
edge attributes cannot be handled as input.

Node and edge attributes are very important in the design of skeletal
structures, because various design conditions and structural responses
are assigned to nodes and edges. For example, support and load con-
ditions are usually assigned to nodes and axial forces are observed at
edges. Since the nodes and edges are assumed to exist in the Euclidean
space, geometrical information such as nodal positions and edge lengths
are also important factors to capture the structural property. For these
reasons, methods that can handle both node and edge attributes are
more preferable in this research.

The authors have developed an edge embedding method for truss
members and implemented RL for topology optimization of trusses
[15]. This method is distinct in that it can handle both node and
edge attributes as inputs simultaneously. The RL agent captured the
structural property of each member and successfully obtained a rea-
sonable sparse topology from a densely connected structure. Still, the

Fig. 1. Difference of input data structure. (a) Ref. [15]. (b) Proposed method in this
study.

problem dealt in Ref. [15] was a binary optimization problem where
each variable takes a value of either 0 or 1.

In addition, the agent in Ref. [15] was trained using only a 4 × 4-
grid truss due to limitation of GE operations. More specifically, a
three-dimensional array was utilized to assemble the observed tran-
sitions for mini-batch training, as shown in Fig. 1(a). The sizes of
each dimension are fixed as (1st) the number of observed transitions
in the mini-batch, (2nd) the number of members in each data, and
(3rd) the size of input feature, respectively. Worse still, only one fixed
connectivity matrix could be used when applying GE with this array as
an input. For these reasons, all the data comprising a mini-batch had to
have the same number of members and connectivity. In order for the
agent to acquire more generalized performance to a specific task, it is
important to improve the method so as to train the agents over frames
of various connectivity simultaneously.

On the other hand, the input data structure is modified as Fig. 1(b)
in this study; the input becomes two-dimensional array in which each
member input can be concatenated over different frames. The training
method using this input is explained in detail in Section 5.4.

3. Cross-section optimization problem of steel frames

In this section, the optimization problem considered in this study
is formulated. The total structural volume 𝑉 of a planar steel frame is
minimized under constraints on the stresses, displacements, column-to-
beam overstrength factors (COFs), and shear load bearing capacity of
the entire structure. A solution that satisfies all the above constraints
is feasible, otherwise it is infeasible. The stress, displacement and COF
are calculated through elastic structural analysis for 3 static load cases:
one applying only vertical load, and the others applying vertical and
horizontal loads. The shear load capacity is calculated through inelastic
structural analysis for 2 static load cases: both applying vertical and
amplified horizontal loads.

3.1. Elastic design

3.1.1. Load condition
The elastic design is to ensure that the stresses and displacements

in the members and nodes do not exceed the upper bounds when
subjected to long-term and short-term static loads. The long-term loads
refer to the self-weight of structural members, dead load and live load,
and short-term loads refer to seismic and wind loads in addition to
the long-term loads. In this study, wind loads are not considered for
simplicity. In order to simulate long-term and short-term loads, there
are three load cases to be considered; one is a long-term load case
in which only vertical loads are applied, and the others are short-
term load cases in which the horizontal seismic loads are further
applied in the right and left directions, respectively. The self-weight
of structural members is calculated by the product of the steel weight
density 77 kN∕m3 and the total structural volume. The dead and live
loads are calculated by 1.0 kN∕m2 and 2.4 kN∕m2 per unit floor area,
respectively.

The procedure of calculating the short-term seismic loads of a frame
is explained below. Let 𝑊T and 𝜓𝑖 denote the total weight of the

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

4

K. Hayashi and M. Ohsaki

structure and the ratio of the weight above 𝑖th story to 𝑊T, respectively.
In computing 𝑊T and 𝜓𝑖, the reduced live load of 1.3 kN∕m2 instead
of 2.4 kN∕m2 is used because seismic forces act in a balanced manner
in the total floor area. Let 𝑇f denote the fundamental natural period of
the steel frame, which is approximated by the frame height multiplied
by 0.03. The seismic shear force acting in 𝑖th story is estimated as

𝑄𝑖 = 𝐶B𝐴
s
𝑖𝑊T𝜓𝑖 (1a)

𝐴s
𝑖 = 1 +

(

1
𝜓𝑖

− 𝜓𝑖

)

2𝑇f
1 + 3𝑇f

(1b)

where 𝐶B is the base shear coefficient and 𝐴s
𝑖 is distribution of the

seismic shear force in the height direction of the frame. When imple-
menting structural analyses, the loads are converted into equivalent
nodal loads in proportion to the covering area of each node.

3.1.2. Stress and displacement constraints
The structure is designed so that it can continue to be used with-

out critical damage for the long-term load case and the short-term
load cases when 𝐶𝐵 = 0.2. The nodal displacements and stresses
are computed by the standard stiffness method with linear analysis.
When solving the stiffness equations, the rigid floor assumption is
incorporated by constraining all the nodes in the same floor to have
the same displacement in the horizontal direction.

Using the yield strength 𝜎y, long-term allowable stresses of steel
members against tension and bending forces are both 𝜎y∕1.5, respec-
tively. The long-term allowable compression stress 𝑓c is determined
using the effective slenderness ratio 𝜆 and the critical slenderness ratio
𝛬 as

𝑓c =

⎧

⎪

⎨

⎪

⎩

1−0.4(𝜆∕𝛬)2

3∕2+(2∕3)(𝜆∕𝛬)2 𝜎y (if 𝜆 ≤ Λ)
18

65(𝜆∕𝛬)2 𝜎y (else)
(2)

The allowable stresses against short-term loads are 1.5 times of
those against long-term loads. Note that these are based on simplified
forms of Japanese building standards. The stress ratio �̃�𝑖 of member 𝑖 is
computed as the sum of the ratios of the axial stress and bending stress
to their allowable values, and must not be larger than 1.0.

In order to ensure safety and serviceability of the building, the inter-
story drift ratio should not exceed 1/200, and the ratio of the center
deflection to the beam length should not exceed 1/300. To unify the
notations of relative displacement constraints for columns and beams,
the relative displacement ratio of member 𝑖 computed as the ratio of
inter-story drift for a column or the center deflection for a beam to its
upper bound is collectively expressed as 𝑑𝑖.

3.2. Plastic design

3.2.1. Strong column–weak beam constraint
To avoid the local collapse and ensure the ductility of the frame, it

is important to design the frame in accordance with a ‘‘strong column–
weak beam’’ principle. If a frame is designed so that plastic hinges are
formed at beams rather than at columns, the structure is expected to
form a whole collapse mode where hinges at the beams are dominant
as shown in Fig. 2(a). If the plastic moment capacity of the columns
is smaller than that of the beams, there is a higher possibility of
layer collapse as shown in Fig. 2(b). The whole collapse mode is more
desirable because it has greater capacity to dissipate seismic energy.

The COF is a strong column–weak beam criterion of each joint to
avoid the layer collapse, and calculated for joint 𝑗 as

𝛽𝑗 =
∑

𝑀pc
∑

𝑀pb
(3)

where ∑

𝑀pc and ∑

𝑀pb are the sums of the full plastic moments of
the columns and beams connected to the joint, respectively. According
to the Japanese building standards law, 𝑀pb in Eq. (3) is given as

𝑀pb = 𝐹𝑍pb (4)

Fig. 2. Typical collapse modes. (a) whole collapse. (b) layer collapse.

where 𝑍pb is the plastic section modulus of a beam element and 𝐹 is
the design strength, which is same as the yield strength 𝜎y for steel
materials. Although 𝑀pc for a column is given in a similar way using
the design strength 𝐹 and the column’s plastic section modulus 𝑍pc, the
value is adjusted using the axial force ratio 𝜂c, the ratio of the column’s
compressive axial stress to the yield stress, as

𝑀pc =

⎧

⎪

⎨

⎪

⎩

(

1 − 4𝜂2c
3

)

𝐹𝑍pc (𝜂c ≤ 0.5)

4(1−𝜂c)
3 𝐹𝑍pc (𝜂c > 0.5)

(5)

Since three static load cases are considered here, three different
axial force ratios are obtained, and accordingly, three different COFs
are obtained for each node. Frames are designed to satisfy 𝛽 ≥ 1.0
except nodes on the base and the roof for all the load cases in this
study. Note that hinges are allowed to be formed at the upper ends of
the top story columns because it is too difficult for only one column
to outperform two beams in full plastic moment capacity. Similarly,
hinges are also allowed to be formed at the bottom ends of the first-
story column, because the bottom nodes are considered to be fixed,
and the base beams are not considered.

3.2.2. Horizontal load bearing capacity constraint
Constraints are further imposed to prevent the building from col-

lapsing by an extremely strong earthquake. In this phase, since the
design assumes that some of the members will yield, a bi-linear steel
material is assumed; the stress–strain relationship is linear with the
tangent of elastic modulus 𝐸 until reaching the yield strength 𝜎y, and
the post-yield tangent is reduced to 0.01𝐸.

The required shear load bearing capacity 𝑄un,𝑖 of 𝑖th story against
the extremely strong earthquake is obtained by the following equation:

𝑄un,𝑖 = 𝐷s𝐹es𝑄ud,𝑖 (6)

where 𝐷s is the discount factor depending on the energy dissipation
performance of the structure, 𝐹es is the surcharge factor depending on
the structural shape, and 𝑄ud,𝑖 is a set of shear forces at each layer
induced by the earthquake computed by Eq. (1a) with 𝐶B = 1.0. The
value of 𝐷s is determined by the collapse mode and horizontal load
bearing ratio of braces and walls. Since the whole collapse mode is
expected owing to the COF constraints and the effects of braces and
walls are not considered in this study, 𝐷s is set to be 0.3. 𝐹es is 1.0
because only frames with regular shape are considered here.

The shear force capacity of 𝑖th story 𝑄u,𝑖 must be larger than 𝑄un,𝑖.
In other words, given that 𝐶B = 0.2 in the elastic design and 𝐶B = 1.0,
𝐷s = 0.3 and 𝐹es = 1.0 in this plastic design, the frame cross-sections are
designed not to reach an inter-story drift ratio of 1/100 when subject
to the short-term load whose horizontal components are multiplied by
1.0 × 0.3 × 1.0∕0.2 = 1.5.

3.3. Optimization problem

Consider a discrete cross-section optimization problem of a frame
with 𝑛m members and 𝑛st stories to minimize the total structural volume
under the constraints explained above. The column has a square hollow
section and the beam section has a wide-flange I section, as shown

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

5

K. Hayashi and M. Ohsaki

Fig. 3. (a) Column cross-section. (b) Beam cross-section.

Table 1
Dimension list of column sections.
𝐽𝑖 𝐻 × 𝐵 × 𝑡 𝐴𝑖 𝐼𝑖 𝑍𝑖 𝑍p,𝑖

[mm] [cm2] [cm4] [cm3] [cm3]

200 200 × 200 × 12 85.3 4860 486 588
250 250 × 250 × 12 109.3 10 100 805 959
300 300 × 300 × 16 173.0 22 600 1510 1810
350 350 × 350 × 19 239.2 42 400 2420 2910
400 400 × 400 × 22 307.7 69 500 3480 4220
450 450 × 450 × 22 351.7 103 000 4560 5490
500 500 × 500 × 25 442.8 159 000 6360 7660
550 550 × 550 × 25 492.8 217 000 7900 9460
600 600 × 600 × 25 542.8 288 000 9620 11 400
650 650 × 650 × 28 656.3 407 000 12 500 14 900
700 700 × 700 × 28 712.3 518 000 14 800 17 600
750 750 × 750 × 32 866.3 717 000 19 100 22 800
800 800 × 800 × 32 930.3 884 000 22 100 26 200
850 850 × 850 × 32 994.3 1 070 000 25 300 29 900
900 900 × 900 × 36 1177.0 1 420 000 31 500 37 300
950 950 × 950 × 36 1249.0 1 680 000 35 500 42 000
1000 1000 × 1000 × 36 1321.0 1 990 000 39 700 46 900

in Fig. 3. A set of cross-section sizes 𝐉 = {𝐽1 ⋯ 𝐽𝑛m} is assigned from
Table 1 for the columns and Table 2 for the beams.

By assembling the elastic and plastic design constraints described
above, the optimization problem is formulated as

minimize 𝑉 (𝐉) (7a)

subject to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐽𝑖 ∈ {200, 250,… , 1000} (𝑖 = 1,… , 𝑛m)
�̃�𝑖 ≤ 1.0 (𝑖 = 1,… , 𝑛m)
𝑑𝑖 ≤ 1.0 (𝑖 = 1,… , 𝑛m)
𝛽𝑗 ≥ 1.0 (𝑗 ∈ 𝛺𝛽)
𝑄u,𝑘 ≥ 𝑄un,𝑘 (𝑘 = 1,… , 𝑛st)

(7b)

where 𝛺𝛽 is a set of indices of nodes except on the base and the roof.

4. Conversion to a reinforcement learning task

The optimization problem (7) is transformed into an RL task that
is trainable by the proposed method. Here, two agents are separately
trained for increasing and reducing the member cross-sections, respec-
tively. We consider a decision-making process in a discrete time step,
where reward 𝑟 and next state 𝑠′ are observed when action 𝑎 is taken
in state 𝑠 at each step. The goal of RL is to acquire a policy 𝜋(𝑠) = 𝑎
that maximizes the expected future rewards. As a prerequisite, RL tasks
are generally modeled as an MDP, and in the following, state 𝑠, action
𝑎 and reward 𝑟, which are the elements of the MDP, are defined.

4.1. State 𝑠

In general, the state of a frame structure can be expressed using
numerical data of nodes �̂� =

[

𝐯1,… , 𝐯𝑛n
]

∈ R𝑛fn×𝑛n , those of members

�̂� =
[

𝐰1,… ,𝐰𝑛m
]

∈ R𝑛fm×𝑛m , and the connectivity of the nodes and
members, which is expressed as the connectivity (or incidence) matrix
𝐂 ∈ R𝑛m×𝑛n , such that each element 𝐶𝑖𝑗 is provided as follows: 𝐶𝑖𝑗 = −1
when member 𝑖 leaves node 𝑗, 𝐶𝑖𝑗 = 1 when member 𝑖 enters node 𝑗,
and 𝐶𝑖𝑗 = 0 otherwise. Therefore, the frame state 𝑠 is equivalent to a

Table 2
Dimension list of beam sections.
𝐽𝑖 𝐻 × 𝐵 × 𝑡1 × 𝑡2 𝐴𝑖 𝐼𝑖 𝐼y𝑖 𝑍z

𝑖 𝑍p,𝑖
[mm] [cm2] [cm4] [cm4] [cm3] [cm3]

200 194 × 150 × 6 × 9 38.11 2630 507 271 301
250 244 × 175 × 7 × 11 55.49 6040 984 495 550
300 294 × 200 × 8 × 12 71.05 11 100 1600 756 842
350 340 × 250 × 9 × 14 99.53 21 200 3650 1250 1380
400 400 × 200 × 9 × 19 110.0 31 600 2540 1580 1770
450 450 × 200 × 9 × 22 126.0 45 900 2940 2040 2750
500 500 × 250 × 9 × 22 152.5 70 700 5730 2830 3130
550 550 × 250 × 9 × 22 157.0 87 300 5730 3180 3520
600 600 × 250 × 12 × 25 192.5 121 000 6520 4040 4540
650 650 × 250 × 12 × 25 198.5 145 000 6520 4460 5030
700 700 × 250 × 12 × 25 205.8 173 000 6520 4940 5580
750 750 × 300 × 14 × 28 267.9 261 000 12 600 6970 7850
800 800 × 300 × 14 × 28 274.9 302 000 12 600 7560 8520
850 850 × 300 × 16 × 28 297.8 355 000 12 600 8350 9540
900 900 × 300 × 16 × 28 305.8 404 000 12 600 8990 10 300
950 950 × 300 × 16 × 28 313.8 458 000 12 600 9640 11 100
1000 1000 × 300 × 16 × 28 321.8 515 000 12 600 10 300 11 900

Fig. 4. Conversion of frame properties into a graph.

tuple of {�̂�, �̂�,𝐂} and thus can be expressed in the form of graph as
illustrated in Fig. 4.

However, the tuple is difficult to handle because the three inputs are
matrices of different sizes and properties. For this reason, the member
feature vectors �̂� =

[

𝝁1,… ,𝝁𝑛m
]

of the same size are extracted from
the tuple using GE and trainable parameters 𝜽, and are regarded as an
approximation of state 𝑠 written as

𝑠 = {�̂�, �̂�,𝐂} ≈ �̂�(�̂�, �̂�,𝐂;𝜽) (8)

The detail of GE operations and trainable parameters 𝜽 will be ex-
plained in Section 5.1, and only node inputs �̂�, and member inputs �̂�
are focused here.

It is desirable for a state to include numerical information of frame
as much as possible, such as the geometry, the property of the nodes
and members, and the loading and support conditions, which can be
the elements of inputs �̂� and �̂�. The dimension of node inputs 𝐯𝑘 (𝑘 ∈
{1,… , 𝑛n}) can take an arbitrary positive integer depending on the
problem definition, and the same is true for the dimension of member
inputs 𝐰𝑖 (𝑖 ∈ {1,… , 𝑛m}). Note that the inputs �̂� and �̂� should prevent
taking excessive values in order to enhance the RL agent’s performance.
This is because the larger values will have a higher contribution to
the output error, and the error reduction algorithm for the RL agent
will neglect the information from the small-valued variables [41].
Therefore, the desirable situation is when all inputs are in the same
order of magnitude [42].

In this study, 𝑛fn = 4 node input items are defined, and the detail
of each item is explained in Table 3. In order to consider the support
positions of the frame, an input that is 1 at the support and 0 otherwise
is assigned to the first component. In addition, the second and third
components respectively identifies the nodes at the top where the COF
constraints are not necessary, and the nodes at the side ends where the
COF values differ greatly due to the difference in the number of beams
to be connected. The COF is considered in the fourth component of the
node input as the reciprocal value of COF, and the value is scaled using
the tanh function not to exceed 1.0.

Similarly, 𝑛fm = 13 member input items are defined, and the items
are described in Table 4. �̄� is the upper bound of member length during

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

6

K. Hayashi and M. Ohsaki

Table 3
Detail of node input 𝐯𝑘.

Index Input

1 1 if fixed, 0 otherwise
2 1 if at the top, 0 otherwise
3 1 if at the side ends, 0 otherwise
4 tanh(1.0∕𝛽𝑘)

training, and 𝐴′
𝑖, 𝐼 ′

z
𝑖 , 𝐼 ′

y
𝑖 and 𝑍′z

𝑖 are the properties of the updated
cross-section if the design change is applied to member 𝑖. �̄�, 𝐼z, 𝐼y
and �̄�z are the upper-bounds (i.e., the values when 𝐽𝑖 = 1000). Binary
inputs representing the member type (column or beam) are assigned
separately for indices 1 and 2. The other member inputs consist of
the member length, assigned properties of the current cross-section,
properties of the updated cross-section if the design change is applied
to the member, stress ratio, and displacement ratio. Note that the inputs
are scaled to take a value in the range 0 to 1.

4.2. Action 𝑎

An action in this study is defined as the smallest design changes
applied to a member of the frame. If one action is assigned to each
member, there are at most 𝑛m actions that an agent can take at each
step. In practice, in order to reduce the action space to be explored, the
action is selected from 𝛺a which represents a set of possible actions
that excludes clearly inappropriate actions such as an action of and
increasing/reducing a member size exceeding the upper/lower bounds.

We train the following two agents separately depending on the task
of reducing and increasing member sizes: Agent(−) is responsible for
changing member size 𝐽𝑖 one step smaller by taking an action; Agent(+)
is responsible for changing member size 𝐽𝑖 one step larger by taking an
action.

4.3. Restriction of actions

Furthermore, we introduce the following restriction of actions to
exclude obviously inappropriate state in which lower-level columns are
slenderer. If the lower columns on the same axis become thinner than
the upper column as a result of the action, the columns’ cross-sections
are modified as follows; for the task of reducing sizes, the cross-section
of the upper columns is corrected so that it becomes equal to the lower
column; for the task of increasing sizes, the cross-section of the lower
columns is corrected so that it becomes equal to the upper column. This
restriction scheme is beneficial in boosting learning efficiency because
the variable space to be explored can be reduced.

4.4. Reward 𝑟

The reward is obtained after each design change of the member
sizes. Let �̃�′𝑖 , 𝑑

′
𝑖 and 𝛽′𝑘 denote the stress and displacement ratios of

member 𝑖 and the COF at node 𝑘 at the next state, respectively.
When training an agent to reduce member sizes, the process starts

with a redundant design that satisfies all the constraints. If an un-
necessarily large cross-section is reduced, a larger positive reward is
assigned; on the other hand, if the cross-section of a member that is
likely to violate the constraints is reduced, a smaller positive reward
is assigned. A negative reward (i.e., penalty) is assigned for the ter-
mination state in which the structural design violates the constraints.
Following this scheme, the reward function for reducing member sizes
is defined as

𝑟− =

⎧

⎪

⎨

⎪

⎩

𝜏−
√

|𝛥𝑉 |

(

max𝑖 �̃�′𝑖−min𝑖 �̃�′𝑖
) ⋅

ln
(

(1.0 − 𝑟−1)(1.0 − 𝑟
−
2)
)

(if feasible)

−1.0 (else)

(9a)

Table 4
Detail of member input 𝐰𝑖.

Index Input

1 1 if column, 0 otherwise
2 1 if beam, 0 otherwise
3 𝐿𝑖∕�̄�
4 𝐴𝑖∕�̄�
5 𝐼z𝑖 ∕𝐼

z

6 𝐼y𝑖 ∕𝐼
y

7 𝑍z
𝑖 ∕�̄�

z

8 𝐴′
𝑖∕�̄�

9 𝐼 ′z𝑖 ∕𝐼
z

10 𝐼 ′y𝑖 ∕𝐼
y

11 𝑍′z
𝑖 ∕�̄�

z

12 tanh(�̃�𝑖)
13 tanh(𝑑𝑖)

𝑟−1 = min{
max𝑖 �̃�′𝑖
max𝑖 �̃�𝑖

, 0.99} (9b)

𝑟−2 = min{
max𝑖 𝑑′𝑖
max𝑖 𝑑𝑖

, 0.99} (9c)

where 𝜏− is a scaling factor, which is 0.1 in this study.
When training an agent to increase member sizes, the process

starts with an infeasible and slender member design that violates the
constraints. If a positive reward is given to increase the member sizes,
the agent may learn an inefficient strategy in an attempt to take steps
as long as possible. Since it is preferable to reach a feasible design
that satisfies all constraints in fewer steps, negative rewards are given
until satisfying the constraints, and a positive reward is assigned only
to the terminal state that satisfies the constraint. The reward function
for increasing member sizes is defined as

𝑟+ =

⎧

⎪

⎨

⎪

⎩

𝜏+
√

|𝛥𝑉 |

(

max𝑖 �̃�′𝑖 − min𝑖 �̃�′𝑖
)

⋅
ln
(

(1.0 − 𝑟+1)(1.0 − 𝑟
+
2)(1.0 − 𝑟

+
3)
)

(if infeasible)

1.0 (else)
(10a)

𝑟+1 =

⎧

⎪

⎨

⎪

⎩

min{
max𝑖 �̃�′𝑖
max𝑖 �̃�𝑖

, 0.99} (if max𝑖 �̃�′𝑖 > 1.0)

0.0 (else)
(10b)

𝑟+2 =

⎧

⎪

⎨

⎪

⎩

min{min𝑘 𝛽𝑘
min𝑘 𝛽′𝑘

, 0.99} (if min𝑘 𝛽′𝑘 < 1.0)

0.0 (else)
(10c)

𝑟+3 =

⎧

⎪

⎨

⎪

⎩

min{
max𝑖 𝑑′𝑖
max𝑖 𝑑𝑖

, 0.99} (if max𝑖 𝑑′𝑖 > 1.0)

0.0 (else)
(10d)

where 𝜏+ is a scaling factor, which is also 0.1 in this study. Note
that the shear force capacity constraint is not considered in the reward
definition, but is included in the terminal state criterion.

5. Graph-based reinforcement learning

5.1. Graph embedding to extract member features

A graph is a data structure composed of nodes and edges. Here,
the frame’s joints are regarded as nodes, and members are regarded
as edges. The feature of each member is represented as a vector using
GE. First, we define three matrices 𝐂A, 𝐂1 and 𝐂2 to be used for GE
from the connectivity matrix 𝐂. The non-oriented connectivity matrix
𝐂A ∈ R𝑛m×𝑛n is obtained by taking the absolute value for each element
of 𝐂. 𝐂1 =

(

𝐂A − 𝐂
)

∕2 and 𝐂2 =
(

𝐂A + 𝐂
)

∕2 are further obtained
to identify the nodes that each member leaves and those that each
member enters.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

7

K. Hayashi and M. Ohsaki

Fig. 5. Illustration of Eq. (11) (adaptation from Ref. [15]). It aggregates numerical
data of a member, its end nodes and the other members connecting them.

Let 𝑛f denote the size of the feature vector of each member. 𝑛f
should be determined through a careful adjustment with trial-and-
error for better performance, because a size that is too small leads
to inaccuracy in expressing the features, and a size that is too large
requires redundant computation time in training and application of the
agent after the training. The aim of the proposed GE operation is to
extract the feature vector of each member 𝝁𝑖 ∈ R𝑛f (𝑖 = 1,… , 𝑛m). In
the following, the features of all members {𝝁(𝑡u)

1 ,… ,𝝁(𝑡u)
𝑛m } are combined

to �̂�(𝑡u), in which 𝑡u is the iteration counter of GE operation and �̂�(0) = 𝟎.
The trainable parameters 𝜽1 ∈ R𝑛f×𝑛fm , 𝜽2 ∈ R𝑛f×𝑛fn , and 𝜽3 ∈

R𝑛f×𝑛f are introduced for weighting the inputs in accordance with their
importance to extract features integrating the structural property of
neighbor nodes and members. Using {𝜽1,𝜽2,𝜽3} and the connectivity
matrices, �̂�(𝑡u) is updated as follows:

�̂�(𝑡u+1) = �̂�1 + �̂�2 + �̂�(𝑡u)3 (11a)

�̂�1 = 𝜑
(

𝜽1�̂�
)

(11b)

�̂�2 = 𝜑
(

𝜽2�̂�
)

𝐂⊤A (11c)

�̂�(𝑡u)3 =
2
∑

𝑘=1
𝜑
(

𝜽3
(

𝐂𝑘𝐂⊤A �̂�(𝑡u)⊤ − �̂�(𝑡u)⊤
)⊤

)

(11d)

where �̂�1, �̂�2 and �̂�(𝑡u)3 are the elements that make up the feature,
and 𝜑 is the Leaky rectified linear unit (Leaky ReLU) function, which
is one of the activation functions, with 0.2 for the multiplier for
negative inputs. To simplify the expression, the same notation 𝜑 is used
irrespective of the size of the input vector. The operation in Eq. (11)
is illustrated in Fig. 5. For the sake of clarity, this figure focuses on
the operation with respect to only one member, but in the actual
calculation of Eq. (11), the feature values of all members are updated
simultaneously. The numerical data �̂�1 for a member, �̂�2 for its two end
nodes and 𝐡(𝑡u)3 for members connecting to them are aggregated into the
feature vector of each member through a single operation. Accordingly,
�̂�(𝑡u) = {𝝁(𝑡u)

1 ,… ,𝝁(𝑡u)
𝑛m } is the set of feature vectors incorporating the

connectivity of frame.
The operation of Eq. (11) should be iterated more than once in

order to capture the features of distant members that are not directly
connected to the specific member. The maximum number of iterations
𝑇u should be carefully selected because it determines the training
difficulty and how distant nodes and members are considered. If 𝑇u
is set closer to 1, the computational cost is cheaper and the risk of
divergence of trainable parameters {𝜽1,𝜽2,𝜽3} during the training is
lower; however, the extracted features cannot capture the property
of distant nodes and members. In contrast, if a large positive integer
is assigned to 𝑇u, the extracted features are capable of considering
the properties of distant nodes and members, but the computational
cost and the risk of divergence of the trainable parameters become
higher. Therefore, 𝑇u is set to be 3 in this study. It should be noted
that the embedded feature vectors 𝝁(𝑇u)

𝑖 (1,… , 𝑛m) have the same size 𝑛f
regardless of the connectivity. Owing to this property, all members can
be evaluated based on the same measure.

Fig. 6. Illustration of Eq. (12). It converts the extracted member features into the
scalar action value.

5.2. Action values computed from the member features

Action value 𝑄(𝑠, 𝑎) is the expected return for selected action 𝑎
in state 𝑠, and an important notion that represents the relationship
between state, action and overall reward. The agent estimates that
the larger the action value, the larger the return to be obtained from
the current state. Thus, the member with the largest action value is
prioritized to change its size.

Using �̂�(𝑇u) ∈ R𝑛f×𝑛m , the action values �̂�(�̂�(𝑇u)) ∈ R𝑛m of applying
the design change to a member in the current state is approximated
using trainable parameters 𝜽4 ∈ R2𝑛f as follows:

�̂�(�̂�(𝑇u)) = 𝜽⊤4
([

�̂�(𝑇u)
𝛴 ; �̂�(𝑇u)

])

(12)

where �̂�(𝑇u)
𝛴 ∈ R𝑛f×𝑛m is the matrix in which a column vector ∑𝑛m

𝑖=1 𝝁
(𝑇u)
𝑖

is repeated in the row direction 𝑛m times. The operation in Eq. (12)
is illustrated in Fig. 6. In a similar manner as Figs., 6 illustrates the
operation with respect to one member. Using Eq. (12), the vectors
representing the member features are converted to a scalar representing
the action value to choose the member. Although properties of neigh-
borhood nodes and members are integrated, the feature �̂�(𝑇u) is the
local information about a member, Therefore, the term �̂�(𝑇u)

𝛴 is further
arranged to capture the global information about the entire structure.
The term �̂�(𝑇u)

𝛴 also plays an important role in estimating appropriate
action values for structures of various scales.

Since �̂� is computed using {𝜽1,𝜽2,𝜽3}, the set of action values
�̂�(�̂�(𝑇u)) depends on 𝜣 = {𝜽1,… ,𝜽4}.

5.3. Tuning problem of trainable parameters

The training method for tuning the parameters 𝜣 is described. The
parameters 𝜣 are tuned using a method based on 1-step Q-learning,
which is frequently implemented as an RL method.

Among a number of RL methods, Q-learning is a great fit for this
problem, because the design variables are discrete and the change
of each cross-section is described with either of two actions: increas-
ing and reducing the size. More specifically, at each step, Q-learning
methods determine an action in which the associated action value is
expected to be the largest among possible actions, i.e. 𝑎 = argmax𝑎𝑄.
This implies that the required computational cost to achieve a certain
level of performance is greatly dependent on the action space. By
assigning one type of action to each member and using GE to calculate
the action values of all members together, all the action values can be
represented as a compact vector with a size of 𝑛m, which is relatively
easy to approximate using Q-learning.

If the action space is continuous or discrete but too large, Q-learning
is not a reasonable option and other policy-based RL methods such as
DDPG [43] should be used; however, adopting such a method requires
a more complex architecture for learning.

According to the classical Q-learning method proposed by Watkins
[44], the action value is updated using state 𝑠, chosen action 𝑎, ob-
served next state 𝑠′ and reward 𝑟 as

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼
(

𝑟(𝑠′) + 𝛾 max
𝑎
𝑄(𝑠′, 𝑎) −𝑄(𝑠, 𝑎)

)

(13)

where 𝛾 ∈ [0, 1] is a discount factor to adjust the importance of
long-term rewards; the immediate reward is only considered and the

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

8

K. Hayashi and M. Ohsaki

Fig. 7. Mini-batch operation to compute member features of multiple frames using block matrices.

following future rewards are disregarded when 𝛾 = 0, and the rewards
at any future step are treated with the same importance as the imme-
diate reward when 𝛾 = 1. In Eq. (13), the action value is updated so
as to minimize the difference between the sum of the observed reward
and estimated action value at the next state 𝑟(𝑠′) + 𝛾 max𝑎𝑄(𝑠′, 𝑎) and
the estimated action value at the current state 𝑄(𝑠, 𝑎). Following this
scheme, the parameters are trained by minimizing the following loss
function [14]:

𝐿(𝜣) =
(

𝑟(𝑠′) + 𝑒𝛾 max
�̃�∈𝛺𝑎(𝑠′)

𝑄(𝑠′, �̃�; �̃�) −𝑄(𝑠, 𝑎;𝜣)
)2

(14)

where 𝛺𝑎(𝑠′) is a set of actions available at state 𝑠′, and 𝑒 is a binary
indicator that takes 0 when 𝑠′ is the terminal state and 1 otherwise. In
Eq. (14), the training can be stabilized by using previous parameters
�̃� obtained during the training for an estimation of action values
at the next state 𝑠′ [14]. �̃� synchronizes with 𝜣 once every 𝑛sy ∈
N+ episodes. In the same manner as NNs, the inputs are repeatedly
weighted by the trainable parameters and processed through activation
functions. Therefore, an arbitrary back-propagation method can be used
for solving Eq. (14). Among a number of back-propagation methods
proposed so far, RMSProp [45] is adopted as an optimization algorithm
for tuning 𝜣 in this study.

5.4. Mini-batch training

Mini-batch training is a method to update trainable parameters
using multiple samples. By introducing mini-batch training, the agent
is able to avoid sample bias and the training efficiency is improved
through parallel computation. Whereas Eq. (14) calculates the loss
function for a single sample of transition {𝑠, 𝑎, 𝑠′, 𝑟, 𝛺a(𝑠′), 𝑒}, the loss
function for 𝑛b samples are calculated together using block matrices as
shown in Fig. 7, which is explained below.

As a prerequisite of the implementation, it is necessary to prepare
a buffer to store the observed transitions. This buffer can store up
to the latest 𝑁b sets of transitions. Let 𝑛b denote the number of
transitions randomly sampled from the buffer to constitute one mini-
batch. In Fig. 7, a superscript (𝑖) indicates 𝑖th sample in the mini-batch,
e.g., {𝑠(𝑖), 𝑎(𝑖), 𝑠′(𝑖), 𝑟(𝑖), 𝛺(𝑖)

a (𝑠′), 𝑒(𝑖)}.
The connectivity of all frames in the mini-batch can be expressed

with a single matrix 𝐂b in which each frame’s connectivity matrix is
placed as a sub-matrix in the diagonal direction. Similarly, the inputs
of all nodes and edges in the mini-batch can be expressed as �̂�b and
�̂�b, respectively, by concatenating each input in the row direction. This
way, all member features in the mini-batch �̂�b can be simultaneously
computed using Eq. (11) without interaction between the samples.

In a similar manner as computation of member features �̂�b, the
action values of all members in the mini-batch can be computed
using Eq. (12); note that in the calculation of �̂�𝛴 , the summation is
implemented for members in each sample, not for all members in the

mini-batch. Furthermore, the losses 𝐿(𝜣) for 𝑛b samples in the mini-
batch can be simultaneously obtained using Eq. (14). The mean squared
L2 norm of 𝑛b losses is computed as

𝐿MSE(𝜣) = 1
𝑛b

𝑛b
∑

𝑖=1

(

𝐿(𝑖))2 (15)

Instead of 𝐿(𝜣) computed by Eq. (14) from single sample, 𝐿MSE(𝜣)
in Eq. (15) is chosen as the function to be minimized by RMSProp in
this study.

5.5. Training workflow

The whole training workflow is described in Fig. 8. First, trainable
parameters are randomly initialized with a normal distribution with
the mean of 0 and the standard deviation of 0.05. At the beginning of
each episode, structural conditions are randomly initialized so that the
agent learns various design conditions. At each step, the agent selects
an action to apply the design change to a member using the 𝜖-greedy
policy, in which the member with the largest action value is selected
with a high probability of 1 − 𝜖, but a member is randomly chosen
with a low probability of 𝜖. Here, the 𝜖-greedy policy instead of the
greedy policy is employed to encourage the agent to explore a variety
of member designs. After taking an action, the agent observes the next
state 𝑠′, reward 𝑟, a set of possible actions at the next state 𝛺a(𝑠′), and
the terminal state indicator 𝑒. Between the steps, the set of trainable
parameters 𝜣 is updated using RMSProp for the sampled mini-batch
data.

Once in 10 episodes of the training, agent’s performance is tested
for a prefixed condition. The cumulative reward, which is the sum of
observed rewards until reaching the terminal state, is recorded using
the greedy policy without randomness (i.e. the 𝜖-greedy policy with
𝜖 = 0) during the test. If a larger cumulative reward is obtained
compared with the previous best score, 𝜣 at that step is saved. The
most recently saved 𝜣 after the 𝑛ep-episode training is regarded as the
best parameters.

6. Numerical examples

In this section, the graph-based RL algorithm proposed in the previ-
ous section is demonstrated through numerical examples. The trained
agent’s performance and computational efficiency are evaluated com-
paring the results with those by PSO.

6.1. Training setting

Detail of the training implementation is explained in this section.
The elastic modulus of the members is set to be 2.05 × 105 N∕mm2. The
base nodes are rigidly supported against both translation and rotation.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

9

K. Hayashi and M. Ohsaki

Fig. 8. Training workflow utilizing GE and RL.
Source: Adaptation from Ref. [15].

The agents are trained using various planar frames. At the beginning
of each episode, the geometry and connectivity of the frame is initial-
ized as follows. The number of spans is given randomly in the range 2 to
5 and the number of stories in the range 2 to 10. Each span is randomly
initialized in the range of 5 to 15 m. The floor heights above the 2nd
floor should be equal, and they are randomly initialized in the range
3.0 to 4.0 m. The first floor height is set 0.5 m higher than the other
floor heights. When training the agent responsible for reducing member
sizes, all initial cross-sections are set to the maximum of 𝐽𝑖 = 1000 (𝑖 =
1,… , 𝑛m); when training the agent responsible for increasing member
sizes, all initial cross-sections are set to the minimum of 𝐽𝑖 = 200.

Once the shape and cross-sections are determined, the loads are
calculated according to the procedure explained in the subsection
‘‘Load condition’’. Since the live loads and the seismic loads are given
in proportion to the floor area, 0.75 times the average of the in-plane
spans is assumed for the out-of-plane span for calculating covering area
of the frame.

The cross-section is changed, and the long-term and short-term
loads are also updated at each step until reaching the terminal state.
The training episode is stopped when the terminal state is reached, and
a new episode starts with the frame whose geometry is re-randomized.

The number of episodes 𝑛ep is 5000, and the size of member feature
𝑛f is 100. The training is implemented with the learning rate 𝛼 = 1.0 ×
10−5 and the discount rate 𝛾 = 0.99. We use Intel(R) Core(TM) i9-7900X
CPU @ 3.30 GHz as a central processing unit (CPU). In order for the
agent to obtain reasonable solutions, it is necessary not only to perform
numerous simulations and observe the structural analysis results, but
also to repeatedly update the trainable parameters so as to minimize
the loss defined in Eq. (15); in particular, the latter requires large-
scale matrix operations. In this study, a graphics processing unit (GPU)
GeForce(R) RTX 3090, which is suitable for large-scale operations, is
further introduced for computing 𝐿MSE and tuning 𝜣 to accelerate the
training. Note that the training time would be several times longer if
the same training process is performed without the GPU.

6.2. Training result

6.2.1. Training result of reducing sizes
Fig. 9 shows the history of obtained cumulative reward in the test

simulations recorded every 10 episodes using the fixed frame model as
shown in Fig. 16(a). The cumulative reward obtained by the agent has
increased as the number of training episodes increases. It took about
25.4 h for the training. As Fig. 9 indicates, during the 5000 episodes
of training, the agent tested at the final episode earned the highest
cumulative reward and is considered to be the best agent.

The sequence of design changes of the cross-sections in the test
simulation by the best agent is illustrated in Fig. 10 for a 8-story 3-
span frame. In the early phase of the episode, the column sizes are
intensively reduced. After that, the cross-sections of the columns and
beams of the entire frame are reduced in a well-balanced manner
without concentrating on the cross-section of a specific member.

At step 447, the displacement ratio of the 4th story exceeded 1.0
due to the size reduction of a beam between 3rd and 4th stories,
and the structure reached the terminal state. Therefore, the 446th
step just before the terminal state is regarded as the sub-optimal
solution, as illustrated in Fig. 11. The cross-section of the sub-optimal
solution is a reasonable design that balances the constraints of stress,
displacement, COF, and shear load capacity without over-designing or
under-designing any particular member size.

In Fig. 9, the training result without the restriction described in
Section 4.3 is also plotted. Note that the performance cannot be simply
compared through cumulative reward due to the difference in the
number of members whose size changes in each step. Although the
cumulative reward increases by relaxing the restriction, the time re-
quired for the training was 37.1 h, which is almost 50% larger than
the case of imposing the restriction. Furthermore, the obtained cross-
sections in this case are not reasonable at some members because some
lower columns in the same axis are slenderer than the upper ones,
as shown in Fig. 12. Therefore, introducing the restriction not only
increases the learning efficiency, but also contributes to improving
RL agent’s performance of design changes. In the following, only the
results imposing the restriction are provided.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

10

K. Hayashi and M. Ohsaki

Fig. 9. History of the cumulative reward obtained in each test measured every 10
episodes (reducing member sizes).

6.2.2. Training result of increasing sizes
Next, the result trained for increasing member sizes is explained.

The training took approximately 28.5 h. Fig. 13 shows the histories
of the cumulative reward in the test simulations recorded every 10
episodes. Similarly to the case of reducing member sizes, RL agent’s
performance steadily improves as the number of training episodes
increases.

The RL agent that has learned 4300 episodes obtains the highest
cumulative reward; therefore, it is considered to be the best performing
agent. The agent acquires a reasonable strategy to intensively increase
the size of columns and beams in the lower layer in the early stage of
the test simulation, as seen in Fig. 14.

Because the member sizes are sequentially increased from an in-
feasible solution until reaching a feasible solution, the feasible cross-
sectional design at the 296th step, which is the terminal state, is
regarded as the sub-optimal solution. The cross-sections are designed so
that the members bear forces in a balanced manner. In addition, larger
cross-sections are assigned to long beams than short beams, which is
an efficient cross-sectional design (see Fig. 15).

6.2.3. Investigation of generalization performance
The main feature of the proposed method is that the trained agent

can be used without re-training for frames of various geometry and
topology. Here, the trained agents are applied to other frames: a 4-story
5-span frame, a 12-story 6-span frame, and a L-shaped frame, as shown
in Fig. 16.

Among metaheuristic approaches, PSO is chosen as a benchmark for
the following reason. First, the PSO algorithm contains fewer parame-
ters [46]. Since the performance of metaheuristic approaches is greatly
influenced by the parameter settings, it is preferable for the benchmark
methods to have fewer parameters. Second, the PSO algorithm occupies
fewer programming resources [47], which is beneficial in avoiding
performance differences due to coding and implementation techniques.

The PSO algorithm for comparison is described in Table 5. PSO algo-
rithms utilize a population of candidate solutions, denoted as particles,
whose positions are repeatedly updated based on the current position
and velocity of each particle, and also the best known positions of the
particle and the entire population.

Let 𝑥𝑗,𝑖 denote the 𝑖th variable of particle 𝑗. The lower and upper
bounds of the variables are uniformly set to be 𝑥L = 0.0 and 𝑥U = 1.0.
The continuous PSO variables are converted to discrete cross-section
indices 𝐽𝑖 in Tables 1 and 2 using the following equation:

𝐽𝑖 = 200 + 50 × TR
(

17𝑥𝑗,𝑖 − 1.0 × 10−10
)

(16)

where TR is a truncation operator. In Eq. (16), a very small value
1.0 × 10−10 is used to avoid the non-existing index 𝐽𝑖 = 1050 when 𝑥𝑗,𝑖 =
1.0. Note that the negative values are truncated to 0 and accordingly,
𝐽𝑖 = 200 when 𝑥𝑗,𝑖 = 0.0. To ensure the consistency of the problem
definition, if the cross-section of a column is smaller than that of upper
columns in the same axis, the cross-section is modified so as to become
equal to the maximum cross-section among the upper columns. The

Table 5
Benchmark PSO method.
input: 𝐹 : cost function, 𝐱𝑗 : initial solution of particle 𝑗, 𝐯𝑗 : initial velocity of particle

𝑗, 𝐱U(= {1.0, 1.0,⋯ , 1.0}): upper bounds, 𝐱L(= {0.0, 0.0,⋯ , 0.0}): lower bounds,
𝑛p(= 10): number of particles, 𝑛I(= 2000): maximum iteration, 𝜉(= 0.7):
momentum factor, 𝑐1(= 2.0): social coefficient, 𝑐2(= 2.0): cognitive coefficient

output: 𝐱b: best solution
𝐱b ⟵ 𝐱1
for 𝑗 ← 1 to 𝑛p do𝐱pb,𝑗 ⟵ 𝐱𝑗

if 𝐹 (𝐱𝑗) < 𝐹 (𝐱b) then𝐱b ⟵ 𝐱𝑗

𝑖𝑡𝑒𝑟⟵ 𝑛p
while 𝑖𝑡𝑒𝑟 ≤ 𝑛I do

for 𝑗 ← 1 to 𝑛p do
𝐱𝑗 ⟵ 𝐱𝑗 + 𝐯𝑗
foreach 𝑥𝑗,𝑖 ∈ 𝐱𝑗 do

if 𝑥𝑗,𝑖 < 𝑥L𝑖 then
𝑥𝑗,𝑖 ⟵ 𝑥L𝑖

if 𝑥𝑗,𝑖 > 𝑥U𝑖 then
𝑥𝑗,𝑖 ⟵ 𝑥U𝑖

if 𝐹 (𝐱𝑗) < 𝐹 (𝐱b) then
𝐱b ⟵ 𝐱𝑗 𝐼 ← 0

if 𝐹 (𝐱𝑗) < 𝐹 (𝐱pb,𝑗) then𝐱pb,𝑗 ⟵ 𝐱𝑗
𝑖𝑡𝑒𝑟⟵ 𝑖𝑡𝑒𝑟 + 1

for 𝑗 ← 1 to 𝑛p do
𝐯𝑗 ⟵ 𝜉𝐯𝑗 + 𝑐1(𝐱b − 𝐱𝑗) + 𝑐2(𝐱pb,𝑗 − 𝐱𝑗)

return 𝑥b

variables of initial solution of every particle are uniformly given as
0.5. The initial velocity of each particle is provided from a uniform
distribution of [−0.1, 0.1].

The cost function to be minimized by the PSO algorithm is defined
as

𝐹 (𝐉) = 𝑉s(𝐉) + 𝑏1𝐶1(𝐉) + 𝑏2𝐶2(𝐉) + 𝑏3𝐶3(𝐉) + 𝑏4𝐶4(𝐉) (17a)

𝐶1(𝐉) = max
{

max
𝑖∈{1,…,𝑛m}

(

�̃�𝑖 − 1.0
)

, 0
}

(17b)

𝐶2(𝐉) = max
{

max
𝑖∈{1,…,𝑛m}

(

𝑑𝑖 − 1.0
)

, 0
}

(17c)

𝐶3(𝐉) = max
{

max
𝑘∈𝛺β

(

1.0 − 𝛽𝑘
)

, 0
}

(17d)

𝐶4(𝐉) =
{

0.0
(

if 𝑄u,𝑘 ≥ 𝑄un,𝑘 (𝑘 = 1,… , 𝑛st)
)

1.0 (else)
(17e)

where 𝑏1, 𝑏2, 𝑏3 and 𝑏4 are the penalty coefficients for the stress,
displacement, COF, and shear load capacity constraints, respectively,
which are 1000 in the following results. To consider the variation of
solutions due to randomness, the PSO algorithm is executed 10 times
and the minimum of 𝐹 (𝐉) is extracted.

The comparative result is described in Table 6, in which the elapsed
wall time 𝑡c [s] using Intel(R) Core(TM) i9-7900X CPU @ 3.30 GHz
without GPU and the total structural volume 𝑉s are summarized. Note
that the elapsed time 𝑡c for RL+GE includes initializing the frame
model, importing the trained RL agent, and simulating the design
changes of the members until reaching the terminal state. Owing to the
penalty terms, all the solutions obtained by PSO are feasible satisfying
all the constraints. 𝑡c measured in PSO is the average of 10 optimiza-
tions. The computational cost of RL+GE is lower than PSO, while the
proposed RL+GE method achieves better solutions compared with those
obtained by PSO in terms of the total structural volume 𝑉s.

According to Table 6, Agent (+) seems to complete the task sig-
nificantly quicker than Agent (−). As explained in Section 4.2, Agent
(+) sequentially increases member sizes starting from the slenderest
members, while Agent (−) sequentially reduces member sizes starting
from the thickest members. Due to this difference, the time required to
complete the task differs even if the frames have the same shape. Since

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

11

K. Hayashi and M. Ohsaki

Fig. 10. Sequence of reducing member sizes.

Fig. 11. Result at step 446 (reducing sizes). (a) Maximum stress ratio in each member for the elastic design. (b) Maximum displacement ratio 𝑑𝑖 in each member for the elastic
design. (c) Minimum COF 𝛽𝑘 at each node. (d) Maximum inter-story drift ratio divided by the upper bound 1/100 in each story when loads equivalent to required shear load
bearing capacity is applied.

Fig. 12. Sub-optimal design when relaxing the restriction described in Section 4.3.

the optimal solution has many members slenderer than the median,
Agent (+) was faster to reach the optimum solution.

Furthermore, RL agents’ policy holds consistency in changing the
cross-sections as seen in Table 6; the longer the beam, the larger the size
of the beam, which is reasonable because a larger bending moment acts
on a beam with a larger span. In contrast, consistency is not confirmed
in the design of member cross-sections obtained by PSO, because PSO
is a method of changing variables stochastically. These results imply

Fig. 13. History of the cumulative reward obtained in each test measured every 10
episodes (increasing member sizes).

that the RL agents are able to change the variables more rationally and
efficiently than the PSO algorithm.

7. Conclusion

In this study, a combined method of GE and RL is proposed for
the optimal cross-section design of planar steel frames. The cross-
sections of steel frames are selected from a prescribed set of standard
dimensions so as to minimize the total structural volume while satis-
fying constraints on the stresses, displacements, COFs, and shear load

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

12

K. Hayashi and M. Ohsaki

Fig. 14. Sequence of increasing member sizes.

Fig. 15. Result at step 296 (increasing sizes). (a) Maximum stress ratio in each member for the elastic design. (b) Maximum displacement ratio 𝑑𝑖 in each member for the elastic
design. (c) Minimum COF 𝛽𝑘 at each node. (d) Maximum inter-story drift ratio divided by the upper bound 1/100 in each story when loads equivalent to required shear load
bearing capacity is applied.

Fig. 16. Frame models used for comparative study in Table 6. The numbers indicate the interval between columns or beams [m].

capacity. The optimization problem is converted to an RL task within
an MDP framework, and its components (states, actions, and rewards)
are defined.

The cross-sections of beams and columns are selected from the
lists of 17 preassigned sections, respectively, and the number of total
possible combinations is huge. In order to cope with this difficulty,
the number of combinations is reduced by imposing a restriction that
the cross-section of columns on the same axis becomes thinner on the
upper floors, and by simplifying the process of changing member cross-
sections to a process of monotonically increasing or decreasing member
sizes. This way, the agent is able to improve its performance in a
realistic learning time.

The GE process proposed here is specially formulated to extract
member features. Note that the proposed GE method is a generalization
of various edge-based graph problems such as link prediction. Owing to
the GE operations, the structural property of each member is expressed
as a feature vector of the same size considering the status of neighbor
nodes and members.

The features are converted to action values of applying design
change to each member. To estimate the action values correctly, the
loss function to be minimized is formulated based on Q-learning which
is one of the RL methods. By using block matrices, mini-batch training
using frames with different topology simultaneously is successfully
implemented.

The most significant limitation of the proposed algorithm is the
huge computational load for training the agent, as with most RL-based

approaches. Despite the use of a GPU to accelerate large-scale matrix
computation, the training took a huge amount of time as much as tens
of hours. Another limitation is the complexity of implementing the
training. For successful learning, the size of the trainable parameters,
the learning rate, the discount rate, and other hyper-parameters need
to be set by trial and error, and the node and member inputs, 𝐯 and
𝐰, need to be scaled so as to take the value within [0,1]. The reward
function is also carefully defined so that the agents can consider the
design constraints and the objective of volume minimization in a well
balanced manner. These settings may need to be modified when the
lists of cross-sections or the frames to be learned changes significantly,
which requires a great deal of labor.

Nevertheless, the trained agents exhibited strong performance com-
mensurate with the time and complexity of learning. The trained agent
can be used for frames with different geometry, topology and the
numbers of nodes and members at a low computational cost. The
reduction of computational cost using the RL agent may contribute to
boosting the efficiency of structural design process and stimulate the
human–computer interaction in the real-world design task. It is shown
in the numerical examples that the trained agent is capable of finding
reasonable solutions superior to those obtained by PSO. Therefore, the
agent is verified to acquire a versatile policy to design the member
cross-sections for various frames. Note that the method in this study
cannot be directly applied if the frames have irregular shapes or the
frames have regular shapes but are designed in 3D; in that case, a new
method needs to be developed.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Advanced Engineering Informatics 51 (2022) 101512

13

K. Hayashi and M. Ohsaki

Table 6
Comparison between proposed method (RL+GE) and PSO in view of total structural volume 𝑉s [m3] and elapsed wall time for one optimization
𝑡c [s].

The agent trained with the proposed method is expected to become
a supporting tool for decision-making in structural design and the first
step of developing an agent for automatic structural design. Unlike
supervised learning, the trained model learns the sequence towards a
final desirable state instead of the desirable state only. Therefore, any
step of the sequence towards the sub-optimal design can be queried by
structural designers, which may improve the freedom and flexibility
in the interactive design between the RL agent and the designers.
This improvement is also expected to enhance our design exploration
towards better structural designs.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.

Acknowledgments

This study was supported by JSPS KAKENHI No. JP20H04467,
Grant-in-Aid for Young Scientists (Start-up) No. JP21K20461 and
Grant-in-Aid for JSPS Fellows No. JP18J21456.

References

[1] S. Pezeshk, Design of framed structures: an integrated non-linear analysis
and optimal minimum weight design, Internat. J. Numer. Methods Engrg.
41 (1998) 459–471, http://dx.doi.org/10.1002/(SICI)1097-0207(19980215)41:
3<459::AID-NME293>3.0.CO;2-D.

[2] T. Kimura, M. Ohsaki, R. Okazaki, Simultaneous optimization of brace locations
and cross-sections of beams and columns of steel frames, J. Struct. Constr. Eng.
83 (2018) 1445–1454, http://dx.doi.org/10.3130/aijs.83.1445, (in Japanese).

[3] N. Tamura, H. Ohmori, Supporting system for structural design of steel frame
structures by using multi-objective optimization method, J. Struct. Constr. Eng.
73 (2008) 891–897, http://dx.doi.org/10.3130/aijs.73.891, (in Japanese).

[4] K. Hager, R. Balling, New approach for discrete structural optimization, J. Struct.
Eng. 114 (1988) 1120–1134, http://dx.doi.org/10.1061/(ASCE)0733-9445(1988)
114:5(1120).

[5] S. Yoshitomi, M. Yamakawa, K. Uetani, A method for selecting optimum discrete
sections of steel frames using two-step relaxation, J. Struct. Constr. Eng. 69
(2004) 95–100, http://dx.doi.org/10.3130/aijs.69.95_5, (in Japanese).

[6] V.K. Srivastava, A. Fahim, An optimization method for solving mixed discrete-
continuous programming problems, Comput. Math. Appl. 53 (2007) 1481–1491,
http://dx.doi.org/10.1016/j.camwa.2007.01.006.

[7] M. Liu, S.A. Burns, Y.K. Wen, Genetic algorithm based construction-conscious
minimum weight design of seismic steel moment-resisting frames, J. Struct.
Eng. 132 (2006) 50–58, http://dx.doi.org/10.1061/(ASCE)0733-9445(2006)132:
1(50).

[8] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA,
USA, 1998.

[9] R.J. Balling, Optimal steel frame design by simulated annealing, J. Struct. Eng.
117 (1991) 1780–1795.

[10] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (1983) 671–680, http://dx.doi.org/10.1126/science.220.4598.671.

[11] A.L. Samuel, Some studies in machine learning using the game of checkers, IBM
J. Res. Dev. 3 (1959) 210–229.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://dx.doi.org/10.1002/(SICI)1097-0207(19980215)41:3<459::AID-NME293>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1097-0207(19980215)41:3<459::AID-NME293>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1097-0207(19980215)41:3<459::AID-NME293>3.0.CO;2-D
http://dx.doi.org/10.3130/aijs.83.1445
http://dx.doi.org/10.3130/aijs.73.891
http://dx.doi.org/10.1061/(ASCE)0733-9445(1988)114:5(1120)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1988)114:5(1120)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1988)114:5(1120)
http://dx.doi.org/10.3130/aijs.69.95_5
http://dx.doi.org/10.1016/j.camwa.2007.01.006
http://dx.doi.org/10.1061/(ASCE)0733-9445(2006)132:1(50)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2006)132:1(50)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2006)132:1(50)
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb8
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb8
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb8
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb9
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb9
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb9
http://dx.doi.org/10.1126/science.220.4598.671
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb11
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb11
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb11

Advanced Engineering Informatics 51 (2022) 101512

14

K. Hayashi and M. Ohsaki

[12] A.A. Markov, N.M. Nagorny, The Theory of Algorithms, first ed., Springer
Publishing Company, Incorporated, 2010.

[13] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, D. Hassabis, Mastering the game of go
without human knowledge, Nature 550 (2017) 354–359, http://dx.doi.org/10.
1038/nature24270.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (2015)
529–533, http://dx.doi.org/10.1038/nature14236.

[15] K. Hayashi, M. Ohsaki, Reinforcement learning and graph embedding for binary
truss topology optimization under stress and displacement constraints, Front.
Built Environ. 6 (2020) http://dx.doi.org/10.3389/fbuil.2020.00059.

[16] M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning, The
MIT Press, 2012.

[17] D. Prayogo, M.-Y. Cheng, Y.-W. Wu, D.-H. Tran, Combining machine learning
models via adaptive ensemble weighting for prediction of shear capacity of
reinforced-concrete deep beams, Eng. Comput. (2019) http://dx.doi.org/10.
1007/s00366-019-00753-w.

[18] J.-S. Chou, A.-D. Pham, Enhanced artificial intelligence for ensemble approach to
predicting high performance concrete compressive strength, Constr. Build. Mater.
49 (2013) 554–563, http://dx.doi.org/10.1016/j.conbuildmat.2013.08.078.

[19] M. Khandelwal, Blast-induced ground vibration prediction using support vector
machine, Eng. Comput. 27 (2011) 193–200, http://dx.doi.org/10.1007/s00366-
010-0190-x.

[20] D.-C. Feng, Z.-T. Liu, X.-D. Wang, Z.-M. Jiang, S.-X. Liang, Failure mode
classification and bearing capacity prediction for reinforced concrete columns
based on ensemble machine learning algorithm, Adv. Eng. Inform. 45 (2020)
101126, http://dx.doi.org/10.1016/j.aei.2020.101126.

[21] N. Jung, G. Lee, Automated classification of building information modeling
(BIM) case studies by BIM use based on natural language processing (NLP) and
unsupervised learning, Adv. Eng. Inform. 41 (2019) 100917, http://dx.doi.org/
10.1016/j.aei.2019.04.007.

[22] J. Chow, Z. Su, J. Wu, P. Tan, X. Mao, Y. Wang, Anomaly detection of defects
on concrete structures with the convolutional autoencoder, Adv. Eng. Inform. 45
(2020) 101105, http://dx.doi.org/10.1016/j.aei.2020.101105.

[23] C.S.N. Pathirage, J. Li, L. Li, H. Hao, W. Liu, P. Ni, Structural damage
identification based on autoencoder neural networks and deep learning, Eng.
Struct. 172 (2018) 13–28, http://dx.doi.org/10.1016/j.engstruct.2018.05.109.

[24] S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates, in: Proceedings 2017 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, Piscataway,
NJ, USA, 2017.

[25] S. Nakamura, T. Suzuki, High-speed calculation in structural analysis by rein-
forcement learning, in: The 32nd Annual Conference of the Japanese Society for
Artificial Intelligence (JSAI2018), 2018, (in Japanese).

[26] D. Chiba, M. Suzuki, M. Hayashi, K. Watanabe, Development of active response
control system using AI (part 2. creation of AI for response control by deep
reinforcement learning), in: Summaries of Technical Papers of Annual Meeting
(Structure II), 21200, Architectural Institute of Japan, 2018, pp. 399–400, (in
Japanese).

[27] K. Hayashi, M. Ohsaki, Reinforcement learning for optimum design of a plane
frame under static loads, Eng. Comput. 37 (2021) 1999–2011, http://dx.doi.org/
10.1007/s00366-019-00926-7.

[28] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D.
Jackel, Backpropagation applied to handwritten zip code recognition, Neural
Comput. 1 (1989) 541–551.

[29] H. Cai, V.W. Zheng, K. Chang, A comprehensive survey of graph embedding:
Problems, techniques, and applications, IEEE Trans. Knowl. Data Eng. 30 (2018)
1616–1637, http://dx.doi.org/10.1109/TKDE.2018.2807452.

[30] F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O.
Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, Machine learning prediction
errors better than DFT accuracy, 2017, CoRR 1702.05532.

[31] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message
passing for quantum chemistry, 2017, CoRR 1704.01212.

[32] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social repre-
sentations, in: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, Association for Computing
Machinery, New York, NY, USA, 2014, pp. 701–710, http://dx.doi.org/10.1145/
2623330.2623732.

[33] E. Ross, D. Hambleton, Using graph neural networks to approximate mechanical
response on 3D lattice structures, in: Proceedings of AAG2020 - Advances in
Architectural Geometry, 24, 2021, pp. 466–485.

[34] I. Bello, H. Pham, Q.V. Le, M. Norouzi, S. Bengio, Neural combinatorial
optimization with reinforcement learning, in: 5th International Conference on
Learning Representations (ICLR 2017), 2017, pp. 1–5.

[35] H. Dai, E.B. Khalil, Y. Zhang, B. Dilkina, L. Song, Learning combinatorial
optimization algorithms over graphs, in: Proceedings of the 31st International
Conference on Neural Information Processing Systems, in: NIPS’17, 2017, pp.
6351–6361.

[36] J. Jiang, C. Dun, Z. Lu, Graph convolutional reinforcement learning for
multi-agent cooperation, 2018, CoRR 1810.09202.

[37] A. Malysheva, T.T.K. Sung, C. Sohn, D. Kudenko, A. Shpilman, Deep multi-agent
reinforcement learning with relevance graphs, 2018, CoRR 1811.12557.

[38] W. Zheng, D. Wang, F. Song, Opengraphgym: A parallel reinforcement learning
framework for graph optimization problems, in: V.V. Krzhizhanovskaya, G.
Závodszky, M.H. Lees, J.J. Dongarra, P.M.A. Sloot, S. Brissos, J. Teixeira (Eds.),
Computational Science - ICCS 2020-20th International Conference, Amsterdam,
the Netherlands, June 3-5, 2020, Proceedings, Part V, in: Lecture Notes in
Computer Science, vol. 12141, Springer, 2020, pp. 439–452, http://dx.doi.org/
10.1007/978-3-030-50426-7_33.

[39] S. Bandyopadhyay, A. Biswas, M.N. Murty, R. Narayanam, Beyond node em-
bedding: A direct unsupervised edge representation framework for homogeneous
networks, 2019, CoRR abs/1912.05140.

[40] C. Wang, C. Wang, Z. Wang, X. Ye, P.S. Yu, Edge2vec: Edge-based social network
embedding, 14 (2020). http://dx.doi.org/10.1145/3391298.

[41] J. Sola, J. Sevilla, Importance of input data normalization for the application
of neural networks to complex industrial problems, IEEE Trans. Nucl. Sci. 44
(1997) 1464–1468, http://dx.doi.org/10.1109/23.589532.

[42] M. Puheim, L. Madarász, Normalization of inputs and outputs of neural network
based robotic arm controller in role of inverse kinematic model, in: SAMI
2014 - IEEE 12th International Symposium on Applied Machine Intelligence and
Informatics, 2014, p. 4, http://dx.doi.org/10.1109/SAMI.2014.6822439.

[43] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, in: Y. Bengio,
Y. LeCun (Eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[44] C.J.C.H. Watkins, Learning from Delayed Rewards (Ph.D. thesis), King’s College,
Cambridge, UK, 1989.

[45] T. Tieleman, G. Hinton, Lecture 6e - rmsprop: Divide the gradient by a running
average of its recent magnitude, in: COURSERA: Neural Networks for Machine
Learning, 2012.

[46] A. Rezaee Jordehi, J. Jasni, Particle swarm optimisation for discrete optimisation
problems: a review, Artif. Intell. Rev. 43 (2015) 243–258, http://dx.doi.org/10.
1007/s10462-012-9373-8.

[47] Y. Li, Y. Peng, S. Zhou, Improved pso algorithm for shape and sizing optimization
of truss structure, J. Civ. Eng. Manage. 19 (2013) 542–549, http://dx.doi.org/
10.3846/13923730.2013.786754.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://refhub.elsevier.com/S1474-0346(21)00260-3/sb12
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb12
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb12
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.3389/fbuil.2020.00059
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb16
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb16
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb16
http://dx.doi.org/10.1007/s00366-019-00753-w
http://dx.doi.org/10.1007/s00366-019-00753-w
http://dx.doi.org/10.1007/s00366-019-00753-w
http://dx.doi.org/10.1016/j.conbuildmat.2013.08.078
http://dx.doi.org/10.1007/s00366-010-0190-x
http://dx.doi.org/10.1007/s00366-010-0190-x
http://dx.doi.org/10.1007/s00366-010-0190-x
http://dx.doi.org/10.1016/j.aei.2020.101126
http://dx.doi.org/10.1016/j.aei.2019.04.007
http://dx.doi.org/10.1016/j.aei.2019.04.007
http://dx.doi.org/10.1016/j.aei.2019.04.007
http://dx.doi.org/10.1016/j.aei.2020.101105
http://dx.doi.org/10.1016/j.engstruct.2018.05.109
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb24
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb24
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb24
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb24
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb24
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb24
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb24
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb25
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb25
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb25
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb25
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb25
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb26
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb26
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb26
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb26
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb26
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb26
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb26
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb26
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb26
http://dx.doi.org/10.1007/s00366-019-00926-7
http://dx.doi.org/10.1007/s00366-019-00926-7
http://dx.doi.org/10.1007/s00366-019-00926-7
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb28
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb28
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb28
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb28
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb28
http://dx.doi.org/10.1109/TKDE.2018.2807452
http://arxiv.org/abs/1702.05532
http://arxiv.org/abs/1704.01212
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb34
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb34
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb34
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb34
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb34
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb35
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb35
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb35
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb35
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb35
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb35
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb35
http://arxiv.org/abs/1810.09202
http://arxiv.org/abs/1811.12557
http://dx.doi.org/10.1007/978-3-030-50426-7_33
http://dx.doi.org/10.1007/978-3-030-50426-7_33
http://dx.doi.org/10.1007/978-3-030-50426-7_33
http://arxiv.org/abs/1912.05140
http://dx.doi.org/10.1145/3391298
http://dx.doi.org/10.1109/23.589532
http://dx.doi.org/10.1109/SAMI.2014.6822439
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb43
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb43
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb43
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb43
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb43
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb43
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb43
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb43
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb43
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb44
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb44
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb44
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb45
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb45
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb45
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb45
http://refhub.elsevier.com/S1474-0346(21)00260-3/sb45
http://dx.doi.org/10.1007/s10462-012-9373-8
http://dx.doi.org/10.1007/s10462-012-9373-8
http://dx.doi.org/10.1007/s10462-012-9373-8
http://dx.doi.org/10.3846/13923730.2013.786754
http://dx.doi.org/10.3846/13923730.2013.786754
http://dx.doi.org/10.3846/13923730.2013.786754

	Graph-based reinforcement learning for discrete cross-section optimization of planar steel frames
	Introduction
	Literature review
	Machine learning for building engineering problems
	Graph embedding
	Edge embedding

	Cross-section optimization problem of steel frames
	Elastic design
	Load condition
	Stress and displacement constraints

	Plastic design
	Strong column–weak beam constraint
	Horizontal load bearing capacity constraint

	Optimization problem

	Conversion to a reinforcement learning task
	State s
	Action a
	Restriction of actions
	Reward r

	Graph-based reinforcement learning
	Graph embedding to extract member features
	Action values computed from the member features
	Tuning problem of trainable parameters
	Mini-batch training
	Training workflow

	Numerical examples
	Training setting
	Training result
	Training result of reducing sizes
	Training result of increasing sizes
	Investigation of generalization performance

	Conclusion
	Declaration of competing interest
	Data availability statement
	Acknowledgments
	References

