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1.  Introduction
The plasma density in the ionospheric F region keeps fluctuating in various temporal and spatial scales. The 
quasi-wavelike ionospheric disturbances are called as traveling ionospheric disturbances (TIDs), which can be 
further divided into small-scale TIDs (SSTIDs) (Yin et al., 2019), medium-scale TIDs (MSTIDs) and large-scale 
TIDs (LSTIDs) (Georges, 1968) by their scales. In terms of MSTIDs, since Sydney Radio Research Board first 
gave the experimental existence proof (Munro, 1950), observation methods for MSTIDs have been varying all 
the time (Evans et al., 1983; Jacobson et al., 1995) but the most common methods have been two-dimensional 
observation since 1990s due to the large observable range. One two-dimensional observation method, High 
Frequency (HF) radar (Samson et al., 1990), is mostly used to observe daytime MSTIDs. Another method, all-sky 
airglow imager was also proposed (Mendillo et al., 1997), but it can only work at nighttime because the intensity 
of atmospheric airglow is too low compared with that of sunlight. Besides, the completion of the first Global 
Navigation Satellite System (GNSS) in USA, Global Positioning System (GPS), made it possible to carry out 

Abstract  Medium-scale traveling ionospheric disturbances (MSTIDs) are observed as parallelly arrayed 
wavelike perturbations of Total Electron Content (TEC) in ionospheric F region leading to satellite navigation 
error and communication signal scintillation. The observation method for MSTIDs, detrended TEC (dTEC) 
map, summarizes the perturbation component of TEC having the merits of full-time and two-dimensional. 
However, previous automatic processing methods for dTEC map cannot discriminate MSTIDs from other 
irregular ionospheric perturbations intelligently. With the development of artificial intelligence in recent years, 
deep learning approach is expecting to clarify the controversy of MSTID external dependence (season and 
solar/geomagnetic activity) under debating for decades. Therefore, this research proposes a real-time processing 
algorithm for dTEC maps based on Mask Region-Convolutional Neural Network (R-CNN) model of deep 
learning instance segmentation to detect wavelike perturbations intelligently with an accuracy of about 80% 
and a processing speed of about 8 fps. Then isolated perturbations are eliminated and only MSTID waveforms 
are chosen to obtain statistical characteristics of MSTIDs. With this algorithm, we analyzed up to 1,209,600 
dTEC maps from 1997 to 2019 over Japan automatically and established a database of hourly averaged MSTID 
characteristics. This research introduces the partial correlation coefficient for the first time to clarify the solar/
geomagnetic activity dependence of MSTID characteristics which is independent with each other.

Plain Language Summary  Medium-scale traveling ionospheric disturbance (MSTID) is an 
ionospheric irregularity phenomenon observed as parallelly arrayed wavelike perturbations of Total Electron 
Content (TEC) with a period of less than 1 hr and wavelength of less than 500 km. The TEC is measured by 
the signal propagation delay between satellite and ground receiver network and its perturbation component 
is summarized in detrended TEC (dTEC) map as the observation method of MSTIDs. However, previous 
automatic processing methods for dTEC map cannot discriminate MSTIDs from other irregular ionospheric 
perturbations. The controversy of MSTID external dependence (season and solar/geomagnetic activity) has 
been under debating for decades in previous statistical analyses. To solve these problems, the first MSTID 
processing algorithm based on deep learning instance segmentation is proposed in this research to process 
up to 1,209,600 dTEC maps from 1997 to 2019 over Japan intelligently and automatically. The results clarify 
the external factor dependence of MSTID characteristics independently by introducing partial correlation 
coefficient. This statistical analysis of MSTIDs will contribute to the industrial deployment such as space 
weather forecast and quality improvement of satellite communication.
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two-dimensional and low-cost observation for MSTIDs by GPS-TEC method (Calais & Minster, 1995). This 
method is full-time because the detrended Total Electron Content (dTEC) of the ionosphere above the ground 
receiver is derived from group delays (phase advances) of satellite signal whenever daytime or nighttime (Saito 
et al., 1998). Based on GPS-TEC method, this research utilizes from 1997 to 2019 up to 1,209,600 dTEC maps 
provided by Japanese GNSS Earth Observation Network (GEONET) to analyze MSTID characteristics at both 
daytime and nighttime.

Automatic analysis for dTEC maps is difficult because the composition of perturbations are complicated and 
mixed with each other: parallel-arrayed wavelike perturbations of MSTIDs, isolated wavelike perturbations, 
irregular ionospheric disturbances and point white noise. Previous processing methods in MSTID research for 
detrended GPS-TEC data can be divided into two categories: Time domain analyses, such as the ratio of TEC 
variation to TEC average 𝐴𝐴

(

Δ𝐼𝐼∕𝐼𝐼 𝐼 1%
)

 (Kotake et al., 2006), percentage fractional TEC variation (S > 0.05) (Kil 
& Paxton, 2017), are unable to distinguish MSTIDs and irregular TEC disturbances. Frequency domain analyses, 
such as Multi-channel Maximum Entropy Method (MMEM) (Ding et al., 2011), Fast Fourier Transform (FFT) 
(Hernández-Pajares et al., 2006), are unable to distinguish MSTIDs and isolated wavelike perturbations because 
the successive passage of isolated wavelike perturbations with different propagation directions also produces a 
similar frequency spectrum as MSTIDs. In this research, we propose the first MSTID processing algorithm based 
on deep learning instance segmentation which can detect MSTIDs intelligently and derive their characteristics 
automatically.

Although many statistical researches have analyzed MSTIDs, the solar and geomagnetic activity dependence 
of MSTIDs are still under debating. In terms of the solar activity dependence of nighttime MSTID occurrence, 
both positive correlation (Hernández-Pajares et al., 2006, 2012; Kil & Paxton, 2017) and negative correlation 
(Kotake et al., 2006; Martinis et al., 2010; Shiokawa, Ihara, et al., 2003) are revealed at mid/high latitude in previ-
ous researches. Recent research (Terra et al., 2020) suggests that it is associated with season when discussed in 
monthly level instead of annual level, specifically, positive correlation with occurrence rate of nighttime MSTIDs 
in summer but negative in winter. In terms of geomagnetic activity dependence of MSTID characteristics, the 
controversy of positive correlation (Terra et al., 2020), negative correlation (Seker et al., 2011) and uncorrelated 
conclusion (Saito et al., 2001) exist. The variation of MSTID characteristics is influenced by multiple external 
factors synthetically, so that the correlation coefficient used in previous researches is not independent. In this 
research, the partial correlation coefficient in statistics, which can eliminate inter-factor influence, is introduced 
to determine the dependence of each external factor for MSTID characteristics independently instead of tradi-
tional correlation coefficient.

2.  Data Set
The GEONET in Japan composed of about 1,300 GNSS ground receivers with a spatial distribution shown in 
Figure 1a, has been running since October 1994. With the GPS-TEC data provided by GEONET, Saito et al. (1998) 
found that after a running average detrending procedure, the wave structures of MSTIDs are clearly visible in the 
dTEC map as shown in Figure 1b. In this research, we follow the same procedure and set the detrending window 
as 1 hr, which will subtract an average of ±30 min to eliminate the influence of long-term TEC variation because 
previous multi-methods (Frissell et al., 2014; Huang et al., 2016) suggest that the maximum period of MSTIDs 
is shorter than 1 hr. However, it is hard to clarify a boundary between the crest and trough of MSTIDs in a cloud 
point map, which brings trouble to the next step when the deep learning network learns the feature of MSTIDs, 
so that the spatial smoothing procedure of nearby 3 × 3 pixels is taken to get continuous dTEC maps as shown 
in Figure 1c. Considering the dTEC derived from paths with a low elevation angle contain errors associated with 
cycle slips and multi-path fading, the satellite signals with zenith angles larger than 55° are eliminated as shown 
in Figure 1d.

The dTEC maps are drawn every 10 min and uploaded to the website of National Institute of Information and 
Communications Technology (NICT). Total number reaches 1,209,600 images from 1997 to 2019 in the same 
368 × 396 pixel resolution and 0.15° × 0.15° spatial resolution within the area of 124°–148°E longitude and 
24°–48°N latitude at 300 km ionospheric mapping shell altitude (Otsuka et al., 2021). Considering the different 
patterns (extension and propagation direction) of daytime and nighttime MSTIDs, we divide dTEC maps into 
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two groups according to local time (LT = UT + 9): daytime is defined as 
7:00–18:50 (LT), the rest is grouped as the nighttime data set.

There is no standard data set with ground truth for the deep learning detection 
of MSTIDs. In this research, we propose the first MSTID detection data set 
which contains 3,000 dTEC maps in total with label images as ground truth. 
According to observation time, they are divided into daytime and night-
time groups equally and all the 1,500 images of each data set are selected 
randomly. We manually annotate all wavelike perturbations by open-source 
software Labelme, where crests and troughs of MSTIDs are annotated as red 
and blue respectively, and background, white noise or non-wavelike pertur-
bations are annotated as green. Although contents of datasets are selected 
randomly, we  review them to ensure that they are representative and not 
homogeneous.

Daytime and nighttime data sets are further grouped by three different usages: 
training data set, validation data set, and test data set. Training data set is 
used for deep learning network model training. Validation data set is used 
for model loss validation after training is partially completed to adjust the 
hyperparameters of subsequent training procedure such as learning rate. Test 
data set is used for model accuracy evaluation after the training is completely 
finished. The image number portion ratio of three branch datasets is 10:2:3 
for both daytime and nighttime datasets.

3.  Analysis Method
Figure  2 shows the analysis procedure of this research: the deep learning 
instance segmentation network, Mask Region-Convolutional Neural Network 
(R-CNN) model, is used to detect wavelike perturbations intelligently. Then 

the circumscribed ellipses are drawn to normalize the detected wavelike structures. The discrimination whether 
a wavelike structure belongs to a MSTID can be accomplished by filtering criterion based on the spatial distri-
bution features of MSTIDs. To avoid the situation that a wavelike structure is denied to be a part of MSTID just 
because of several anomalous characteristics, the nonlinear optimization tool is used to determine the threshold 
of filtering criterion. Finally, with the filtering criterion eliminating isolated wavelike disturbances as shown in 

Figure 1.  (a) The spatial distribution of GNSS Earth Observation Network 
(GEONET) ground receivers. (b) The point cloud map of detrended TEC 
(dTEC). (c) The dTEC map after the spatial smoothing of nearby 3 × 3 pixels. 
(d) The dTEC map after eliminating satellite signals with zenith angles larger 
than 55°.

Figure 2.  The flow chart of the algorithm proposed in this research. Note that the coordinate system of this research is 
inherited from OpenCV library. Wavelength is normalized as average center to projection distance Dctp. Center to center 
distance Dctc is only used as spatial distribution constraint to determine the threshold of filtering criterion.
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the left part of Figure 2, MSTID characteristics are derived automatically as shown in the right part of Figure 2. 
Details are further discussed in the following subsections.

3.1.  Wavelike Structure Detection

Traditional deep learning convolutional networks (Krizhevsky et  al.,  2012) are unsuitable for MSTID detec-
tion because these networks only output one overall classification prediction for a whole input image, which 
is image-level recognition due to the existence of fully connected layer. Long et  al.  (2015) proposed a new 
Fully Convolutional Network (FCN) structure without fully connected layer which can classify every pixel by 
outputting a mask image consisting of different colors in which one same color refers to one same category. This 
pixel-level recognition method, so-called semantic segmentation, ignores spatial information of different individ-
uals that belong to the same category, which is fatal to the postprocess of MSTID characteristic derivation. Then 
a new branch of deep learning, so-called instance segmentation implemented by Mask R-CNN (He et al., 2017), 
which not only classifies the category of every image pixel but also annotates different individuals in the same 
category with different colors, constitutes the theoretical basis of the automatic detection of wavelike perturba-
tions in this research.

Figure 3 shows the overall architecture of Mask R-CNN, which can be divided into 4 parts: feature extraction 
network, region proposal network, Region of Interest (ROI) selection and normalization, and finally the predic-
tion regressions for bounding box, classification and mask.

•	 �Feature extraction network: the Feature Pyramid Network (FPN) structure is deployed as the feature extraction 
network, which is composed of 5 down-top stages (C1 → C5 feature maps) in deep residual network backbone 
(ResNet-50/ResNet-101) and their top-down lateral connections (P6 → P2 feature maps) (Lin et al., 2017).

•	 �Region Proposal Network (RPN): three anchor bounding boxes with different width-height ratio 
(w/h = 0.5/1.0/2.0) centered on each pixel of P2–P6 feature maps are pre-generated. According to the ground 
truth of bounding box provided by the label image, RPN learns features of positive (wavelike structure exists) 
and negative (not exists) anchor boxes and knows how to sample positive bounding box which is called as ROI 
after the model training procedure.

Figure 3.  The network structure of Mask R-CNN instance segmentation model contains the feature extraction network, 
Region Proposal Network (RPN), Region of Interest (ROI) selection then normalization and the prediction regression. The 
upward and downward arrows in the feature extraction network (C1–C5 and P2–P6 feature maps) represent the down-sampling 
and up-sampling with a stride of 0.5 and 2, respectively.
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•	 �ROI selection and normalization: one ROI can be generated by any feature map of P2–P6, Mask R-CNN selects 

its corresponding feature map Pk according to size of ROI (w × h) by the formula: 𝐴𝐴 𝐴𝐴 =
[

4 + log2

√

𝑤𝑤𝑤∕224
]

 , 
where [ ] refers to the nearest integer function (Lin et  al.,  2017). For example, when ROI size equals to 
the standard ImageNet input size 224 × 224, Mask R-CNN chooses P4 to segment the wavelike structure. 
ROIs with different sizes obtained from different stages (P2 − P6) are further normalized to the same fixed 
size feature map by ROI Align (7 × 7 for bounding box or classification regression and 14 × 14 for mask 
regression).

•	 �Prediction regression: above two kinds of normalized feature maps within the same ROI are input into tradi-
tional CNN branch with fully connected layer and FCN branch without fully connected layer for image-level 
bounding box/classification and pixel-level mask prediction regressions, respectively.

The ROI loss function LROI used for prediction regression consists of multi-class classification cross-entropy 
loss Lcls, box regression smooth L1 loss Lbox (Girshick,  2015) and mask binary cross-entropy loss Lmask (He 
et al., 2017) as shown by formula 1, here the symbols with hat refer to the network prediction results and those 
without hat refer to the label ground truth. pi is the classification probability of the ROI for ith class of total Ncls 
class. The balance hyperparameter λ equals to 1 in Mask R-CNN. The tuple t = (x, y, w, h) records the center 
pixel coordinate, width and height of the bounding box. Boolean variable ymn is 1 if (m, n) pixel corresponds to 
the mask pixel of the wavelike structure or 0 for the background in ROI with a total size of Npix × Npix. Note that 
Lcls equals to 𝐴𝐴 − log 𝑝̂𝑝𝑢𝑢 for true class u and 0 otherwise.

���� = �cls +����+����� = − 1
�cls

∑����
�=0 �� log �̂� + �

∑

�∈

{�,�,�,ℎ}

⎧

⎪

⎨

⎪

⎩

0.5
(

�̂� − ��
)2, if |�̂� − ��| < 1

|�̂� − ��| − 0.5, otherwise

− 1
�2
���

∑����
�,�=1

[

���log �̂�� + (1 − ���) log (1 − �̂��)
]

� (1)

The transfer learning deployment is adopted in this research, where the Mask R-CNN model is pre-trained by 
COCO data set with more than 200,000 images and 80 object categories to obtain a basic model weight for the 
target detection. The sampled region ratio of positive (wavelike structure exists) to negative (not exists) is 1:3 
for both categories (crest and trough) in a dTEC map. We deploy the same model training parameters as Mask 
R-CNN (He et al., 2017) for a controlled experiment with an initial learning rate of 0.02, sampled ROI of 512, 
weight decay of 0.0001 and momentum of 0.9.

Figure  4 shows the learning curves which are the ROI loss variation of training (red) and validation (blue) 
datasets in the training procedure of 100 epochs when using the ResNet-50/ResNet-101 network backbones and 
daytime/nighttime datasets. The horizontal axis epoch refers to the the iteration number that the learning algo-
rithm works through the entire training data set with the data augmentation (shuffling and resizing) between 
different iterations. In all circumstances, both the learning curves of training and validation datasets start from a 
close ROI loss at the first epoch for about 2.5, which suggests a good randomness of the dTEC map datasets. The 
learning curves of validation data set (blue curve) fluctuates more drastically compared with that of training data 
set (red curve) because only the training data set participates in the training procedure. Compared with ResNet-50 
backbone (Figures 4a and 4b), the loss gradient descent speed of ResNet-101 backbone (Figures 4c and 4d) is 
quicker for both daytime and nighttime datasets which suggests a deeper network has a better feature extraction 
ability corresponding with the conclusion of previous research (He et al., 2017). Meanwhile, the converged ROI 
loss between training and validation datasets at the 100th epoch for ResNet-101 backbone (Figures 4a and 4b) 
are closer compared with that of ResNet-50 backbone (Figures 4c and 4d), which suggests that the model over-
fitting phenomenon occurring in the training procedure is alleviated due to the better feature extraction ability. 
Compared with nighttime data set (Figures 4b and 4d), the loss variance between training and validation datasets 
of daytime data set (Figures 4a and 4c) is larger because the amplitude of daytime MSTIDs is smaller than that of 
nighttime MSTIDs (Ding et al., 2011) and there are more non-wavelike TEC perturbations at daytime making it 
more difficult to discriminate daytime MSTIDs and more likely to be overfitting. The ROI loss converges in 100 
training epochs where the models with the minimum loss in the validation data set for all circumstances are used 
for the evaluation of wavelike structure detection in Section 4.
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3.2.  Geometric Shape Normalization

The irregular edges and different shapes of wavelike perturbations detected by the deep learning instance segmen-
tation will bring difficulties to the outlier elimination and characteristic derivation. In this case it is imperative 
to normalize the geometric shape of wavelike perturbations. In traditional object detection field, the way to 
annotate a target is drawing a circumscribed rectangle (bounding box) parallel to the image edge. However, 
this method is unsuitable for wavelike perturbations which will make many pixels pseudo annotated leading to 
large error when we calculate the area of MSTID waveforms. Instead, we draw a much closer geometry figure, 
circumscribed ellipse, for every wavelike structure based on the least squared ellipse fitting method provided by 
OpenCV open-source library to normalize the geometric shape of wavelike perturbations.

To quantify these wavelike perturbations mathematically, we inherit the same definition of pixel coordinate 
system from OpenCV Library shown in the right part of Figure 2, which is obtained by 90° clockwise rotation 
from traditional Cartesian coordinate system. To derive the MSTID wavelength, the central coordinate of the 
target wavelike structure is assumed as (xi, yi) with a major axis declination θi, then draw a parallel line to the 
major axis that crosses the center (xj, yj) of the next wavelike structure. The equation of this parallel line is written 
as: y − yj = tan θi(x − xj). After transforming to the general form of straight line equation: tan θix − y + (yj − tan θ
ixj) = 0, the center to projection distance Dctp can be calculated by a point-to-line formula as:

𝐷𝐷
𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐
=

|tan 𝜃𝜃𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑗𝑗 − tan 𝜃𝜃𝑖𝑖𝑥𝑥𝑗𝑗|

√

(tan 𝜃𝜃𝑖𝑖)
2 + (−1)2

� (2)

Figure 4.  The learning curve between epoch and Region Of Interest (ROI) loss in the training procedure with the training (red) and validation (blue) datasets under 
different circumstances: (a) Daytime Medium-scale traveling ionospheric disturbances (MSTIDs) with ResNet-50 backbone, (b) Nighttime MSTIDs with ResNet-50 
backbone, (c) Daytime MSTIDs with ResNet-101 backbone, (d) Nighttime MSTIDs with ResNet-101 backbone.
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MSTID wavelength is assumed as the translational displacement, which is the average center to projection 
distance Dctp instead of center to center Euclidean distance Dctc shown in the right part of Figure 2 because Dctc is 
the combined result of translation, rotation and deformation.

3.3.  Isolated Wavelike Perturbation Elimination

Based on the coordinate system mentioned in last subsection, all wavelike perturbations in a dTEC map can be 
expressed by the following characteristic matrix 𝐴𝐴 𝐴𝐴

𝑡𝑡

𝑚𝑚×𝑛𝑛 :

��
�× � =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

��
1 ��1 ��1 ��1 ��

1 ⋯ ��1

��
2 ��2 ��2 ��2 ��

2 ⋯ ��2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

��
� ��� ��� ��� ��

� ⋯ ���

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

� (3)

The total row number m equals to the total number of wavelike perturbations, n refers to the total number of char-
acteristics and t refers to the timestamp of the current dTEC map. For a certain wavelike structure, which refers 
to ith row in 𝐴𝐴 𝐴𝐴

𝑡𝑡

𝑚𝑚×𝑛𝑛 , a 6-dimension characteristic vector (n = 6), that is, central coordinates (x, y), ellipse major/
minor axis length (a, b), area S and declination of major axis θ, is used to represent one wavelike structure in this 
research. More characteristics can be accommodated by expanding the characteristic matrix if need.

Wavelike structure is only a necessary but insufficient condition for MSTID waveform determination. Isolated 
wavelike perturbations should be eliminated from mask images. If regarding characteristic row vector of a wave-
like structure as a point in n-dimension space, the cross-correlation between different ith and jth wavelike pertur-
bations can be measured by the following filtering criterion which can be expressed as the minimum weighted 
n-dimension Euclidean distance FCi should be less than a threshold T1:

��� = minimize
�,�∈[1,�],�≠�

�
∑

�=1

(

��
�,� − ��

�,�

��

)2

≤ �1� (4)

Here Ok is a scale normalization term, which refers to the magnitude order of kth characteristic to avoid a charac-
teristic with a greater magnitude order having larger influence on threshold T1. For ith (i ∈ [1, m]) row normalized 
wavelike structure in the processing dTEC map: if existing j (j ∈ [1, m], j ≠ i) satisfies the filtering criterion, we 
regard that ith and jth wavelike perturbations are a matching pair and belong to the same MSTID. On the contrary, 
we regard ith wavelike structure as an isolated wavelike structure and is eliminated from mask image and charac-
teristic matrix. After finishing the process for all iterations of i (i ∈ [1, m]), the remaining wavelike perturbations 
in the characteristic matrix can be regarded as MSTID waveforms.

3.4.  Filtering Criterion Threshold

In order to figure out the exact value of threshold T1, we refer to previous MSTID observation results (Garcia 
et al., 2000; Huang et al., 2018; Shiokawa, Ihara, et al., 2003), which suggest the range of MSTID wavelength 
is 100–500 km. MSTID wavelength is equivalent to the twice of Dctp between spatially nearest crest and trough. 
To avoid an extreme situation of a small Dctp and large Dctc occurring when the center of another waveform is 
on the same long axis extension line of the target waveform, we also constrain that Dctc should be smaller than a 
wavelength of 500 km. The difference of declination angle among different waveforms within a MSTID should 
be less than 30° both on spatial (Makela et al., 2010) and temporal (Ding et al., 2004) scale. Extension length 
difference among different waveforms within a MSTID is less than 300 km limited by the observable region. The 
wavelength variation of different waveforms in the same MSTID is less than 100 km (Huang et al., 2018) so that 
the waveform width difference should be less than 50 km. With above two constraints, the area difference should 
be less than 20,000 km 2. These constraints can be expressed as the following optimization problem:
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maximize
�,�,�,�,�

��� =
(�� − ��

100

)2
+
(�� − ��

100

)2
+
(�� − ��

100

)2
+
(

�� − ��
50

)2

+
(

�� − ��
10

)2

subject to ���
��� =

|tan ���� − �� + �� − tan ����|
√

(tan ��)2 + (−1)2
< 250, �� ≠ ±90◦,

���
��� =

√

(�� − ��)2 + (�� − ��)2 < 500, 0 < �, � < 3000,

|�� − ��| =
|� (���� − ����) |

4
< 20000, 0 < � < 50000,

50 < |�� − ��| < 500, 0 < � < 3000,

50 < |�� − ��| < 500, 0 < � < 3000,

|�� − ��| < 300, 0 < � < 500,

|�� − ��| < 50, 0 < � < 250,

|�� − ��| < 30◦ 0 < � < 180◦

� (5)

After transforming to standard formation of nonlinear programming solver fmincon provided by Matlab optimi-
zation toolbox, where the objective function is multiplied by −1, the nonlinear multi-variable object function has 
an optimal solution for threshold T1 which is fval = −39.7659 referring to the optimization result with an opposite 
symbol. The exitflag = 1 refers that first order optimality measure is less than the tolerance meeting the require-
ment. Compared with filtering out the waveform by constraint of each characteristic successively, the nonlinear 
optimization has stronger robustness.

4.  Method Evaluation
In order to evaluate the accuracy of Mask R-CNN on test datasets, we adopt the Intersection over Union (IoU) 
metric, which calculates intersection and union pixel number between the prediction masks output by Mask 
R-CNN and the label images drawn manually. If the IoU of a predicted wavelike structure between the mask 
image and the label image is greater than 50%, this prediction is called as a True Positive (TP). Similarly, False 
Positive (FP) means that network outputs a wrong wavelike structure prediction which is not annotated in the 
label image (IoU ≤50%), False Negative (FN) refers to a missing detection which is indeed labeled manually 
(IoU ≤50%). Following the routine accuracy evaluation method in machine learning field (Chinchor, 1992), we 
evaluate the accuracy of our model in test data set from two standard measurement metrics: F1 (or F) score and 
AP50 (or mAP) defined as the above formula where N means total object categories referring to the crest and 
trough in this research.

⎧

⎪

⎨

⎪

⎩

�1 =
1
�

∑

�

2��
2�� + �� + ��

��50 =
1
�

∑

�

��
�� + ��

� (6)

After Mask R-CNN models with ResNet-50 or ResNet-101 feature extraction backbone have been trained on the 
training and evaluation datasets, we evaluate the F1 and AP50 accuracy scores and average frames per second (fps) 
speed on RTX3090 GPU or i5-8400 CPU for daytime and nighttime test datasets, respectively. The results are 
shown in Table 1. In terms of detection accuracy, the F1 and AP50 of ResNet-101 backbone is higher compared 
with ResNet-50 backbone due to the better feature extraction ability for the deeper network structure. In terms 
of process speed, the model with ResNet-101 backbone is slower compared with ResNet-50 backbone due to 
the deeper convolution layers, so that the computational complexity for the model with ResNet-101 backbone 
is higher. However, considering the update interval of GPS-TEC data is 30 s, the algorithm of this research is 
real-time whenever processed on i5-8400 CPU or RTX3090 GPU.

Figure 5 shows the processing result for dTEC maps (Figure 5a) in the test data set under different circumstances, 
such as dense/sparse MSTID waveform, white noise or satellite data error attaching produced by satellites with 
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low elevation angle. The output of Mask R-CNN (Figure 5c) is very close to the ground truth (Figure 5b). The 
failure detection always happens when the size of the missed wavelike structure is much smaller than others 
shown by the third wavelike structure from the left side of case 2 ground truth label. Meanwhile, it is difficult to 
improve the detection accuracy to nearly 100% due to the subjectivity of manual annotation in label image, for 
example, the discrimination whether the first narrow wavelike structure from the right side of case 3 ground truth 
label is a wavelike structure or not is a subjective matter. Figure 5d shows the circumscribed ellipse normalization 

Data set Backbone Detection accuracy/% Process speed/fps

Daytime Test ResNet-50 F1: 71.62, AP50: 73.85 GPU: 8.24, CPU: 1.14

ResNet-101 F1: 76.94, AP50: 82.61 GPU: 7.54, CPU: 1.03

Nighttime Test ResNet-50 F1: 74.11, AP50: 77.18 GPU: 7.95, CPU: 1.11

ResNet-101 F1: 80.57, AP50: 79.32 GPU: 7.46, CPU: 0.98

Table 1 
The Wavelike Structure Detection Result (Detection Accuracy in Different ResNet-50/ResNet-101 Network Backbone and 
Process Speed in RTX3090 GPU or i5-8500 CPU Devices) of Mask R-CNN Instance Segmentation Model

Figure 5.  The original detrended Total Electron Content (dTEC) maps (row a), manually annotated Ground Truth label images used for supervised learning (row b), 
the instance segmentation results of Mask R-CNN model (row c) and circumscribed ellipse normalization result (row d) the under different circumstances: nighttime 
Medium-scale traveling ionospheric disturbance (MSTID) with dense waveforms (case 1), nighttime MSTID with sparse waveforms (case 2), nighttime MSTID with 
the white noise (case 3), nighttime MSTID with the satellite data error (case 4), daytime MSTID with the white noise (case 5) and daytime MSTID with the satellite 
data error (case 6).

 15427390, 2022, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022SW

003151 by C
ochrane Japan, W

iley O
nline L

ibrary on [01/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
A Self-archived copy in

Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp



Space Weather

LIU ET AL.

10.1029/2022SW003151

10 of 19

result where wavelike structures annotated by blue ellipses are regarded as MSTID waveforms meeting the filter-
ing criterion FCi < T1 while those annotated by red ellipses are discriminated as isolated wavelike structures 
(FCi > T1).

Figure 6 shows the algorithm performance of the isolated wavelike perturbation elimination with the filtering 
criterion FCi < T1 for all wavelike structures detected by Mask R-CNN in Figure 5d which are indexed as No. 
1–29 for cases 1–4 nighttime MSTIDs and No. 30–68 for cases 5–6 daytime MSTIDs. Parallel coordinates from 
xi to θi and from (xi − xj)/100 to (θi − θj)/10 refer to each component of ith wavelike structure characteristic vector 
Ci and each component of the weighted n-dimension Euclidean distance FCi between their matching jth wave-
like structure, respectively. It is obvious that the threshold T1 determined by the nonlinear optimization method 
T1 = 39.7659 can discriminate isolated wavelike structures (the top three wavelike structures in the cases 2, 5 and 
6 of Figure 5d) from MSTID waveforms (others). Meanwhile, it is obvious that the extension direction θi is the 
only coordinate that daytime (cases 5–6) and nighttime (cases 1–4) MSTIDs are distinct from each other.

5.  Analysis Result
1,209,600 dTEC maps over Japan with a sample interval of 10 min from 1997 to 2019, are provided into Mask 
R-CNN instance segmentation model with ResNet-101 backbone. The instantaneous characteristics of MSTIDs 
are estimated with the same interval of 10 min by the algorithm proposed in this research, so that a characteristic 
database of MSTIDs over Japan is constructed.

Table  2 shows the statistical features of monthly averaged analysis results (mean, minimum and maximum) 
of each MSTID characteristic for 23 years. Besides, to determine the solar and geomagnetic activity depend-
ence of annually averaged MSTID characteristics independently, we calculate the partial correlation coefficient 

𝐴𝐴 𝐴𝐴
′
𝑖𝑖𝑖𝑖∕ℎ

 shown as formula 7 where E refers to expected value operator (Ellett & Ericson, 1986), instead of tradi-
tional correlation coefficient rij between MSTID characteristics C and solar activity F10.7 (geomagnetic activity 

Kp) index which can eliminate the influence of geomagnetic (solar) activity for 𝐴𝐴 𝐴𝐴
′
𝐶𝐶⋅𝐹𝐹10.7∕𝐾𝐾𝐾𝐾

 𝐴𝐴

(

𝑟𝑟
′
𝐶𝐶⋅𝐾𝐾𝐾𝐾∕𝐹𝐹10.7

)

 shown in 
Table 2. Same with the correlation coefficient, partial correlation coefficient also take a value between [−1,0] 

Figure 6.  The parallel coordinates plot for characteristic matrix and filtering criterion of all wavelike structures in Figure 5. Each line represents a wavelike structure 
and different colors refer to different cases. The filtering criterion FCi < T1 can discriminate isolated wavelike structures (the top three wavelike structure in the cases 2, 
5, and 6 of Figure 5) from Medium-scale traveling ionospheric disturbance (MSTID) waveforms (others).
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for negative correlation or [0,1] for positive correlation and a larger absolute value represents more significant 
the correlation is. It is obvious that MSTID characteristics follow a significant correlation with solar activity 

𝐴𝐴

(

𝑟𝑟
′
𝐶𝐶⋅𝐹𝐹10.7∕𝐾𝐾𝐾𝐾

> 0.3
)

 but no obvious correlation with geomagnetic activity 𝐴𝐴

(

𝑟𝑟
′
𝐶𝐶⋅𝐾𝐾𝐾𝐾∕𝐹𝐹10.7

< 0.4
)

 .

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑟𝑟𝑖𝑖𝑖𝑖 =
𝐸𝐸(𝑖𝑖𝑖𝑖) − 𝐸𝐸(𝑖𝑖)𝐸𝐸(𝑗𝑗)

√

𝐸𝐸 (𝑖𝑖2) − 𝐸𝐸(𝑖𝑖)2
√

𝐸𝐸 (𝑗𝑗2) − 𝐸𝐸(𝑗𝑗)2

𝑟𝑟
′
𝑖𝑖𝑖𝑖∕ℎ

=
𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑟𝑟𝑗𝑗𝑗

√

(

1 − 𝑟𝑟
2
𝑖𝑖𝑖

)

(

1 − 𝑟𝑟
2
𝑗𝑗𝑗

)

� (7)

Figure 7 shows the probability distribution histograms of hourly averaged MSTID characteristics for 23 years 
excluding the discrete characteristics. The vertical axis frequency is viewed as the probability for each character-
istic value and its range is divided into 50 bins as the horizontal axis. The maximum likelihood value η and the 
mean value μ are annotated in each histogram. According to Figures 7a and 7b, the mean wavelength is corre-
sponding with previous observations (Hernández-Pajares et al., 2012). The possible physical explanation based 
on gravity wave theory for daytime MSTID wavelength is that only when the horizontal wavelength is greater 
than 200 km, the gravity wave can propagate upward to the MSTID occurrence altitude of 300 km (Vadas, 2007). 
Previous inter-layer E-F coupling simulation for nighttime MSTID wavelength is also about 200 km (Yokoyama 

Time Characteristic/unit Mean Minimum Maximum Solar Activity Dependence Geomagnetic Dependence Seasonal Dependence

Daytime Occurrence Rate/% 34.82 3.01 Winter:0.254 r′: 0.246 Max: Winter, Submax: Summer

79.26 Spring: −0.467 Not Obvious Min: Spring,Submin: Autumn

Wavelength/km 247.29 217.74 r′: −0.848 r′: 0.241 Max: Autumn,Submax: Spring

272.59 Negative Not Obvious Min: Summer,Submin: Winter

Extension Direction/ ◦ 98.86 84.33 r′: 0.361 r′: 0.123 Max: Winter,Submax: Summer

113.08 Not Obvious Not Obvious Min: Spring,Submin: Autumn

Extension Length/km 430.03 365.43 r′: 0.613 r′: 0.254 Max: Winter,Submax: Summer

481.59 Positive Not Obvious Min: Spring,Submin: Autumn

Wave Number/none 2.84 2.25 r′: 0.491 r′: 0.129 Max: Winter,Submax: Summer

4.19 Positive Not Obvious Min: Spring,Submin: Autumn

Total Area/km 2 1,77,291.58 1,29,766.63 r′: 0.583 r′: 0.175 Max: Winter,Submax: Summer

2,71,744.56 Positive Not Obvious Min: Spring,Submin: Autumn

Nighttime Occurrence Rate/% 53.38 6.81 Summer: 0.351 r′: 0.299 Max: Summer,Submax: Winter

97.68 Winter:−0.741 Not Obvious Min: Autumn,Submin: Spring

Wavelength/km 239.81 220.20 r′: −0.522 r′: −0.278 Max: Autumn,Submax: Spring

264.03 Negative Not Obvious Min: Summer,Submin: Winter

Extension Direction/ ◦ 56.44 37.98 r′: 0.928 r′: 0.391 Max: Summer,Submax: Winter

67.46 Positive Not Obvious Min: Autumn,Submin: Spring

Extension Length/km 377.80 326.76 r′: 0.846 r′: 0.255 Max: Summer,Submax: Winter

405.73 Positive Not Obvious Min: Autumn,Submin: Spring

Wave Number/none 3.41 2.17 r′: −0.742 r′: 0.263 Max: Summer,Submax: Winter

5.88 Negative Not Obvious Min: Autumn,Submin: Spring

Total Area/km 2 1,79,886.40 96,384.84 r′: 0.426 r′: 0.171 Max: Summer,Submax: Winter

3,00,508.76 Positive Not Obvious Min: Autumn,Submin: Spring

Table 2 
The Statistical Features of Monthly Averaged Analysis Results (Mean, Minimum and Maximum) and the External Factor Dependence of Annually Averaged MSTID 
Characteristics (Solar/Geomagnetic Activity and Seasonal Dependence)
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Figure 7.  The probability distribution histograms of annually averaged Medium-scale traveling ionospheric disturbances (MSTID) continuous characteristics from 
1997 to 2019 including wavelength (a/b), extension direction (c/d), extension length (e/f) and total area (g/h) for daytime (red) and nighttime (blue). The vertical axis 
frequency is viewed as the probability for each characteristic value and its range is divided into 50 bins as the horizontal axis. The maximum likelihood value η, which 
is the midpoint on the horizontal axis of the highest frequency bin, and the average value μ are annotated in each histogram.
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& Hysell, 2010). The maximum of of hourly averaged MSTID wavelength is indeed less than 500 km correspond-
ing to the wavelength constraint in threshold T1 determination of the filtering criterion, which proves the effec-
tiveness of nonlinear optimization method. Moreover, the average of extension direction of daytime and nighttime 
MSTIDs in Figures 7e and 7f can be confirmed indirectly by the orthogonal propagation direction observed by 
previous researches (Shiokawa, Ihara, et al., 2003; Tsugawa, Kotake, et al., 2007). Limited by the observable 
region, the analysis results of extension length (Figures 7c and 7d) and total area (Figures 7g and 7h) of MSTIDs 
might be less than their true scale where previous researches suggest that MSTIDs can extend up to 2,000 km 
(Tsugawa, Otsuka, et al., 2007; Yokoyama & Hysell, 2010). Similar with previous researches for daytime (Frissell 
et al., 2014, 2016) and nighttime (Lakshmi Narayanan et al., 2014) MSTIDs, we find that the mean value μ and 
the maximum likelihood value η of continuous characteristic distributions do not coincide, which can explain 
the difference of observed values in this research and previous observations (Huang et al., 2018) because the 
characteristic value, which is far away from the maximum likelihood value η, is more difficult to be observed and 
is always regarded as the statistical error in previous observations (Huang et al., 2018) but is calculated into the 
average in this research.

6.  Discussion
To clarify the diurnal, seasonal and solar activity dependence of MSTID occurrence rate, the occurrence heatmap 
with a horizontal axis as month and a vertical axis as local time (LT) is shown in Figure 8 under high (annually 
averaged F10.7 are 128.45 and 122.67 in 2003 and 2013, respectively) and low (annually averaged F10.7 are 74.07 
and 69.93 in 2008 and 2018, respectively) solar activity conditions. The same diurnal and seasonal dependence 
with previous researches are revealed that nighttime MSTIDs have a maximum occurrence rate around summer 
solstice for nearly 100% at 21–3 LT (Kotake et  al., 2006) and a secondary maximum in winter at 19–23 LT 
from December to February (Otsuka et al., 2021), whereas daytime MSTIDs have a maximum around winter 
solstice at 9–15 LT (Kotake et al., 2006) and a secondary maximum after summer sunrise at 6–9 LT from June 
to August (Otsuka et al., 2021). However, the solar activity dependence of MSTID occurrence shown in this 
paper and Otsuka et al. (2021) is different. Results in Figure 8 suggest that in high solar activity year, occurrence 
rate is higher during the preference season with maximum occurrence of MSTIDs (e.g., 7–18 LT in winter from 
November to January for daytime MSTIDs and 19–6 LT in summer from May to July for nighttime MSTIDs) 
but lower during the occurrence non-preference season (e.g., 10–14 LT in spring from March to May for daytime 
MSTIDs and 20–4 LT in winter from January to February for nighttime MSTIDs), while previous research 
(Otsuka et al., 2021) suggests that the occurrence rate is higher all over the low solar activity year. One possible 
explanation for the different conclusions is that the dTEC data with a Kp index greater than four is excluded in 
research of Otsuka et al.  (2021) but included in this research. This restriction may make the data unbalanced 
because more data is excluded in high solar activity year according to the positive correlation between solar and 
geomagnetic activities (Hajra et al., 2021).

In order to illustrate the external dependence of MSTID characteristics more intuitively, we calculate the monthly 
average shown in Figure 9a and annual average shown in Figure 9b to compare the variation of external factors 
(solar and geomagnetic activity indexes F10.7 and Kp) and characteristics (occurrence rate, wavelength, extension 
direction, extension length, wavelike structure number and total area) of daytime/nighttime MSTIDs (red/blue 
curve). Besides, the seasonal dependence of MSTID characteristics can be confirmed by Figure 9a where yellow 
and green bars refer to summer (June to August) and winter (December to February), respectively.

6.1.  Solar Activity Dependence

In terms of occurrence dependence for nighttime MSTIDs, our result suggests the same seasonal compounded 
correlation observed by Terra et al. (2020). The third panel of Figure 9a suggests that nighttime MSTID occur-
rence rate keeps a positive/negative correlation with solar activity around summer/winter solstice (June/Decem-
ber), respectively, leading to a larger peak-to-valley variation of occurrence rate within a higher solar activity 
year. Thus it is inaccurate to describe the solar activity dependence of MSTID occurrence from the perspective of 
annual average because the negative correlation shown in the third panel of Figure 9b is almost the same with that 
of Otsuka et al. (2021), where 22-year MSTIDs over Japan are discriminated from the same data set with a crite-
rion of GPS-TEC variation 𝐴𝐴 Δ𝐼𝐼∕𝐼𝐼 𝐼 1% . In terms of occurrence dependence for daytime MSTIDs, occurrence 
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rate in winter and peak-to-valley variation are also larger when the solar activity is higher except December 2001 
according to the third panel of Figure 9a. One possible explanation for this abnormality is that TEC perturba-
tions are so severe that the detrended window of dTEC maps need to be less than 1 hr to filter out all long-term 

Figure 8.  The seasonal and diurnal distribution of Medium-scale traveling ionospheric disturbances (MSTID) occurrence result of this research in high (2003 and 
2013) and low (2008 and 2018) solar activity. Since 6 frames of detrended TEC (dTEC) maps are obtained every hour, the color scale represented for occurrence rate 
ranges from 0 to 1 with an interval of 1/6. A thicker color refers to a higher occurrence rate.
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variations. There are more non-wavelike perturbations at daytime, which is regarded as the reason why daytime 
occurrence rate curve of Otsuka et al. (2021) is different from ours.

Terra et  al.  (2020) explain the seasonal compounded solar activity dependence of MSTID occurrence by the 
thermospheric neutral wind which has a northeastern (northwestern) acceleration (a in 𝐴𝐴 ms

−1
𝐹𝐹

−1
10.7

 ) in northern 
hemisphere summer (winter) night (Brum et al., 2012; Emmert et al., 2006), which is favorable (unfavorable) for 
Perkins instability growth of nighttime MSTIDs. On the other hand, viscosity effect, which reduces the amplitude 
of gravity waves, is a possible explanation for positive solar activity correlation for annually averaged occurrence 
rate of daytime MSTIDs shown in the third panel of Figure 9b because viscosity effect increases as the decrease 
of solar activity due to the decrease of neutral density (Vadas, 2007).

According to the fourth panel of Figure 9b, horizontal wavelength of nighttime MSTIDs keeps negative corre-
lation with solar activity, which is consistent with the wavelength variation in China (Huang et al., 2018). The 
physical explanation for this dependence needs further study because there is no variable term for wavelength 
in the growth rate of Perkins instability (Perkins, 1973). In terms of physical explanation for negative correla-
tion of daytime MSTID wavelength, previous simulation has showed that it is difficult for gravity waves with 
shorter wavelength to propagate to the higher altitudes when the thermospheric temperature is low (Vadas, 2007). 

Figure 9.  Monthly (a) and annually (b) averaged variation of external factors: (1) solar activity F10.7 index and (2) geomagnetic activity Kp index; variation of daytime/
nighttime (red/blue curve) Medium-scale traveling ionospheric disturbance (MSTID) characteristics: (3) occurrence rate, (4) wavelength, (5) extension direction, (6) 
extension length, (7) wavelike structure number and (8) total area. Yellow and green bars in subplot (a) refer to summer (June to August) and winter (December to 
February), respectively.
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Considering the thermospheric temperature has positive correlation with solar activity, gravity waves with larger 
horizontal wavelength can propagate into the thermosphere more easily during the solar minimum period.

The long-term observation of extension direction was few but can be indirectly confirmed by propagation direc-
tion because they are orthogonal to each other. Previous researches of propagation direction (Hernández-Pajares 
et al., 2012; Otsuka et al., 2021) showed the similar variation trend after transforming to extension direction in 
the same coordinate of this research. The positive correlation in nighttime (r′ = 0.928) and the stabilization in 
daytime (r′ = 0.361) in this research shows a good agreement with theirs.

The seventh panel of Figure 9a shows that wavelike structure number of nighttime MSTIDs decreases when 
solar activity F10.7 exceeds about 130 sfu, while daytime MSTIDs show positive correlation. The cause of this 
phenomenon of nighttime MSTIDs may contribute to the saturation of neutral wind speed for solar activity at 
F10.7 = 140–160 sfu observed from American sector (Brum et al., 2012; Emmert et al., 2006) and Asian sector 
(Liu et al., 2004), because the neutral wind may play an important role in the generation of polarization electric 
field (Shiokawa, Otsuka, et al., 2003). However, the extension length has a positive correlation with solar activity 
in the sixth panel of Figure 9b, so that the total area of MSTIDs still shows positive solar activity correlation in 
the eighth panel of Figure 9b.

6.2.  Geomagnetic Activity Dependence

Similar to previous researches (Evans et al., 1983; Georges, 1968; Morton & Essex, 1978), the partial correlation 
analysis of this research (𝐴𝐴 |𝑟𝑟

′
𝐶𝐶⋅𝐾𝐾𝐾𝐾∕𝐹𝐹10.7

| < 0.4 shown in Table 2) also shows that the characteristics of MSTIDs have 
no obvious correlation with geomagnetic activity after eliminating the influence of solar activity.

Previous researches that derived positive (Bristow & Greenwald, 1996) or negative (Ding et al., 2011) correlation 
with geomagnetic activity could fall into the category of event analysis or short-term analysis without generality. 
In terms of long-term analyses, the research that concludes negative correlation (Seker et al., 2011) only derived 
the correlation coefficient between MSTID characteristics and geomagnetic activity without eliminating the 
influence of solar activity. The observation of Terra et al. (2020) shows the positive correlation after eliminating 
the influence of solar activity during 2018–2019 solar minimum period when the geomagnetic activity is low 
(Kp < 4), whereas the observation of Saito et al. (2001) suggests no obvious correlation in night days of solar 
minimum year with a higher geomagnetic activity (ΣKp = 11–22).

6.3.  Seasonal Dependence

Except for wavelength (Shiokawa, Ihara, et al., 2003), seasonal dependence of other characteristics are synchronous 
with occurrence rate shown in Figure 9a. The MSTID occurrence preference is the same as previous researches 
(Ding et al., 2011; Kil & Paxton, 2017), where daytime MSTIDs have a maximum occurrence rate in winter and 
a secondary maximum in summer, whereas nighttime MSTIDs have a maximum in summer and a secondary 
maximum in winter. The secondary maximums of occurrence rate, which are relatively low compared with the 
maximums, are omitted in some previous researches (Hernández-Pajares et al., 2006; Jacobson et al., 1995).

The neutral density variation in the thermosphere and vertical temperature gradient in the mesosphere can explain 
the maximum and the secondary maximum occurrence rate of daytime MSTIDs around winter and summer 
solstices, respectively. These two peaks are produced because the density in thermosphere reaches to minimum 
at the solstices which makes it easier for propagation of gravity waves (Moore & Boulton, 1987). Compared with 
summer peak, the peak in winter is higher because more gravity waves near the mesopause is reflected instead of 
propagating upward due to the steeper temperature gradient in summer (Bristow et al., 1996).

As for the seasonal dependence of nighttime MSTIDs, our result also shows the maximum and the secondary 
maximum occurrence rate in summer and winter solstices, respectively, as presented by previous observation 
(Kotake et al., 2006; Martinis et al., 2010; Tsugawa, Kotake, et al., 2007), but the secondary maximum in winter 
is relatively low unlike daytime MSTIDs (Ding et al., 2011). Perkins instability can explain these peaks: because 
the growth rate of a Perkins instability is inversely proportional to the neutral density (Perkins, 1973) which 
decreases to the minimum around summer and winter solstices but lowest around the summer solstice (Moore & 
Boulton, 1987).
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Polarization electric field coupling can explain the seasonal occurrence preference of nighttime MSTIDs in 
another aspect. Previous researches have found that ionospheric perturbations in the E region over Japan have a 
maximal occurrence rate in summer (Narayanan et al., 2018). According to the inter-layer coupling mechanism 
(Yokoyama & Hysell, 2010), the nighttime MSTID occurrence also reaches maximum in summer. When the 
occurrence rate of nighttime MSTIDs in Australia, with the same longitude and conjugated geomagnetic latitude, 
reaches maximum in local summer, according to inter-hemispheric conjugation mechanism (Otsuka et al., 2004), 
there should be a secondary maximum of occurrence rate during local winter over Japan (Martinis et al., 2010).

7.  Summary
In this research, we propose the first MSTID processing algorithm based on deep learning instance segmentation 
Mask R-CNN model which can detect wavelike perturbations intelligently and derive characteristics automati-
cally from 1997 to 2019 up to 1,209,600 dTEC maps with an accuracy of about 80% and a real-time processing 
speed of about 8 fps in different circumstances. Then wavelike perturbations are normalized by circumscribed 
ellipses and the spatial information of them is stored in a characteristic matrix. To avoid the situation that a wave-
like structure in the characteristic matrix is denied to be a part of MSTIDs just because of one large characteristic 
value, the nonlinear optimization tool is used to determine the threshold of the filtering criterion which eliminates 
the isolated wavelike perturbations to obtain MSTID characteristics. The effectiveness of this algorithm is evalu-
ated from two aspects of detection performance for wavelike perturbation and filtering criterion performance for 
isolated wavelike perturbation elimination.

The statistical analysis for MSTID characteristics derived by above algorithm is carried out from probability 
distribution and time-series variation aspects which are corresponding to existing observations. The hourly 
updated MSTID characteristic database reveals the external factor dependence including season, solar and 
geomagnetic activity. In terms of solar activity dependence, our results clarify that solar activity dependence 
of MSTID occurrence is seasonally compounded in the monthly average whereas the annual average shows 
simple negative (positive) correlation for nighttime (daytime) MSTIDs. In terms of geomagnetic activity depend-
ence, the partial correlation coefficients of all characteristics which can eliminate the influence of solar activity 

𝐴𝐴 |𝑟𝑟
′
𝐶𝐶⋅𝐾𝐾𝑝𝑝∕𝐹𝐹10.7

| < 0.4 indicates there is no obvious correlation between MSTID characteristics and geomagnetic activ-
ity. In terms of seasonal dependence, the result of this research also shows the same conclusions with existing 
observations that the preference season of MSTID occurrence is around summer and winter solstices. Moreover, 
the possible physical explanations for these dependence are also given in this research.

This first real-time MSTID processing and analyzing method based on the artificial intelligence can be integrated 
into the existing dTEC observation system, which is expected to contribute to the industrial deployment such as 
space weather forecast and quality improvement of satellite communication.

Data Availability Statement
The dTEC maps are available in NICT: https://aer-nc-web.nict.go.jp/GPS/GEONET/MAP/. The instance segmen-
tation model Mask R-CNN and annotation tool Labelme are open-sourced software in Zenodo or Github: https://
doi.org/10.5281/zenodo.6776091 and https://doi.org/10.5281/zenodo.5711226, respectively. Solar activity index 
F10.7 is retrieved from Goddard Space Flight Center of NASA: https://omniweb.gsfc.nasa.gov/form/dx1.html. 
Geomagnetic activity index Kp is derived from GFZ Helmholtz Centre: https://www.gfz-potsdam.de/en/kp-index/.
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