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 This paper presents the comparison between optimized unscented Kalman 

filter (UKF) and optimized extended Kalman filter (EKF) for sensorless 

direct field orientation control induction motor (DFOCIM) drive. The high 

performance of UKF and EKF depends on the accurate selection of state and 

noise covariance matrices. For this goal, multi objective function genetic 

algorithm is used to find the optimal values of state and noise covariance 

matrices. The main objectives of genetic algorithm to be minimized are the 

mean square errors (MSE) between actual and estimation of speed, current, 

and flux. Simulation results show the optimal state and noise covariance 

matrices can improve the estimation of speed, current, torque, and flux in 

sensorless DFOCIM drive. Furthermore, optimized UKF present higher 

performance of state estimation than optimized EKF under different motor 

operating conditions. 
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1. INTRODUCTION  

Field orientation control induction motor (FOCIM) drives are widely used in high performance 

industrial applications when high torque and speed response are required [1], [2]. Furthermore, the main 

advantage of FOCIM drives is decupling control between torque and flux as separately excited direct current 

(DC) motor [2], [3]. In order to archive the high performance in direct field orientation control induction 

motor (DFOCIM) drive, accurate measurements of rotor speed and flux are required [4]. These 

measurements are provided by Hall sensors and sensing coils for flux measurement as well as the incremental 

encoder for rotor speed measurement. However, these sensors imply high cost, size, and weight as well as, 

lower reliability and difficult of installing [2], [5], [6]. In recent years, elimination of these sensors has been 

considered and the speed and flux are estimated based on voltage and current terminals to represent the 

senserless vector control drives [6].  

In the last decade, Kalman filter algorithms have been used for the estimation of the rotor speed and 

flux in induction motor drives [7]. Extended Kalman filter (EKF) and unscented Kalman filter (UKF) are 

used to estimate the rotor speed of induction motor [2], [6]–[8]. UKF is used to estimate the speed and 

current FOCIM drives [9]–[12]. EKF is used to estimate the rotating speed in FOCIM drives [6], [8], [13], 

[14]. On the other hand, the main point in EKF and UKF is covariance matrix (Q) and measurement noise 

matrix (R) which are unknown matrices. These matrices were tuned manually based on trial and error method 

[6]–[15]. The performance of EKF and UKF highly depends on the right selection for the covariance 

https://creativecommons.org/licenses/by-sa/4.0/
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matrices [15]. Recently, optimization algorithms are used to tunned the covariance and measurement noise 

matrices based on minimizing the mean squared error (MSE) between the actual and estimation of measuring 

response. Single objective optimization algorithms are used to estimate the covariance and measurement 

noise matrices based on specific minimization of MSE. Therefore, single objective practical swarm 

optimization (PSO) is used to optimize EKF for speed estimation based on minimizing MSE of the rotating 

speed [3], [7], [16], [17]. Also, single objective genetic algorithms are used to find the optimal tunning of the 

covariance and measurement noise matrices for the EKF based on minimizing MSE of the rotating speed  

[6], [18]. However, single objective optimization algorithms can reduce only the MSE for speed estimation 

and neglect the error on the other state estimation by means of flux, current, and torque. Therefore, multi 

objective function optimization algorithms are used to find optimal tunning of the covariance and 

measurement noise matrices based on minimizing the MSE in different state estimations of induction motor 

(IM). Multi objective genetic algorithm can reduce MSE of rotating speed and torque but MSE of current is 

increased [19], even though, the multi objective function of differential evolution algorithm is applied in EKF 

to find the optimal covariance and measurement noise matrices based on minizine the MSE of speed and 

current, the MSE of flux is not considered [20]. 

The main contribution of the present paper is to implement the multi objective genetic algorithm of 

the UKF and EKF to find the optimal values of state and noise covariance matrices. The optimal values of 

these matrices are optimized based on minimizing MSE between the actual and estimation of speed, current, 

and flux. Dynamic model of IM is presented and DFOCIM strategy has been included to improve 

torque/current capability via decoupling of stator current components. For enhancement of speed-controlled 

alternating current (AC) drive and increase its reliability, an accurate estimation of speed, current, and flux 

based on optimized UKF and optimized EKF have been included and compared. The proposed method is 

focused on finding the accurate state estimation for senserless DFOCIM drive. It is shown in both no-load 

and load conditions results that optimized UKF can find an accurate estimation of speed, current, and flux 

better than optimized EKF. 

 

 

2. DYNAMIC MODEL OF INDUCTION MOTOR 

The mathematical model of IM has four variables in the stationary reference frame (α, β); stator 

current (𝐼𝑠𝛼 , 𝐼𝑠𝛽) and flux (𝛷𝑟𝛼 , 𝛷𝑟𝛽). The induction motor model has been extended (𝑒) to include the rotor 

speed (𝛺). 

 

{𝑋
•
𝑒 = 𝐴𝑋𝑒 + 𝐵𝑈𝑒

𝑌𝑒 = 𝐶𝑋𝑒
 (1) 
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Where 𝐴 is state matrix, 𝐵 is input matrix, 𝐶 is output matrix, 𝑉𝑠𝛼  and 𝑉𝑠𝛽 are the voltage in (α, β) frame. 𝑅𝑠, 

𝑅𝑟 are stator and rotor resistance; 𝐿𝑠, 𝐿𝑟, 𝑀 are stator, rotor, and mutual inductance; P is Paris of pole [10], 

[11]. The (7) should be discretized by using Taylor series of order two to be applied to the digital 

implementation. 

 

{
𝑋𝑘+1 = 𝐴𝑘𝑋𝑘 + 𝐵𝑘𝑈𝑘
𝑌𝑘 = 𝐶𝑘𝑋𝑘

 (6) 

 

 

3. KALMAN FILTER ALGORITHMS  

In this paper, the EKF and UKF algorithms are used to find the estimation of current, flux, and rotor 

speed to be used in sensorless DFOCIM drive. However, the accurate estimation of these state variables by 

using Kalman filters depends on finding the optimal values of state and noise covariance matrices. The 

details of the EKF and UKF algorithms can be found in the following subsections. 

 

3.1.  Extended Kalman filter 

To use a nonlinear model of IM with the extended EKF, the model must be linearized about the 

current operating point (𝑘), giving a linear perturbation model represented by a Jacobian matrix [6], [8], [14]: 

 

{
𝑋𝑘+1
𝑒 = 𝐹𝑘(𝑋𝑘

𝑒 , 𝑈𝑘
𝑒) +𝑊𝑘 = 𝐴𝑘

𝑒𝑋𝑘
𝑒 + 𝐵𝑘
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𝑒 +𝑊𝑘
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𝑒 = 𝐻𝑘(𝑋𝑘

𝑒) + 𝑉𝑘 = 𝐶𝑘
𝑒𝑋𝑘

𝑒 + 𝑉𝑘
 (7) 

 

𝐴𝑘
𝑒 =

𝑑𝐹𝑘

𝑑𝑋𝑒
|
𝑋𝑘
𝑒=�̂�𝑘
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𝑒
 (8) 

 

where 𝑊𝑘, 𝑉𝑘 are noise matrix of state and output model; 𝑑 is derivative of the Jacobian matrix. The 

equations of EKF applied in IM drive used the model in (7) can be expressed: 
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 (13) 

 

where 𝑃𝑒  is error covariance matrix; 𝑄𝑘
𝑒  is covariance matrix of system noise; 𝑅𝑘 is covariance matrix of 

measurement noise; and 𝐾𝑒 is Kalman filter gain. Although the EKF is straightforward, it has instability 

solution due to the linearization and costly calculation due to Jacobian matrices. 

 

3.2.  Unscented Kalman filter 

The UKF is used with nonlinear vectors of IM without needing any derivative and Jacobian 

approximations. In this paper nonlinear discrete time state transition equation [9]–[12]. 

 

{
𝑋𝑘+1
𝑒 = 𝐹𝑘(𝑋𝑘

𝑒 , 𝑈𝑘
𝑒) +𝑊𝑘 = 𝐴𝑘

𝑒𝑋𝑘
𝑒 + 𝐵𝑘

𝑒𝑈𝑘
𝑒 +𝑊𝑘

𝑌𝑘
𝑒 = 𝐻𝑘(𝑋𝑘

𝑒) + 𝑉𝑘 = 𝐶𝑘
𝑒𝑋𝑘

𝑒 + 𝑉𝑘
 (14) 

 

The UKF process is used to find the minimum mean square error (MMSE) then find the best state estimation 

of IM drive. 

 

�̂�𝑘
𝑒 = 𝐸(𝑋𝑘

𝑒/𝑍𝑘) (15) 
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Where 𝑍𝑘 = (𝑧1,𝑧2,𝑧3,… , 𝑧𝑛), and 𝐸(𝑋/𝑍) is the estimated value of X given the information Z. The 

covariance matrix 𝑃𝑒
𝑘

𝑘

 is calculated based on the error estimation. 

 

𝑃𝑒
𝑘

𝑘

= {[𝑋𝑘
𝑒 − �̂�𝑘

𝑘

𝑒] [𝑋𝑘
𝑒 − �̂�𝑘

𝑘

𝑒]
𝑇

/𝑍𝑘}  (16) 

 

The update equations of state estimation and covariance matrix are given as (17), (18): 

 

�̂�𝑘+1

𝑘+1

𝑒 = �̂�𝑘+1

𝑘

𝑒 + 𝐾𝑒
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𝑘
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where 𝑣𝑘+1 is innovation matrix, 𝑃𝑒 𝑣
𝑘+1

𝑘

 is state innovation covariance matrix. The sigma points are selected 

to approximate n-dimensional of state variable 𝑋𝑘
𝑒 with �̂�𝑘

𝑘

𝑒 and 𝑃𝑒
𝑘

𝑘

 into 2n+1 weighted sample. Finally, the 

estimation process of set of samples can be explained in three steps: i) first is transform each sigma point 

(𝜒𝑖
𝑒
 
𝑘+1

𝑘

), ii) second is compute the state estimation (�̂�𝑒
 
𝑘+1

𝑘

), and iii) third is calculate the estimation 

covariance matrix (𝑃𝑒
𝑘+1

𝑘

). 
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𝑒
 
𝑘+1

𝑘

2𝑛
𝑖=0  (20) 

 

𝑃𝑒
𝑘+1

𝑘

= ∑ 𝑊𝑖 [ 𝜒𝑖
𝑒
 
𝑘+1

𝑘

− �̂�𝑒
 
𝑘+1

𝑘

]2𝑛
𝑖=0 [ 𝜒𝑖

𝑒
 
𝑘+1

𝑘

− �̂�𝑒
 
𝑘+1

𝑘

]
𝑇

 (21) 

 

 

4. DESIGN OPTIMIZATION OF EKF AND UKF ALGORITHMS 

According to the theory of Kalman filter algorithms, 𝑄, 𝑃, and 𝑅 are unknown matrices and these 

matrices have to be obtained based on stochastic properties of the noises [7], [13], [14]. Therefore, in most 

cases using tunning experimental trial-and-error to achieve the best state estimation. Finding the correct 

parameters of those covariance matrices can reflect on the accurate state estimation based on Kalman filter 

algorithms. In this paper, the objective functions to be minimized are the MSE of speed, current, and flux to 

find an accurate estimation for all state estimation in senserless DFOCIM drive. The four main components 

in the design optimization of Kalman filters are defined: 

 

4.1.  Design variables 

The design variables are components of 𝑄, 𝑃, and 𝑅 matrices: 

 

𝑄 = 𝑑𝑖𝑎𝑔 [𝑄1 𝑄2 𝑄3 𝑄4 𝑄5] (22) 

 

𝑃 = 𝑑𝑖𝑎𝑔 [𝑃1 𝑃2 𝑃3 𝑃4 𝑃5] (23) 

 

𝑅 = 𝑑𝑖𝑎𝑔 [𝑅1 𝑅2] (24) 

 

4.2.  Objective function 

The three main objectives to be minimized are MSE of speed (𝐸𝛺), MSE of current (𝐸𝐼), and MSE 

of flux 𝐸𝛷. 

 

𝐸𝛺 =
1

𝑁
∑ (𝛺 − �̂�𝑁
𝑛=1 )2 (25) 

 

𝐸𝐼 =
1

𝑁
∑ (𝐼𝑠𝛼 −
𝑁
𝑛=1 𝐼𝑠𝛼)

2 + (𝐼𝑠𝛽 − 𝐼𝑠𝛽)
2 (26) 
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𝐸𝛷 =
1

𝑁
∑ (𝛷𝑟𝛼 −
𝑁
𝑛=1 �̂�𝑟𝛼)

2 + (𝛷𝑟𝛽 − �̂�𝑟𝛽)
2 (27) 

 

4.3.  Constraints 

The constraints of the design variables are based on the minimum and maximum levels of each 

component in design variable.  

 

𝑄1,2,3,4,5 𝑚𝑖𝑛
≤ 𝑄1,2,3,4,5  ≤  𝑄1,2,3,4,5 𝑚𝑎𝑥

𝑃1,2,3,4,5 𝑚𝑖𝑛
≤ 𝑃1,2,3,4,5 ≤ 𝑃1,2,3,4,5 𝑚𝑎𝑥

𝑅1,2𝑚𝑖𝑛
≤ 𝑅1,2  ≤  𝑅1,2𝑚𝑎𝑥

 (28) 

 

Where 𝑄1,2,3,4,5 min
 and 𝑄1,2,3,4,5 max

 are the minimum and maximum diagonal covariance matrix values of 

noise system respectively. 𝑃1,2,3,4,5 min
and 𝑃1,2,3,4,5 max

 are the minimum and maximum diagonal Error 

covariance matrix values respectively. 𝑅1,2𝑚𝑖𝑛
 and 𝑅1,2𝑚𝑎𝑥

 are the minimum and maximum diagonal 

covariance matrix of measurement noise values respectively. 

 

4.4.  Optimization algorithm 

The multi objective function optimization algorithm is used to find the optimal design variables 

based on maximizing or minimizing vector of the objective functions. In this paper, the genetic algorithm is 

used to find state and noise covariance matrices based on minimizing MSE of rotor speed, current, and flux. 

Genetic algorithms are designed based on the biological process. Therefore, much of the processes are based 

on genetics and natural selection. The genetic algorithm has seven processes to find the optimal solution. 

These processes are a selection of the parameters, encoding and decoding, population, natural selection, 

pairing, mating, and mutations. The genetic algorithm is iterated until the chromosome gives the same value 

of cost. This means the genetic algorithm has been converged. Detailed information about Genetic algorithms 

can be found in [21], [22].  

 

 

5. OPTIMIZATION PROCEDURE 

This section describes the procedure to find the optimal state and noise covariance matrices for UKF 

and EKF of sensorless DFOCIM drive. The steps are: 

− Step 1: specify the initial value of the design variables (𝑄, 𝑃, and 𝑅 matrices) for UKF and EKF 

according to (22)-(24). 

− Step 2: calculate the estimation of speed (�̂�), current (𝐼𝑠𝛼  , 𝐼𝑠𝛽  ), and flux (�̂�𝑟𝛼, �̂�𝑟𝛽) using UKF and EKF. 

− Step 3: calculate the MSE of speed (𝐸𝛺), MSE of current (𝐸𝐼), and MSE of flux 𝐸𝛷 according to  

(25)-(27). 

− Step 4: specify each component of 𝑄, 𝑃, and 𝑅 matrices based on the minimum and maximum levels of 

matrices. 

− Step 5: apply the multi objective function genetic algorithm based on minimizing MSE of speed, current, 

and flux. 

− Step 6: update the values of the design variables (𝑄, 𝑃, and 𝑅 matrices) for optimized UKF and optimized 

EKF based on optimization results. 

− Step 7: the steps (2-6) are repeated until finding the optimal Q, P, and R matrices. 

 

 

6. SENSORLESS DFOCIM DRIVE UNDERSTUDY 

The EKF and UKF are used to estimate rotor speed and flux based on voltage and current probes of 

sensorless DFOCIM drive as shown in Figure 1. DFOC can achieve the decoupling between torque and flux 

[11], [14]. Park transforms used to change from ( 𝑑, 𝑞) to (𝛼, 𝛽) reference frame. 

Space vector control (SVC) pulse width modulation is used as a control for three phase IM  

[23]–[25]. Table 1 shows the parameter of IM under test. Table 2 shows the minimum and maximum levels 

of 𝑄, 𝑃, and 𝑅 matrices. Table 3 shows the optimal components of 𝑄, 𝑃, and 𝑅 matrices by using the multi 

objective function genetic algorithm based on minimizing MSE of speed error (𝐸𝛺) current error (𝐸𝐼), and 

flux (𝐸𝛷). In order to show the effectiveness of optimized EKF and optimized UKF in sensorless DFOCIM 

drive, two different operations conditions in IM have been used. 
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Figure 1. The complete system of sensorless DFOCIM drive with Kalman filter algorithms 

 

 

Table 1. The parameter of IM 
Variable Unit Value 
Power 𝑃𝑛  [Kw] 7.5 
Speed Ω𝑛 [Tr/min] 1450 
Torque 𝑇  [Nm] 50 

Paris of pole P  [p.u.] 2 
Stator resistance 𝑅𝑠  [Ω] 0.63 
Rotor resistance 𝑅𝑟  [Ω] 0.4 
Stator inductance 𝐿𝑠  [H] 0.097 
Rotor inductance 𝐿𝑟  [H] 0.091 

Mutual inductance 𝑀  [H] 0.091 
Moment of inertia 𝐽   [Kg.m2] 0.22 

Frequency 𝑓  [Hz] 50 
 

 

Table 2. The constraints of Q, P, and R matrices  
Matrix elements  Minimum   Maximum  

𝑄1−5 1e-20 1e20 
𝑃1−5 1e-20 1e20 
𝑅1−2 1e-20 1e20 

 

 

Table 3. The optimal values of Q, P, and R matrices 
Matrix elements  EKF UKF 

𝑄1 1000 485.262 
𝑄2 9.998e-11 315.275 
𝑄3 1000 0.01361 
𝑄4 1000 0.0384 
𝑄5 1000 371.3083 
𝑃1 14662533.238 0.0771 
𝑃2 9423954.795 0.0412 
𝑃3 11999.229 9.466e-05 
𝑃4 4980.825 0.000101 
𝑃5 41167535894.457 110.5567 
𝑅1 9.99e-06 0.70058 
𝑅2 1.5444 1.73586 

 

 

6.1.  No-load conditions  

In this condition, there is no load applied to IM and the speed reference is tracking response  

(1,000 Turn/min. from the beginning until 1.5 sec. and -1000 Turn/Min from 1.5 sec. until 3 sec.). As shown 

in Figures 2(a) and 2(b) (in appendix), optimized EKF and optimized UKF can estimate the speed, flux, 

current, and torque in sensorless DFOCIM drive. Also, the error between actual and estimation response in 

optimized UKF is less than optimized EKF in most estimation parameters. 
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6.2.  Load conditions  

In this section check the robustness of the system in different rotations of speed and sudden load. 

50 Nm load has been applied in 0.8 sec when the speed reference is tracking response. As shown in  

Figures 3(a) and 3(b) (in appendix), UKF and EKF can track speed, current, flux, and torque after adding the 

load at a specific time. The convergence speed of the genetic algorithm takes about (344.706 min.) for 

optimized EKF and (232.374 min.) for optimized UKF in a powerful computer server with two Intel Xeon 

processors (CPU X5650) operating at 2.67 GHz (2 processors) and 64 GB of RAM. Table 4 (in appendix) 

shows the comparison in MSE between optimized UKF and EKF in no-load and load conditions. As shown 

in this table, MSE of speed, current, flux, and torque by using optimized UKF are less than optimized EKF in 

different operation conditions. 

 

 

7. CONCLUSION 

This paper proposed a method to optimize EKF and UKF for estimation speed, flux, torque, and 

current in sensorless DFOCIM drive. Multi objective genetic algorithm was used to find the optimal selection 

of state and noise covariance matrices in both EKF and UKF. The main objective in multi objective genetic 

algorithm to be minimized ware MSE of speed, current, and flux. Senserless DFOCIM drive was presented to 

achieve the decoupling between torque and flux based on optimized EKF and optimized UKF. The optimized 

EKF and UKF provided the accurate estimation of speed, flux, torque, and current in DFOCIM drive. 

Furthermore, optimized UKF had high accuracy of state estimations than optimized EKF. According to our 

expectations, the optimal control parameters of DFOC drive will be studied to find the optimal control of 

senserless DFOCIM drive. 

 

 

APPENDIX 

 

 

  

  
(a) (b) 

 

Figure 2. Comparison in No-load condition between (a) optimized UKF and (b) optimized EKF in  

DFOCIM drive (continue) 
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(a) (b) 

 

Figure 2. Comparison in No-load condition between (a) optimized UKF and (b) optimized EKF in DFOCIM drive 
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(a) (b) 

 

Figure 3. Comparison in load condition between (a) optimized UKF and (b) optimized EKF in  

DFOCIM drive (continue) 
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(a) (b) 

 

Figure 3. Comparison in load condition between (a) optimized UKF and (b) optimized EKF in DFOCIM drive 
 

 

Table 4. Comparison in MSE of optimized UKF and optimized EKF 
Estimation No-load tracking Load tracking 

UKF EKF UKF EKF 

Speed 0.3159 9.0947 0.6871 13.4 

current 2.053e-21 0.0016 2.94e-21 0.0016 

Flux 8.08e-05 3.22e-04 7.59e-05 3.11e-04 
Torque 0.0462 0.7830 0.0462 0.9032 
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