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 Reconfigurable intelligent surfaces (RIS) is a wireless technology that has 

the potential to improve cellular communication systems significantly. This 

paper considers enhancing the RIS beamforming in a RIS-aided multiuser 

multi-input multi-output (MIMO) system to enhance user throughput in 

cellular networks. The study offers an unsupervised/deep neural network 

(U/DNN) that simultaneously optimizes the intelligent surface beamforming 

with less complexity to overcome the non-convex sum-rate problem 

difficulty. The numerical outcomes comparing the suggested approach to the 

near-optimal iterative semi-definite programming strategy indicate that the 

proposed method retains most performance (more than 95% of optimal 

throughput value when the number of antennas is 4 and RIS’s elements are 

30) while drastically reducing system computing complexity. 
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1. INTRODUCTION  

Reconfigurable intelligent surface )RIS( has been intended as a potentially transformative 

technology capable of lowering power usage and enhancing network throughput by artificially altering the 

propagation environment of electromagnetic waves (EM) [1]. RISs possess the enormous prospective to 

change wireless network design and enable the creation of intelligent radio environments [2]. This ability 

occurs when merged with other fifth-generation prospective technologies, such as non-orthogonal multiple 

access (NOMA) systems [3], terahertz cellular systems, multi-input multi-output )MIMO( systems [4], and 

wireless networks powered by artificial intelligence (AI) [5], [6]. Several essential characteristics that 

distinguish RIS from recent technologies are highlighted in [7]. These characteristics contain specific design 

constraints imposed by the RIS elements’ near-passive nature. These qualities open up new possibilities for 

modifying the wireless environment, boosting the efficiency of radio wave use, extending coverage, 

transferring energy, locating, and enhancing spatial capacity density [8] while improving energy  

consumption [9]. Simultaneously, these characteristics introduce new difficulties in designing RIS-aided 

cellular networks, including the transmission of information inside a RIS-enabled environment, enhancement 

of the RIS configuration with restricted information, resource allocation, and the optimization of the network 

in such cellular systems, as provided in [10]. 

Furthermore, machine learning (ML) techniques and deep learning (DL) have emerged as valuable 

tools for dealing with massive amounts of data [11], exponential non-convex challenges that are 

mathematically difficult, and computationally intensive challenges [12], [13]. DL-based techniques have 

been employed in various cellular systems, including physical layer communications [14] and “resource 

allocation” [15]. Inspired by the prospect of using DL for complex maximization problems, in study [1] the 

https://creativecommons.org/licenses/by-sa/4.0/
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authors used the DL technique to construct the RIS beamforming matrices with restricted channel state 

information (CSI). The active/passive beamforming was intended to enhance the secrecy performance of 

reflective RIS-assisted MIMO networks with a single genuine receiver and a single eavesdropper in [16], 

[17]. In the scope of RIS-aided communication systems, authors in references [18], [19] proposed a 

supervised learning strategy in which a deep neural network (DNN) is learned offline to demonstrate an 

implicit connection among both measured coordinate information and the RIS’s phase configuration. 

However, a significant difficulty for supervised learning is obtaining labels. Gao et al. [20] achieved the ideal 

labels using extensive search, which is cost-prohibitive in practice, especially when many training examples 

are necessary. Gao et al. [20] introduced a modified DNN for single-user RIS-assisted MIMO networks 

trained offline using the unsupervised learning approach. This study produces a structure that can estimate 

real-time when utilized online. They showed through simulation that the proposed mechanism significantly 

decreases computation complexity in comparison to the traditional suboptimal scheme that employs a semi-

definite relaxation method. Song et al. [21] introduced a novel two-stage structure to optimize the transmit 

beamforming and the RIS phase shift matrix together and, consequently, the sum rate of all users. Based on 

the characteristics of this problem, they carefully customized network layers, features, and loss functions. 

The current study proposed an efficient and low-cost DNN structure to improve the passive 

beamforming vectors in RIS-assisted MIMO systems with a power limitation target. A particular emphasis is 

placed on developing a customized DNN construction for the RIS beamforming design challenge and 

selecting a set of specific characteristics for the training process. To eliminate the labeling complexity 

associated with supervised learning, we suggest using the “unsupervised learning” technique for RIS 

beamforming design in this study, like [22], [23]. Different from the work in [20], the suggested structure of 

the neural network can deal with more complicated multiuser scenarios to optimize the system throughput 

under the constraint of the access point (AP) maximum allowed transmitting power. In addition, different 

from the approach employed in [21], our proposed architecture considers three channels at the network input 

instead of two-channel. These are direct, reflected, and AP_RIS channels which make the scheme appropriate 

for more realistic environments and improve the feature extraction of the network.   

The following summarizes the study contributions. At the start point, the study offers a framework 

for the multiantenna method that utilizes a DNN to select a beamformer with the optimal spectral 

performance while minimizing transmission power. Following that, numerical experiments were undertaken 

to test the suggested system performance, which revealed that the proposed design offers a critical 

performance boost compared to standard beamforming approaches. This article was structured: section 1 

introduction. Section 2 system model and formulation of the problem. Section 3 DNN structure. In section 4, 

numerical results were discussed. Conclusion the paper is done in section 5. Notations: the capital letters like 

(M, N) denote scalar constants. Small latter like (k,…r) denote scalar variables. Vectors are represented by 

bold small latter like (h), where the hk means the kth element of h. Capital bold latter implies matrix-like F. 

Diag (·) denotes the diagonal operation. We use tr (.), (.) H, 𝐶, indicates the matrixes’ trace, conjugate 

transpose (Hermitian), and complex matrix, respectively. 

 

 

2. SYSTEM MODEL AND FORMULATION OF THE PROBLEM  

Based on our previous work in [24], which depends on the traditional iterative approach to cope 

with the transmission/reflection beamforming design problem, the current work follows an entirely different 

simple path to meet the proposed goal of this study by employing an artificial neural approach. Specifically, 

we consider a RIS-enhanced multiuser MIMO wireless system, as shown in Figure 1. that consists of 
|Ap| numbers of APs configured with M antenna elements servicing the downlink of single-antenna K users. 

The AP is aided by R numbers of RIS, each containing N reflective elements. Without losing of generality, 

we consider that all channels’ channel state information (CSI) is precisely known at the AP and RIS. The 

direct path to the Kth user is expressed through a channel matrix with complex vectors, Fa,k ∈ ℂ N×K. 

Without lossing of generality, we consider that all channels’ CSI is precisely known at the AP and RIS. The 

surface-user path is implied by hr,k ∈ ℂ N×1, while the MIMO AP-RIS links channel matrix is denoted as 

Ga,r ∈ ℂ M×N. Diagonal matrix 𝛷r ∈ ℂ N×N is the received signal phase shift at the RIS, where 𝜱r=√𝜂 

diag (𝚽 r1,… 𝚽 rn), ∀r ∈ Ɍ. Theoretically, an element’s reflection amplitude can be tuned for diverse tasks, 

e.g., performance optimization and channel acquisition [25]. Nevertheless, in practice, it is expensive to 

consider an independent controller of the phase shift and amplitude of the reflection simultaneously.  

Consequently, an individual element is typically considered to optimize the signal reflection as 

simplicity. For the motive of the simplicity of practical execution, we assume a discrete value (finite-number) 

for the RIS’s element phase shifts. It is worth noting that the discrete phase shifter’s quantization loss 

significantly grows as N increases. For scenarios with a big N, we choose high-order quantization to reduce 
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the discrete phase shifter’s quantization loss. If we employ b-bits to characterize the phase-shift levels, then 

the number of these levels will be 2𝑏 [26]. For simplicity, we assume uniform-quantization for the discrete 

phase-shifts levels in the range [0; 2π)]. To this end, at each RIS element, the discrete phase shift values set 

will be, 

 

𝜱𝑟,𝑛  ∈  {0,
𝜋

2𝑏−1
, … , (2𝑏 − 1)

𝜋

2𝑏−1
},   ∀r ∈  R, ∀n ∈  N (1) 

 

 

 
 

Figure 1. Model of the proposed multiple RISs schemes 

 

 

At the AP, the transmitted baseband signals are represented, 

 

 𝑥 = ∑ 𝑽𝑎,𝑘 𝑆𝑘
𝐾
𝑘=1  (2) 

 

where 𝑆k is the transmitted symbol to the k-th user, (k=1, …. K) [9], and Va,k is a baseband beamformer vector 

for the k-th user, Va,k ∈ ℂ M×K for m=1, …. M. Using the system model discussed above, the received signal at 

the k-th user can be described in the following manner, 

 

𝑦𝑘 = ∑ 𝑭𝑎,𝑘
𝐻 𝑽𝑎,𝑘𝑆𝑘 + ∑ ∑ 𝑯𝑟,𝑘

𝐻 𝜱𝑟
𝐻𝑮𝑎,𝑟𝑽𝑎,𝑘𝑆𝑘𝑟∈|𝑅|𝑎∈|𝐴𝑝|𝑎∈|𝐴𝑝|⏟                                  

𝑢𝑠𝑒𝑓𝑢𝑙−𝑠𝑖𝑔𝑛𝑎𝑙

+

 ∑ ∑ 𝑭𝑎,𝑘
𝐻 𝑽𝑎,𝑖𝑆𝑖𝑖∈|𝐾|

𝑖≠𝑘
𝑎∈|𝐴𝑝| + ∑ ∑ ∑ 𝑯𝑟,𝑘

𝐻 𝜱𝑟
𝐻𝑮𝑎,𝑟𝑽𝑎,𝑖𝑆𝑖𝑟∈|𝑅|𝑖∈|𝐾|

𝑖≠𝑘
𝑎∈|𝐴𝑝|

⏟                                        
 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝑠𝑖𝑔𝑛𝑎𝑙

+ 𝒏𝑘 (3) 

 

where 𝐧k ∼ CN (0, σ
2 ) is the additive white Gaussian noise at the receiver for the k-th user, and the  

useful-signal includes both direct Ap-user and indirect AP-RIS-user paths. Next, if we use the symbols 

𝚽,𝐆𝑟 and 𝐕𝑘, for respectively, diag.{𝚽1, 𝚽2, … 𝚽𝑅}, 𝐆𝑟
𝑇 = [𝐆1,𝑟

𝑇 , 𝐆2,𝑟
𝑇 , … 𝐆𝐴𝑃,𝑟

𝑇], and  

𝐕𝑘
𝑇 = [𝐕1,𝑘

𝑇 , 𝐕2,𝑘
𝑇 , … 𝐕𝐴𝑃,𝑘

𝑇], the last expression for the received signal yk in (3) may be simplified 

into, ∑  𝑎∈|𝐴𝑝| ∑  𝑖∈|𝐾| (𝑭𝑎,𝑘
𝐻 + 𝑯𝑘

𝐻𝜱𝑟
𝐻) 𝑽𝑖𝑆𝑎,𝑖 + 𝒏𝑘. In addition, if we use the notation 𝐐k to denote the 

equivalent channel for the useful signal such that, 

 

𝐐𝑘
𝐻 = 𝐅k

𝐻 + ∑ 𝐇𝑘
𝐻𝚽r

𝐻𝐆r r∈|𝑅|  (4) 

 

Then, the received signal and signal to interference plus noise ratio (SINR) at user k are expressed, 

respectively, 
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𝑦𝑘 = ∑  𝑘
𝑖=1 𝑸𝑘

𝐻 𝑽𝑖𝑆𝑖 + 𝒏𝑘 (5) 

 

𝛤𝑘(𝜱, 𝑽) =
𝑽𝑘
𝐻𝑸𝑘𝑸𝑘

𝐻𝑽𝑘

∑  𝑖∈|𝐾|
𝑖≠𝑘

𝑽𝑖
𝐻𝑸𝑘𝑸𝑘

𝐻𝑽𝑖+𝒏𝑘
 (6) 

 

To this end, the sum rate (Nat/s/Hz) per user k is shown as (7), 

 

Rt=∑  𝑘∈𝑘  ln (1+Γk) (7) 

 

The main objective is to enhance the RISs reflection-beamforming Φ, as well as AP-transmission 

beamforming V to maximize channel throughput while adhering to the total power constraint. The 

transmission/reflection beamforming design problem can be stated, 

 

Ƥ0: max
𝚽,𝐕

∑  𝑘∈|𝐾|  ln(1 + Γk) (8) 

 

s.t: 𝜱𝑟,𝑛  ∈  {0,
𝜋

2𝑏−1
, … ,

(2𝑏−1)𝜋

2𝑏−1
} , ∀𝑟 ∈  𝑅, ∀𝑛 ∈ 𝑁   (8a) 

 

tr (𝐕k 𝐕k
H) ≤  Pmax (8b) 

 

where Pmax denotes the AP maximum allowed transmitting power. The reflecting element phase shift 

limitation is specified in the constraint of (8a). Owing to the restrictions in (8a) and (8b), the optimization 

issue presented in (8) is a significant complicated problem challenge; therefore, in the proposed scheme, and 

for the sake of simplification, we consider the maximum-ratio transmission for the actively transmit 

beamforming [27], [28]. 

 

𝐕𝑇 = 
(𝐆𝚽𝐇 +𝐅 )𝐻

‖𝐆𝚽𝐇 +𝐅 ‖
 (9) 

 

Up to this end, Ƥ0 can be modified to the following problem, 

 

Ƥ1: max
𝚽
 ‖𝐆𝚽𝐇 + 𝐅 ‖2 (10) 

 

s.t: 𝜱𝑟,𝑛  ∈  {0,
𝜋

2𝑏−1
, … ,

(2𝑏−1)𝜋

2𝑏−1
} , ∀r ∈  R, ∀n ∈ N (10a) 

 

tr (𝐕k 𝐕k
H) ≤  Pmax (10b) 

 

 

3. DEEP NEURAL NETWORK STRUCTURE 

The beamforming neural network (BF-Net) is trained to solve the transmitting beamforming 

problem directly (no iteration) to enhance the system’s throughput. The training data sets are compiled via an 

exhaustive search (offline phase) of each channel realization to select a RIS beamforming vector that 

maximizes the entire system’s throughput. After training, the scheme will be ready to guess the passive 

beamforming vector for any given input channel gains. The suggested structure for this beamforming neural 

network (abbreviated BF-Net for convenience of notation) consists of multiple layers, as illustrated in  

Figure 2. 

The structure has 10 layers and preserves data at the dim, NM × 𝐾 × 3 input layer while recurring a 

dim, 1×K vector at the output. Each neural network input utilizes the real/imaginary portions of the wireless 

channel. Convolutional layers (layers 2 and 5) are being used to extract the characteristics hidden in the 

network input data, including 16 filters totaling 3×3 pixels in size. The bias and weights are propagated 

through the layer to extract features. Following these layers (i.e., convolutional layers), we already have 

normalization and activation layers, which provide a faster learning rate through normalization and optimal 

converging. On the other hand, the normalization layers, similar to dropout-layers, can moderate the  

over-fitting opportunity by offering some noise to the convolution layer. Next, the flattened layer will flatten 

the output of the convolutional layers to harvest a single feature vector of dim |K|. A rectified-linear unit 

activation function (ReLU) can be employed for the intermediate layers. In contrast, the last layer prefers the 

soft-max function to certify a good classification prediction. 
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𝑅𝑒𝐿𝑈(𝑧) =  𝑀𝑎𝑥{0, 𝑧} (11) 

 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1  
 (12) 

 

Where z is the layer input vector, this neural network is trained using "stochastic-gradient" descent (SG) for 

the optimized solution algorithms. For the output layer, as a regression loss (unsupervised method), the 

negative of the primary function in P1 (objective), which samples (S) of training, can be defined, 

 

𝑙𝑜𝑠𝑠 =  −
1

𝑆
 ∑  𝑠∈|𝑆| ‖𝐆

𝑠  𝚽𝑠 𝐇𝑠  + 𝐅𝑠 ‖2 (13) 

 

 

 
 

Figure 2. Structure of the proposed beamforming neural network 

 

 

4. NUMERICAL RESULTS 

Next, we will verify the proposed network’s performance through numerical simulation. All 

parameters of the network and the baseline near-optimal algorithm for the sake of results comparison are 

indicated in Table 1 (otherwise are specified within the figures caption). First, we examine the effect of the 

RIS’s element count on the per-user performance. As shown in Figure 3, both techniques’ performance is 

close to each other and increases with the deployment of RIS elements. This plot shows that increasing the 

number of elements by 10 (from 20 up to 30) can improve the user throughput in the context by 18%. The 

proposed method achieves more than 95% of the optimal throughput value for the number of antennas of 4 

and 30 RIS’s elements at a low implementation cost compared to the optimal scheme.  
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Table 1. System parameters values are applied in the simulation 
Parameter Setting 

Access point antenna number    Mt = {2, 4, 6, 10} 
RIS elements number   N=8X8 

Number of available users   |K| = 4 
The budget of the transmit power       Pmax =   10 dB 

AWGN noise power spectral density σn
2  =  -174 dBm/Hz 

Pathloss model Pl(dB)=-126.1+36.5 log10 (distance) 
Small-scale fading channels Independent and identically distributed (i.i.d) Rayleigh 

Train model of the neural network 0.001 learn rate Adam model 
Epochs number  1,000 

The benchmark scheme An iterative semi-definite [27]. 

 

 

 
 

Figure 3. The effect of the RIS’s element count on user throughput 

 

 

Next, Figure 4 demonstrates the effect of the AP’s antenna count on per-user throughput. The 

throughput of both methods rises with the amount of AP antenna and the development of RIS elements. Also, 

Figure 5 put together the effect of the number of AP antennas and the RIS’s elements number on the user 

throughput. As expected, the proposed system beamforming gets better with the deployment of more 

elements of antennas and RIS reflectors. Also, it outperforms the benchmark performance overall in the 

range of the x and y-axis. Lastly, Figure 6 introduces a compression between the proposed and the 

benchmark schemes in terms of time-performance, i.e., the average time-complexity when there are 10 

antenna elements at the AP. It is worth mentioning that the training stage of the proposed deep NN is carried 

out offline. Hence, we emphasize the time-complexity results of the online prediction stage. In this regard, 

the big-O symbol, i.e., “order of,” can be used to introduce the time-complexity of a specific procedure. Both 

input and flatten layers have a simple complexity that can ignore the time cost. For filters of the dimension 

𝑛𝑗 × 𝑛𝑗 in the j-th convolution layer with convolution output size of 𝑥𝑗 × 𝑦𝑗 , there are the same number of 

addition and multiplication where in this case the multiplication complexity is of the order, 

 

𝑂(∑  𝑛𝑗 𝑦𝑗 . 𝑛𝑗  𝑥𝑗 . 𝑓𝑗  𝑓𝑗−1 
𝐿
𝑗=1 )   (14) 

 

where 𝑓𝑗  𝑓𝑗−1  denote the number of the convolution filters in the j-th and (j-1)-th layers, respectively. In 

addition, the complexity of additions is insignificant if compared to that associated with the multiplications. 

Also, since the rectified linear activation function (ReLU) defines the input sample’s sign only, the 

complexity can be neglected. 

Yet, for the BN-layer and the total activation layers, the order is 𝑂(∑  𝑦𝑗  𝑥𝑗  𝑓𝑗 
𝐿
𝑗=1 ). Assuming that 

FLC-layer has z-neurons, then the order will be as follows, 𝑂(∑ 𝑧 . 𝑦𝐹𝐿𝐶  𝑥𝐹𝐿𝐶  𝑓𝐹𝐿𝐶  
𝐿
𝑗=1 ). We employ  

zero-padding of size one for our proposed NN, and we have 16 convolution filters of dimension 3 × 3; then 

the convolution output is of size 2 × 𝐾𝑁𝑀, and the total complexity will be approximate, of the order, 

𝑂(𝐾𝑁𝑀). It is clear from Figure 6 the superior of the proposed scheme in compression to the great 

complexity of the iterative sub-optimal precoding method, e.g., for 25 RIS’s elements, the average consumed 
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time is about 0.851 × 10−3 𝑠𝑒𝑐, while for the baseline algorithm, the average required time is about 4.862 ×
10−3 𝑠𝑒𝑐. 

 

 

 
 

Figure 4. The effect of the number of AP antennas on user throughput 

 

 

 
 

Figure 5. The effect of both AP antennas number/RIS’s elements number on the user throughput 

 

 

 
 

Figure 6. The average time required by the algorithms concerning the number of RIS items 
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5. CONCLUSION 

We consider optimizing RIS beamforming to increase the users’ throughput in this study. We offer 

unsupervised/deep neural network (U/DNN) based on convolutional neural networks (CNNs) to reduce the 

training weights and number to deal with the non-convexity issue. By engaging with the wireless 

communication environment and obtaining real-time data, the RIS controller developed a policy for 

optimizing the RIS’s phase shift. The simulation results show that both techniques’ performance is close to 

each other while increasing with the deployment of RIS passive elements and AP antenna numbers. The 

average consumed time when the AP has 10 antenna elements, it is evident that the technique is better in 

compression with the iterative sub-optimal precoding strategy’s excessive complexity. 
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