
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 1, February 2023, pp. 809~822

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i1.pp809-822 809

Journal homepage: http://ijece.iaescore.com

Automatic generation of business process models from user

stories

Samia Nasiri, Amina Adadi, Mohammed Lahmer
LMMI Laboratory of ENSAM, ISIC Research Team of ESTM, Moulay Ismail University, Meknes, Morocco

Article Info ABSTRACT

Article history:

Received Feb 16, 2022

Revised Jul 19, 2022

Accepted Aug 19, 2022

 In this paper, we propose an automated approach to extract business process

models from requirements, which are presented as user stories. In agile

software development, the user story is a simple description of the
functionality of the software. It is presented from the user's point of view

and is written in natural language. Acceptance criteria are a list of

specifications on how a new software feature is expected to operate. Our

approach analyzes a set of acceptance criteria accompanying the user story,
in order, first, to automatically generate the components of the business

model, and then to produce the business model as an activity diagram which

is a unified modeling language (UML) behavioral diagram. We start with the

use of natural language processing (NLP) techniques to extract the elements
necessary to define the rules for retrieving artifacts from the business model.

These rules are then developed in Prolog language and imported into Python

code. The proposed approach was evaluated on a set of use cases using

different performance measures. The results indicate that our method is

capable of generating correct and accurate process models.

Keywords:

Business process modeling

UML activity diagram

Natural language processing

Requirements engineering

User stories

This is an open access article under the CC BY-SA license.

Corresponding Author:

Samia Nasiri

LMMI Laboratory of ENSAM, ISIC Research Team of ESTM, Moulay Ismail University

Meknes, Morocco

Email: nasiri.samia@gmail.com

1. INTRODUCTION

Requirements modeling is one of the earliest phases of software development. Its main objective is

to understand and support the expected needs of future software development. Requirements modeling allows

analysts to determine the real needs of stakeholders and to communicate with them in a language they

understand, such as models instead of complex texts [1]. This analysis is based on requirements that

formulate future software needs presented in natural language, described in user stories, and detailed in

acceptance criteria, precisely in agile projects. Like other models resulting from this design phase, the

behavior model is based on the collected requirements [2]. Acceptance criteria also called "definition of

done", represent requirements that must be performed by a developer in agile software development. In the

software development process, the communication between the team developers is crucial, the user story

which is a requirements format is not sufficient to describe the tasks and events related to an action in the

business process [3]. For this, the acceptance criteria are used to solve the incompleteness problems that can

be caused in the user story. To define the acceptance criteria, natural language is used in different ways such

as a list or a given-when-then (GWT) model. Many approaches in the literature cover either unified modeling

language (UML) diagrams generation from textual requirements [4]–[12] or test case generation from

acceptance criteria in agile projects [13]–[15], Yet, few approaches support the generation of business

process models from textual requirements, either unstructured requirements [16], [17] or agile requirements

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 809-822

810

[18]. In [17], the UML activity diagram is generated automatically from natural language requirements. The

limitation of this work is that some controls like decision nodes and forks are not automated. In [18], the

business process model is built automatically from unrestricted requirements, but by manipulating the agile

requirements, the authors have only managed to generate the operations of the model, and their model is still

incomplete. Moreover, they only process the user stories without taking into account the acceptance criteria.

In our work, we address the aforementioned research gaps and present an approach to minimize the manual

effort required to derive a business process model from acceptance criteria written in GWT format using

natural language processing (NLP) techniques.

In this article, we propose our method of automatically generating a business process model, which

in our case is an activity diagram. This model is generated from a set of user stories grouped and analyzed

with acceptance criteria. Our approach starts with the use of NLP techniques to extract the elements

necessary to define the rules for retrieving artifacts from the business model. these artifacts are activities and

actions describing the business process. The defined rules are developed into Prolog language and imported

in Python code to complete the production of the activity diagram as a PNG image using PlantUML.

The structure of this document is as follows. This section presents the requirements modeling, and

our proposed approach. Furthermore, we detail our method in section 2. Then, in section 3, we expose and

analyze a UML activity diagram generated from a set of acceptance criteria. Thereafter, the performance of

our approach is evaluated and discussed. Finally, the conclusion is presented in section 4.

2. METHOD

2.1. Related work

In this subsection, we present a literature review related to our approach. In [13] SPECMATE is

developed based on acceptance criteria in order to generate automatically case tests using NLP techniques.

The core of their work consists of the use of a dependency parser provided by the NLP tool. The

fragmentation of the dependency parser tree into causes and effects is carried out. To cover a number of

different cause-and-effect relationships, the authors created a set of patterns in English and German. They

developed an algorithm that navigates a dependency tree from its root and applies the patterns to the several

nodes in the tree. Pandit and Tahiliani [14] have developed a framework called AgileUAT, their approach

aims to generate a test acceptance in a test use case diagram from user stories and acceptance criteria,

AgileUAT generates the acceptance test cases in natural language. The test cases that are obtained from the

acceptance criteria are stored in an Excel sheet. Sibal et al. [15] propose a technique for prioritizing user

story acceptance tests and for determining the critical acceptance tests. Their approach is based on acceptance

criteria. To achieve their goal meta-heuristic algorithms are used, i.e., genetic algorithm and cuckoo search

algorithm. The UML activity diagram is drawn and converted into a control flow graph. The authors in [16]

proposed an approach allowing the generation of the business process modeling notation (BPMN) model

from the textual requirement. The use of NLP was essential to analyze the specifications. In [18] iterative

approach of models extraction from the requirements (iMER) is developed to automatically generate the

entity relationships model and business process model from text requirements and user stories. Their

approach is made iterative in order to extract the component of each model.

In [19] a set of rules is defined by the ATLAS transformation language (ATL) for the semi-

automatic transformation from the computing independent model (CIM) level to the platform independent

model (PIM) level in model driven architecture (MDA). The CIM level is presented by a BPMN model, and

the PIM level contains three UML diagrams, namely the use case diagram, the state diagram, and the class

diagram. The approach proposed in [20] allows for generating a BPMN model with a decision table schema

integrated with the rules. This model is automatically generated from the model of the relations between

attributes. In [21] the generation of BPMN is performed from a workflow log. The development of the

process model generator is carried out with the help of Python with the pm4py library which provides the

implementation of alpha and inductive miner algorithms and allows the presentation of the discovered

processes in the form of Petri nets, as with their conversion into a BPMN diagram in XML and graphic

format. Bouzidi et al. [22] adopt an MDA approach named BPMN2US. This method allows generating the

use case diagram with the textual description of use cases. In order to generate a use case diagram from the

BPMN model, a set of transformation rules is defined using the ATL language. In addition, they have

developed templates using Acceleo to provide the textual description of the use cases. In [23] the approach of

the authors is based on a business process model to generate the natural language requirements. Their

approach is semi-automatic and consists of two steps, namely the preparation phase and the generation phase.

In the preparation phase, the analysis of the business process is carried out to detect the automated activities.

then a requirement model is built for each activity. In the generation phase, the requirements model

represents the input of this phase to generate the requirements document, this generation phase follows three

Int J Elec & Comp Eng ISSN: 2088-8708

 Automatic generation of business process models from user stories (Samia Nasiri)

811

steps: first, sentences are generated, then they are refined, and finally they are organized into a document that

represents the requested requirements. In [24], a tool named MARITACA is developed by using NLP

techniques to generate the state machine model from the use case diagram. A set of rules has been applied to

the word sequences for detecting states, transitions, and triggers. In [25] an automated approach is proposed

to generate use case scenarios from user stories. The generated robustness diagram includes the behavioral

scenarios. Spacy NLP tool is used for analyzing the user stories and extracting actors, boundaries, controls,

and entities. In [26], using process mining algorithm, the authors were able to generate the BPMN model in a

PNG format and SVS format. This generation is the result of the analysis of descriptions specified with a

textual domain specific language (DSL). Their approach uses textual DSL for process modeling.

As can be seen, many approaches for user acceptance testing have been developed so far. They can

be classified into two groups: i) requirements-based and ii) business process-based. Our approach follows the

requirements-based process in which user stories and acceptance criteria form the basis of our automation.

Our approach aims at automatically generating activity diagrams from a set of acceptance criteria

accompanying a user story.

2.2. Proposed approach

 In this subsection we present our approach for extracting artifacts necessary to generate the activity

diagram, our implementation was developed in Python language. Prolog language is used to define these

extraction components. As a first step, we implemented our system using the Spyder development

environment that is included in Anaconda, the Python distribution. In this tool, we created Python files in

which we analyze user stories with acceptance criteria using the Stanford coreNLP tool for preparing

elements to be used in Prolog rules. The defined rules allowed us to detect the activities and symbols

composing the activity diagram. The Prolog file was created using the SWI-Prolog tool. From the Python

files, we access the Prolog rule file using the PySwip API, this library allows us to query SWI-Prolog in

Python programs. In the last step, we automatically grouped the components of the UML diagram into a text

file that can be interpreted by the PlantUml API. This application programming interface (API) is

implemented in Python language to generate the desired diagram as an image. Figure 1 shows the

architecture of our proposed approach.

Figure 1. Architecture of our proposed approach

2.2.1. User stories and acceptance criteria templates

In agile software development, requirements are expressed in documents called user stories. These

latter are an effective and efficient way to describe the user's needs. A user story often uses the following

format type: As <Role>, I want to <Action>, so that <Benefit>.

In Agile software development, every team uses acceptance criteria because they can be crucial to a

successful implementation. Acceptance criteria are requirements that consist of a list of details on how a new

software feature should operate. The input file in our approach is detailed in Figure 2.

Several teams using the agile methodology prefer the scenario-oriented type of acceptance criteria.

This approach provides requirements, and it was inherited from behavior-driven development (BDD). A most

used approach to writing acceptance criteria is the "Given/When/Then" scenario-oriented approach, its

template is suitable for this format:

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 809-822

812

Given [some context], When [action] is carried out, Then [result] happens

Figure 2. Structure of requirements in our proposal approach

2.2.2. Natural language processing

The user story and acceptance criteria are written in natural language. Thus, we have used an NLP

tool for their preprocessing. This tool is called Stanford CoreNLP. Our approach starts by browsing a set of

acceptance criteria to apply a coreference, which allows in our case to replace a pronoun with the subject.

Stanford CoreNLP provides coreference resolution, so in our case, this functionality is implemented in the

Python language. Figure 3 depicts the steps followed in the preprocessing stage of our extraction process.

Figure 4 shows an example of applying the coreference resolution.

Figure 3. Steps of preprocessing the agile requirements

Figure 4. Example of applying coreference resolution to a user story

After applying the coreference for each acceptance criteria, we split it into three parts: "given",

"when" and "then" parts. Then comes the tokenization step which allows splitting the sentence into several

tokens. After tokenization, and we need to determine if the token is a noun or a verb. For this reason, the use

Int J Elec & Comp Eng ISSN: 2088-8708

 Automatic generation of business process models from user stories (Samia Nasiri)

813

of part of speech (POS) was necessary. In our case, the use of POS was not enough, so we use dependency

parsing which provides a typed dependency that helps us a lot in the process of defining the artifact

extraction rules. These typed dependencies represent grammatical relationships between the words of a

sentence to extract textual relations. It is denoted by a triple relation between two pairs of words. Figure 5

shows a user story with its typed dependencies.

Figure 5. Example of a user story with its typed dependencies

2.2.3. Artifact extraction algorithm

To extract the components of the activity diagram from a set of acceptance criteria, we followed the

steps described in the proposed algorithm. As an input, the algorithm takes a set of acceptance criteria (AC)

and empty sets of activities In and Out, and actions A. Then In, A and Out are filled in by applying extraction

rules. The loop in line 2 consists of parsing through each acceptance criteria. In line 3, coreference is applied

to replace pronouns in the acceptance criteria. In lines 4-6, we divide the acceptance criteria into three parts

to analyze them. In lines 7-9, the part of speech and tokenization are applied to classify each word in each

part of the acceptance criteria. Then, typed dependencies are detected. In lines 10-12, the activities and

actions are extracted. It should be noted that the same rules are applied in the three parts of the GWT, if a rule

is applied in the second part, it is considered as an action or a condition and not an activity. However, the first

and the third part are activities.

Algorithm. Artifact extraction
1: Procedure (Acceptance_criteria AC, activity IN, action A, activity Out)

2: for each c in AC

3: input=coreference(c) -- coreference resolution of Stanford coreNLP

4: g=extractGiven(input)

5: w=extractWhen(input)

6: t=extractThen(input)

7: POS(g), POS(w), POS(t)

8: word_tokenize(g), word_tokenize(w), word_tokenize(t)

9: dependency_parse(g), dependency_parse(w), dependency_parse(t)

10: IN=extract_inputActivity(g)

11: A=extract_action(w)

12: Out=extract_OutputActivity(t)

2.2.4. Rules for extracting the activity diagram components

In order to automatically generate an activity diagram from several acceptance criteria, it was

necessary to extract the components of this diagram, namely the activities, the action, and the transition as

well as the decision nodes. To do this, we used Prolog language to define rules for extracting artifacts. In this

section, we present the rules for extracting the components of the activity diagram. These rules are based on

the POS and on the type of dependencies offered by Stanford CoreNLP tool. Table 1 depicts the rules used to

detect the activities and conditions that constitute the activity diagram.

The rules are developed in Prolog language in this form: activity (X, Y, Z). X is the action, Y is the

performer of the action, and Z is the object of the action. The rules represent the combination of typed

dependencies, where each dependency presents a relationship between two words. These words denote X or Y

or Z. Our tool gathers these words to form the desired activities with this form: X_Y_Z.

In the majority of the rules defined, we have three or four variables that, when grouped together,

become part of the activity diagram. Sometimes it is not enough to extract X, Y, and Z to present activity

because this leads to incomplete information. To solve this problem, we add a fourth variable that depends

essentially on the structure of the sentence. Prolog rules which contain four variables X, Y, Z, and W detect

either a preposition presented by Y or a description of Z presented by W. Our approach supports the

verification of the verbs' negation presence via the typed dependency called "neg". In the case of a verb with

a preposition, we extract them together (X_Y) and after the subject and object of the verb (Z_W). Moreover,

our approach takes into account the processing of compound nouns, and also the inference of an activity

thanks to the conjunction between two nouns where the first noun is retrieved as part of a generated task.

Verb preposition detection is performed using these dependencies "Case, Advmod and Compound: Prt" in

Prolog rules as shown in Table 1.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 809-822

814

Given some acceptance criteria with rule applications as listed below:

- AC#1: Given that the user is logged in, when the user clicks on the avatar, then the system opens the

account page.

- AC#2: Given that a user has left username or password fields empty, when a user clicks on login, then

error should be displayed, and login attempt should fail.

- AC#3: Given the account is overdrawn and the card is valid, when the customer asks for cash, then ensure

a rejection message is displayed and ensure cash is not dispensed and ensure the card is returned.

Table 2 illustrates Prolog rules with their applied examples.

Table 1. Rules for activities detection
 Typed dependency
Rules nsubj nsubj

pass
Csubj
pass

mod dobj advmod case Compound:
prt

xcomp ccomp advcl conj ccop nummod dep acl:relcl

 R1 x x
 R2 x x x x x x
 R3 x x x
 R4 x x
 R5 x x x x
 R6 x x x x

 R7 x x x
 R8 x x x x x x
 R9 x x x x x x x
R10 x x x
R11 x x x x
R12 x x x
R13 x x x
R14 x x x x

R15 x x x
R16 x x x
R17 x x x
R18 x x x x x
R19 x x x x x
R20 x x
R21 x x
R22 x x

Table 2. Prolog rules with their applied examples
Acceptance

Criteria

Typed dependencies Applied rules in prolog language Extracted activities

AC#1 - ('nsubjpass', 'logged', 'user') R21 Activity(X,Y,system):-

((nsubjpass(X,Y);

nsubj(X,Y)),not(dobj(X,_)),

not(nmod(X,_)),not(xcomp(X,_)).

Logged_user_

system

- ('nsubj', 'clicks', 'user'), ('case', 'avatar',

'on'), ('nmod', 'clicks', 'avatar')

R11 Activity(X,Y,W,Z):-

nsubj(X,Y),nmod(X,Z), case(Z,W).

Clicks_user_on_

avatar

- ('nsubj', 'opens', 'system'), ('dobj', 'opens',

'page')

R1 Activity(X,Y,Z):- nsubj(X,Y),

nmod(X,Z).

Opens_system_account

_page

AC#2 - ('xcomp', 'left', 'username'), ('dep',

'username', 'fields'), ('dep', 'username', 'empty')

R16 Activity(X,Y,Z) :-

xcomp(X,Y),dep(Y,Z).

Left_username_field_

empty

- ('nsubj', 'clicks', 'user'), ('case', 'login',

'on'), ('nmod', 'clicks', 'login')

R11 Activity(X,Y,W,Z):-

nsubj(X,Y),nmod(X,Z), case(Z,W).

Clicks_user_on_login

- ('nsubjpass', 'displayed', 'error'), ('nsubj',

'fail', 'attempt')

R21 Activity(X,Y,system):-

((nsubjpass(X,Y);nsubj(X,Y)),

not(dobj(X,_)), not(nmod(X,_)),

not(xcomp(X,_)).

Displayed_error_

system

Fail_login_attempt_

system

AC#3 - ('nsubj', 'valid', 'card'), ('cop', 'valid', 'is') R4 Activity(X,Y,Z):-

cop(Z,X),nsubj(Z,Y),not(case(Z,_)).

Is_card_valid

Is_account_overdra

wn

- ('nsubj', 'overdrawn', 'account'), ('cop',

'overdrawn', 'is'),

- ('nsubj', 'asks', 'customer'), ('case', 'cash',

'for'), ('nmod', 'asks', 'cash')

R11 Activity(X,Y,W,Z):-

nsubj(X,Y),nmod(X,Z), case(Z,W).

Asks_customer_for_

cash

- ('ccomp', 'ensure', 'displayed'),

('nsubjpass', 'displayed', 'message'),

R22 Activity(X,Y,W,Z) -:

csubjpass(Z,X), dobj(X,Y)

Ensure_rejection_m

essage_displayed

- ('csubjpass', 'dispensed', 'ensure') , ('neg',

'dispensed', 'not'), ('dobj', 'ensure', 'cash'),

R17 Activity(X,Y,W,Z) -:

csubjpass(Z,X), dobj(X,Y)

neg(Z,W)

Ensure_cash_not_disp

ensed

- ('nsubjpass', 'returned', 'card'), ('ccomp',
'ensure', 'returned').

R22 Activity(X,Y,Z):- isverb(X),

nsubjpass(Z,Y),ccomp(X,Z),

not(dobj(X,Y))

Ensure_card_returned

Int J Elec & Comp Eng ISSN: 2088-8708

 Automatic generation of business process models from user stories (Samia Nasiri)

815

In rule "R21", we set the value of its third parameter to "system" at the beginning since the

following dependencies are absent: xcomp and nsubj or nsubjpass. In the Prolog rules, X is the verb, and Y

and Z are involved in the action X. In every rule since Y and Z are nouns in the most of rules, we look for

their compound part by using the compound or amod dependency such as the activities extracted in the table:

"Ensure_rejection_message_displayed", and "Fail_login_attempt_system".

2.2.5. Generation of activity diagram

To constitute the UML activity diagram, we have to define the conditions to insert diagram controls

like fork edge, decision node, and join node. These conditions are based on a number of actions extracted

from the given acceptance criteria. Table 3 illustrates the rules followed to insert the controls in the generated

activity diagram.

Table 3. Symbols detection Rules
Symbols Rules

Fork

In a case where the number of actions that trigger the activity is just one, and the

number of resulting activities is more than one.

Join

In a case where the number of actions that trigger the activity is more than one,

and the number of resulting activities is just one.

Decision

node

In a case the trigger action contains number and condition indicator such as

operator like "more, less”. When there are two acceptance criteria with opposite

actions, then we use the decision node, but only if both acceptance criteria have

the same context, i.e., the "given" part.

To insert a decision node, we must have a condition and two or more branches depending on the

condition. In our case, for example, if we have two acceptance criteria (AC) with the same "given" part, and

in "when" part there is a condition; in the first AC the condition is satisfied and in the second it is not

satisfied. In this case, we use the decision node.

The question is “How to determine that the condition is not satisfied in the second AC?”. Depending

on the action extracted, we sometimes have a negation that clearly shows the opposition, in other cases, we

have to use WordNet to determine if there is an opposition between the conditions.

After extracting the elements of the activity diagram, it is then necessary to gather these components

to construct the activity diagram. The generation of the activity diagram as an image is done by PlantUml

which is a library allowing to generate UML diagrams from a simple text markup language. First, we used

the extracted diagram components to automatically create a text file. This file is parsed by PlantUml to

generate a corresponding image of the activity diagram. in our case, PlantUml is handled by the Python

language.

An activity diagram is automatically generated from several AC. The AC is divided into three parts:

Given, When, and Then parts. Our tool allows us to browse and analyze these parts in each AC to

automatically generate a corresponding activity diagram. The procedure is as follows: If the AC are

independent, that is, the "given" part is different in some or all AC or is not similar to the "then" parts in other

AC. Then, from the starting point of the diagram, we generate control flows to the activities that are

represented by these "given" parts. However, if the AC are dependent, for example, the "then" part of the first

AC is similar to a "given" part of another AC, then we trace the control flow from the activity of the "then"

part in the first AC to the activity extracted from "when" part corresponding to the "given" part of the other

AC.

3. RESULTS AND DISCUSSION

To demonstrate our mechanism of generating the activity diagram from a set of acceptance criteria.

We applied the defined rules in several files that contain the AC. The evaluation of the approach was

achieved through case studies.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 809-822

816

3.1. Case study#1

This case study illustrates two features "withdrawal of cash" and "automated teller machine (ATM)

transactions" performed by a customer of a bank.

a) Feature: withdrawal of cash

User story 1: As a customer, I want to withdraw cash from my bank account through ATM. So that I

may save time.

- AC1: Given the account is in credit, when the customer asks for cash, then the account is debited, the cash

is dispensed, and the card is returned.

- AC2: Given that the account is overdrawn, when the customer asks for cash, then a rejection message is

displayed, cash is not dispensed, and the card is returned.

b) Feature: ATM transactions

User story 2: As a bank customer, I can use an ATM machine to perform transactions.

- AC1: Given that the customer puts the card, when the customer enters the password, and the password is

accepted, then the customer selects the transaction type.

- AC2: Given the customer puts the card, when the customer enters the password, and the password is not

accepted, then the customer enters the password.

- AC3: Given that the customer selects a transaction type, when the customer performs the transaction, and

the customer selects more operations, then the customer selects a transaction type.

- AC4: Given that the customer selects the transaction type, when the customer performs the transaction,

and the customer selects no operation, then the customer takes the card.

Figures 6 and 7 respectively show the activity diagram generated from the given acceptance criteria

describing the cash withdrawal and ATM transaction processes. Figure 6 illustrates the use of the conjunction

"and" between activities in the "then" part which led to the insertion of the fork node. Because the "given"

part is not similar to the two acceptance criteria, our tool automatically draws 2 flow controls to

"is_account_in_credit" and "is_account_overdrawn". Our method was unable to detect that these two

elements are opposite in order to insert the decision node. Despite the absence of this symbol, the activity

corresponding is not missing in the diagram.

Figure 6. Activity diagram generated from given acceptance ("withdrawal of cash" process)

In Figure 7, because AC1 and AC2 have the same given part, and the "then" part of AC1 is similar

to the given part of AC3 and AC4, then we have a single arrow from the entry point of the diagram, therefore

"select_customer_transaction_type" is not an entry of the diagram. Two new decisions were generated due to

the extraction of the opposite elements, first "accepted_password_system" and "not_accepted_password_

system", then "select_customer_more_operation" and "select_customer_no_operation".

Int J Elec & Comp Eng ISSN: 2088-8708

 Automatic generation of business process models from user stories (Samia Nasiri)

817

Figure 7. Activity diagram generated from given acceptance criteria ("ATM transactions" process)

3.2. Case study#2

This case study illustrates two features "Log in" and "Log out" to access a page of an application.

a) Feature: log in

User story 1: As a registered user, I want to log in with the correct username and password so that

the system can authenticate me, and I can trust it.

- AC1: Given that the registered user is logged out, when he navigates to the login page, and enters his

incorrect username and password, then log in fails with an error message that specifies that the username

or password was wrong.

- AC2: Given that the registered user is logged out, when he navigates to the login page, and enters a

correct username and password, then his session is loaded in less than eight seconds.

User story 2: As a user, I want to receive a message error when I leave login or password fields

empty.

- AC3: Given that the registered user is logged out, when he navigates to the login page, and he left

username and password fields empty, and clicks on log in, then error message should be displayed, and

login attempt should fail.

b) Feature: log out

User story 1: As a user, I want a log out feature in my account, so that I can end the session.

- AC1: Given that the user is on the application page, when the user clicks on the logout link, then the user

must be logged out from all active sessions of the application.

- AC2: Given that the user is on the application page, when more than 30 minutes of inactivity has passed

and the user reloads the page, then the user must be logged out from all active sessions of the application

and redirected to the login page.

User story 2: As a user, I want to be logged out from the application, so that the logout button is

hidden when I am not logged in.

- AC3: Given the user is logged out, when the user is on the application page, then the user will not see the

logout button.

User story 3: As a user, I want to receive notifications when there is unsaved work in my account

before I log out, so that I can save my work and not lose it.

- AC4: Given a user selects log out, when there is unsaved work, then the user should not be logged out and

warn the user that their unfinished work will be lost.

- AC5: Given a user selects log out, when there is no unsaved work, then the user should be successfully

logged out.

Figure 8 depicts the generated activity diagram corresponding to the previous acceptance criteria.

Figure 8(a) shows the authentication process of AC1 and AC2, and Figure 8(b) depicts the activities of AC3.

Our approach takes into account the order of actions in the "when" and the "given" parts, as well as the

detection of conditions as in Figure 8(a), the Wordnet Library is used to determine the antonyms such as

between "incorrect" and "correct" words in AC1 and AC2.

Figure 9(a) illustrates the use of the condition indicator as "more" in our approach, and also the

conjunction "and" between activities in the "then" part which led to the insertion of the fork node. Figure 9(b)

shows that our approach handles the preposition "on" and the compound noun "application page", as well as

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 809-822

818

the negation "not see". As in Figure 8(a), in Figure 10 our approach inserts the decision node because of the

antonyms detection of "unsaved" and "no unsaved" in AC1 and AC2.

(a)

(b)

Figure 8. Activity diagram generated from (a) AC 1 and AC2, and (b) AC3 ("log in" process)

Int J Elec & Comp Eng ISSN: 2088-8708

 Automatic generation of business process models from user stories (Samia Nasiri)

819

(a) (b)

Figure 9. Activity diagram generated from (a) AC 1 and AC2, and (b) AC3 ("log out" process)

Figure 10. Activity diagram generated from AC 4 and AC5 ("log out" process)

3.3. Performance evaluation

To evaluate the performance of our approach, we used some case studies with different acceptance

criteria, and to increase the number of tests, we modified them by changing the acceptance parts to test

different sentence structures. To assess the results obtained. An activity diagram was constructed manually

for each file containing the user story with several acceptance criteria, and then both models, the manual and

the automatic were compared.

We noted that our approach extracts the activities requested either the context, the triggering action,

or the activities results. The generation of the activity diagram based on the acceptance criteria revealed its

efficiency. Tables 4 and 5 show a comparison of our approach to extracting activity diagram components

versus the manual approach with accuracy.

Table 4 illustrates that the proposed technique was capable of retrieving almost all artifacts

efficiently. The total number of activities is 50 activities including 33 for the first case study and 17 for the

second case study. Our approach extracts 2 activities that are included in the detected activities, so we

thought of refining the results and detecting the inclusion of activities, and we developed a python code.

Among these 2 activities, we find "lost_unsaved_work" in Figure 10 and "wrong_username" in Figure 8. As

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 809-822

820

our approach allows us to refine the results in the case of redundancy caused by the inclusion of activities,

this can only assure us about the effectiveness of our method. Concerning the first FN, in Table 5, it is the

missing "incorrect" adjective for the username in the "enters_registred_user_username" action in Figure 7.

In the second case study, when extracting the symbols, it appeared that the decision symbol is missing, this

symbol is the only component missing in this case study.

Table 4. Total number of activities results versus the manual approach
Metrics Total number of activities

Our approach 50
Manually 48

Table 5. Evaluation results of our approach
Metrics TP FN FP Recall (%) Precision (%) Accuracy (%)

Our approach 47 1 2 97% 94% 94%

Through the rules of symbol extraction, and the construction of the activity diagram, we were able to

group and graphically represent the extracted activities in the activity diagram automatically and with a

minimum of errors or missing components. Finally, it must be pointed out that our approach has a few

limitations, especially in the detection of antonyms using a negation concept or the wordnet library in order

to generate more decision nodes, so that the diagram can be more easily comprehensible and not too cluttered

by the sequence of activities. Nevertheless, it should be noted that our approach focuses on the management

of conjunctions and compound nouns as well as negation, which are important points for obtaining the

desired results.

3.4. Discussion

In this part, we present a discussion based on an analytical survey. The state of art approaches [13],

[14] that are based on the same tool inputs as our approach, namely acceptance criteria, and user stories,

focus mainly on test case generation. In [18] the BPMN generation was performed from textual requirements,

as for the user stories, the approach just generates the BPMN operations. Moreover, they do not use

acceptance criteria with user stories. Their paper is oriented to generate entities and attributes that constitute

the relationship model between entities. Furthermore, in our previous works [27], [28], we generated a class

diagram, use case diagram, and package diagram, from the user stories using NLP techniques, and created an

ontology to refine the generated models. But in this work, we focused on the business process. We

accompanied the user stories with acceptance criteria to give more details about the business process since

the description of the business process in the use case diagrams is insufficient and incomplete. In other

approaches, the transformation from model to model is performed. For this, most authors have defined a set

of transformation rules using the ATL language.

4. CONCLUSION AND FUTURE WORKS

Requirements analysts manually analyze requirements in natural language to extract the elements

that makeup UML diagrams. Manual analysis requires a lot of time and effort, so automated support is

needed. In this paper, we proposed an approach to ease the process of natural language requirements analysis

and to obtain UML diagrams from natural language textual requirements.

As agile requirements, we used user stories with acceptance criteria that follow the model: "Given,

When, Then". In this model, we employed several ANDs for several requirements. These requirements are

processed using NLP techniques in order to generate an activity diagram. In our tests, we were not only

satisfied with a single acceptance criterion related to a user story, but we used several scenarios. To perform

the diagram generation, we started by defining a list of rules for extracting activities. These rules are

developed using the Prolog language. Regarding the control flows between activities in the activity diagram,

we analyzed the acceptance criteria, we focused on the "When" part first to detect the conditions that will be

needed to generate the decision node, and then to order the actions according to their mention in the "When"

part. In the future, we plan to use deep learning models, first to improve the detection of opposite actions or

conditions in the "When" part of AC that is quite complex to detect with the wordnet, and therefore generate

the decision node. Second, to detect synonyms between activities or actions. In addition, we will focus on the

automatic generation of code related to business services.

Int J Elec & Comp Eng ISSN: 2088-8708

 Automatic generation of business process models from user stories (Samia Nasiri)

821

REFERENCES
[1] M. A. Akbar, A. Alsanad, S. Mahmood, A. A. Alsanad, and A. Gumaei, “A systematic study to improve the requirements

engineering process in the domain of global software development,” IEEE Access, vol. 8, pp. 53374–53393, 2020, doi:

10.1109/ACCESS.2020.2979468.

[2] H. A. Reijers, “Business process management: The evolution of a discipline,” Computers in Industry, vol. 126, Apr. 2021, doi:

10.1016/j.compind.2021.103404.

[3] S. O. Barraood, H. Mohd, and F. Baharom, “A comparison study of software testing activities in Agile methods,” in Knowledge

Management International Conference (KMICe) 2021, 2021, pp. 130–137.

[4] G. Lucassen, M. Robeer, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper, “Extracting conceptual models from user

stories with Visual Narrator,” Requirements Engineering, vol. 22, no. 3, pp. 339–358, 2017, doi: 10.1007/s00766-017-0270-1.

[5] E. A. Abdelnabi, A. M. Maatuk, T. M. Abdelaziz, and S. M. Elakeili, “Generating UML class diagram using NLP techniques and

heuristic rules,” in 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer

Engineering (STA), Dec. 2020, pp. 277–282, doi: 10.1109/STA50679.2020.9329301.

[6] V. B. R. Vidya Sagar and S. Abirami, “Conceptual modeling of natural language functional requirements,” Journal of Systems

and Software, vol. 88, pp. 25–41, Feb. 2014, doi: 10.1016/j.jss.2013.08.036.

[7] H. Herchi and W. Ben Abdessalem, “From user requirements to UML class diagram,” arXiv preprint arXiv:1211.0713, Nov.

2012.

[8] N. Bashir, M. Bilal, M. Liaqat, M. Marjani, N. Malik, and M. Ali, “Modeling class diagram using NLP in object-oriented

designing,” in 2021 National Computing Colleges Conference (NCCC), 2021, pp. 1–6, doi: 10.1109/NCCC49330.2021.9428817.

[9] J. S. Thakur and A. Gupta, “Automatic generation of analysis class diagrams from use case specifications,” arXiv preprint

arXiv:1708.01796, Aug. 2017.

[10] M. Elallaoui, K. Nafil, and R. Touahni, “Automatic transformation of user stories into UML use case diagrams using NLP

techniques,” Procedia Computer Science, vol. 130, pp. 42–49, 2018, doi: 10.1016/j.procs.2018.04.010.

[11] M. Javed and Y. Lin, “Iterative process for generating ER diagram from unrestricted requirements,” in Proceedings of the 13th

International Conference on Evaluation of Novel Approaches to Software Engineering, 2018, pp. 192–204, doi:

10.5220/0006778701920204.

[12] A. M. Maatuk and E. A. Abdelnabi, “Generating UML use case and activity diagrams using NLP techniques and heuristics rules,”

in International Conference on Data Science, E-learning and Information Systems 2021, Apr. 2021, pp. 271–277, doi:

10.1145/3460620.3460768.

[13] J. Fischbach, A. Vogelsang, D. Spies, A. Wehrle, M. Junker, and D. Freudenstein, “SPECMATE: Automated creation of test

cases from acceptance criteria,” in 2020 IEEE 13th International Conference on Software Testing, Validation and Verification

(ICST), Oct. 2020, pp. 321–331, doi: 10.1109/ICST46399.2020.00040.

[14] P. Pandit and S. Tahiliani, “AgileUAT: A framework for user acceptance testing based on user stories and acceptance criteria,”

International Journal of Computer Applications, vol. 120, no. 10, pp. 16–21, Jun. 2015, doi: 10.5120/21262-3533.

[15] R. Sibal, P. Kaur, and C. Sharma, “Prioritization of user story acceptance tests in agile software development using meta-heuristic

techniques and comparative analysis,” in Towards Extensible and Adaptable Methods in Computing, Singapore: Springer

Singapore, 2018, pp. 43–55.

[16] B. Maqbool et al., “A comprehensive investigation of BPMN models generation from textual requirements—techniques, tools and

trends,” in ICISA 2018: Information Science and Applications 2018, 2019, pp. 543–557.

[17] S. Gulia and T. Choudhury, “An efficient automated design to generate UML diagram from natural language specifications,” in

2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), Jan. 2016, pp. 641–648, doi:

10.1109/CONFLUENCE.2016.7508197.

[18] M. Javed and Y. Lin, “iMER: Iterative process of entity relationship and business process model extraction from the

requirements,” Information and Software Technology, vol. 135, Jul. 2021, doi: 10.1016/j.infsof.2021.106558.

[19] Y. Rhazali, Y. Hadi, and A. Mouloudi, “A new methodology CIM to PIM transformation resulting from an analytical survey,” in

Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development, 2016, pp. 266–273,

doi: 10.5220/0005690102660273.

[20] K. Kluza and G. J. Nalepa, “A method for generation and design of business processes with business rules,” Information and

Software Technology, vol. 91, pp. 123–141, Nov. 2017, doi: 10.1016/j.infsof.2017.07.001.

[21] T. Paszun, P. Wiśniewski, K. Kluza, and A. Ligęza, “Automated generation of business process models using constraint logic

programming in python,” in Proceedings of the 2019 Federated Conference on Computer Science and Information Systems,

FedCSIS 2019, Sep. 2019, pp. 733–742, doi: 10.15439/2019F174.

[22] A. Bouzidi, N. Haddar, M. Ben Abdallah, and K. Haddar, “Deriving use case models from BPMN models,” in 2017 IEEE/ACS

14th International Conference on Computer Systems and Applications (AICCSA), Oct. 2017, pp. 238–243, doi:

10.1109/AICCSA.2017.49.

[23] B. Aysolmaz, H. Leopold, H. A. Reijers, and O. Demirörs, “A semi-automated approach for generating natural language

requirements documents based on business process models,” Information and Software Technology, vol. 93, pp. 14–29, Jan. 2018,

doi: 10.1016/j.infsof.2017.08.009.

[24] L. Erazo, E. Martins, and J. G. Greghi, “MARITACA: From textual use case descriptions to behavior models,” in 2017 47th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Jun. 2017, pp. 83–90,

doi: 10.1109/DSN-W.2017.33.

[25] F. Gilson and C. Irwin, “From user stories to use case scenarios towards a generative approach,” in 2018 25th Australasian

Software Engineering Conference (ASWEC), Nov. 2018, pp. 61–65, doi: 10.1109/ASWEC.2018.00016.

[26] A. Ivanchikj, S. Serbout, and C. Pautasso, “From text to visual BPMN process models,” in Proceedings of the 23rd ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems, Oct. 2020, pp. 229–239, doi:

10.1145/3365438.3410990.

[27] S. Nasiri, Y. Rhazali, M. Lahmer, and N. Chenfour, “Towards a generation of class diagram from user stories in Agile methods,”

Procedia Computer Science, vol. 170, pp. 831–837, 2020, doi: 10.1016/j.procs.2020.03.148.

[28] S. Nasiri, Y. Rhazali, M. Lahmer, and A. Adadi, “From user stories to UML diagrams driven by ontological and production

model,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 6, 2021, doi:

10.14569/IJACSA.2021.0120637.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 809-822

822

BIOGRAPHIES OF AUTHORS

Samia Nasiri is a Ph.D. student at LMMI Laboratory of ENSAM, Moulay Ismail

University of Meknes, Morocco. She received an engineering degree in computer science from
the National School of Applied Sciences of Oujda, Morocco. She is a professor in the higher

school of technology of Meknes. Her research interests concern software engineering,

natural language processing, and artificial intelligence. She can be contacted at email:

nasiri.samia@gmail.com.

Amina Adadi is an associate professor at the High School of Technology, Moulay

Ismail University, Meknes, Morocco. She received an engineering degree in computer science

from the National School of Applied Sciences of Fez in 2012, and a Ph.D. degree in computer
science from Sidi Mohammed Ben Abdellah University, Fez, Morocco, in 2017. Her current

research interests include artificial intelligence, machine learning, software architecture, and

semantic web services. She can be contacted at email: Amina.adadi@gmail.com.

Mohammed Lahmer is a professor-researcher at the High School of Technology,

Moulay Ismail University. He received his Ph.D. degree in computer science from ENSIAS

Mohammed V University in 2008. He received his engineering degree in computer science

from ENSIAS in 1996. He has over twenty years of teaching experience and several scientific
publications in top IEEE conferences and journals. His research interests lie in the field of

security, and software engineering. He can be contacted at mohammed.lahmer@gmail.com.

https://orcid.org/0000-0002-4245-652X
https://scholar.google.com/citations?hl=fr&user=yjEpBI0AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57216969250
https://publons.com/researcher/5231650/samia-nasiri
https://orcid.org/0000-0002-9697-666X
https://scholar.google.com/citations?user=JGT4CGMAAAAJ&hl
https://www.scopus.com/authid/detail.uri?authorId=56145007600
https://publons.com/researcher/4104961/amina-adadi/
https://orcid.org/0000-0003-0799-5074
https://scholar.google.fr/citations?user=rhn3rmgAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=56971762300
https://publons.com/researcher/3275616/mohammed-lahmer/

