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 This study reviews and analyzes the different auxetic materials that have 

been developed in recent years. The search for research articles was carried 

out through one of the largest databases such as ScienceDirect, where  

845 articles were collected, of which several filters were carried out to have 

a base of 386 articles. There are a variety of materials depending on their 

structure, composition, and industrial application, highlighting biomedical 

applications from tissue engineering, cell proliferation, skeletal muscle 

regeneration, transportation, bio-prosthesis to biomaterial. The present paper 

provides an overview of auxetic materials and its applications, providing a 

guide for designers and manufacturers of devices and accessories in any 

industry. 
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1. INTRODUCTION 

Innovative products to fulfill the new customer’s requirements are increasingly demanded, for 

designers and manufacturers must propose solutions, develop prototypes, compare mechanical properties 

with design specifications, and required service conditions. For this, the choice of the material has been a 

priority task, considering each component and the type of material that fits its profile, so an analysis of the 

material used is required to determine its most important characteristics, as well as its processing where a 

detailed knowledge of the properties at different temperatures and loading conditions is performed. 

Traditional engineering materials, that is, metals, wood, ceramics, which, whether they are brittle or ductile, 

will tend to irreversibly deform in response to small strains, either by fracturing or flowing plastically. Softer 

materials such as rubbers, gels, and biological tissues can often withstand moderate amounts of strain without 

reaching a material limit, and so they can reversibly withstand elastic instabilities without permanent 

deformation, exhibiting geometric nonlinearities by bending, buckling, wrinkling, creasing, and crumpling. 

An example is longitudinal elastic deformation produced by a single tensile stress or a compressive stress 

with lateral deformation occurring simultaneously, where some interesting structures exhibit negative poisson 

ratios. 

The auxetic property is the focus of this literature review. The negative poisson rate was also 

considered as a similar description because some articles relate this second concept. All fields of application, 

design proposals, development, and production were considered. The query was made in the digital database 

Science direct of all the results published during the years 2014 to 2020. The keywords used in the study 

were “auxetic” and “Poisson negative rate”. Research, review, and patent publication articles were selected. 

Book chapters, lectures, and other types of reports were discarded. The focus of the review was to identify 

the different auxetic materials and their behavior, for this the articles related to structure, metamaterial, 

composite and properties were filtered. 

https://creativecommons.org/licenses/by-sa/4.0/
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A review of auxetic materials developed in recent years is presented in the article, classify their 

behavior and designs, and show the different proposed industrial applications. The rest of this document is 

organized. Section 1 presents the introduction. Section 2 describes research method, section 3 auxetic 

materials according to their properties, behaviors and identifies different types of materials. Section 4 

presents the applications in the different fields of industry. Section 5 concludes the investigation. 

 

 

2. PROPOSED METHOD  

The systematic review was developed following three phases: planning, execution, and reporting. 

The planning phase included the problem identification to be investigated, proposing i) research questions 

and ii) search equation and keywords, taking into account the inclusion and the exclusion criteria. The 

execution process was performed by systematic search in selected databases, then a filter based on exclusion 

criterion. Finally, the results were reported in the results and discussion section. 

 

 

3. METHOD  

Planning and execution: systematic review began defining the area of knowledge to work; 

particularly, the research topics are focused on the study of material and biomaterials, specifically auxetics 

structures and auxetics structures biomedical applications. Based on this analysis the searching process 

started with the research questions definition: i) why research regarding auxetic structures and materials has 

increased?, ii) what are auxetic material applications?, and iii) which are the requirements to design and 

fabricate technologies for biomedical applications?. 

Inclusion and exclusion criteria: the following criteria were considered taking into account the 

definition of the research problem: i) inclusion criteria: studies published between 2014 and the present, 

studies in English languages, publication types: research article, studies related to materials and ii) exclusion 

criteria: publications outside the established time range, publication types: conference and book (or chapter). 

The concepts that fall under auxetic materials are presented in Figure 1, identifying the area and subarea of 

the concept, the fundamental characteristics, and additional exclusions. 

 

 

 
 

Figure 1. Conceptual mentefact of auxetic material 

 

 

4. RESULTS AND DISCUSSION  

The information search process was done in Science Direct databases, multiple searches carried out, 

establishing specific words that match with the title, abstract, or keywords of the articles; these were 

established in English. The keywords used in the study were “auxetic” and “Poisson negative rate”. Research, 

review, and patent publication articles were selected. Book chapters, lectures, and other types of reports were 

discarded. The focus of the review was to identify the different auxetic materials and their behavior, for this 

the articles related to structure, metamaterial, composite, and properties were filtered. 
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Auxetic material behavior: properties: engineered elastic constants such as young’s modulus, 

poisson’s ratio, mass modulus, and shear modulus are found by analytical methods [1]. Poisson’s ratio is an 

important mechanical property that expresses the deformation patterns of materials. A positive poisson’s ratio 

is a characteristic of the majority of materials. However, some materials show negative poisson’s ratios  

[2]–[5], known as auxetics, which flexible structures deform, where stretching in some direction involves 

lateral widening, rather than lateral shrinking [6] or extending in all directions under tensile load in one 

direction [7]. Given this counterintuitive behavior, they are expected to possess high shear, fracture and 

indentation resistance, and superior damping. The lack of natural isotropic auxetics has promoted an effort to 

design structures that mimic this behavior [8], and have broad applications in biomedical, aeronautical and 

structural fields, though manufacturing is often limited to 2D [9]. 

Auxetic material behavior: structures: solids that exhibit a negative poisson’s ratio are called auxetic 

materials [10], a metamaterial engineered through special microstructure design, where the mechanical 

properties can be adjusted over a wide range and have significant auxetic behavior [11]–[13], the property of 

expanding contracting transversely while being tensioned compressed in the longitudinal direction  

[8], [14]–[16]. Improves various yields due to its unusual property [17]–[22] isotropic [23], has been the 

subject of intensive research, where several different auxetic systems have been commonly based on 

designing special geometry of the material microstructure [24]–[32] show better indentation resistance, 

impact shielding capability, and enhanced toughness [33], [34], as well as various design techniques based on 

finite elements have been developed to achieve auxetic materials with specific effective properties, mainly in 

a linear deformation regime [35]. 

Auxetic material behavior: metamaterials: mechanical metamaterials are man-made structures with 

counterintuitive properties that originate from the geometry of their unit cell rather than the properties of each 

component, generally associated with the four elastic constants mentioned above [36], [37], spanning a wide 

range of anomalous systems that arise primarily from their structure rather than their composition. This 

unique characteristic gives them an advantage over many natural or readily available materials and makes 

them suitable for a variety of custom applications [4] and their unique deformation behavior [38]. These 

artificial composites consist of a series of periodically arranged microstructures that may not be readily found 

in nature [39] rationally designed that can provide extraordinary effective properties [40]. Three of these 

lattices (reentrant hexagon, chiral diamond, hexachiral lattice) are auxetic metamaterials, since they show a 

negative poisson’s ratio [41], some annular cellular structures composed of graduated auxetic metamaterials 

were also studied [42] and were manufactured [43]. Auxetic materials and structures as a class of 

metamaterials have been studied and evaluated extensively from any application [44], [45], The influence of 

various structural and material parameters on auxetic and mechanical properties were investigated [46]. 

Auxetic material behavior: composites: auxetic composites are non-conventional materials [47] with 

a specific arrangement of composite reinforcing structures [48]. Several composites have been proposed and 

manufactured to mimic the improved relative static and dynamic properties of auxetics [8], meta-biomaterials 

[49], hybrid materials consisting of auxetic (material with negative poisson´s ratio) and non-auxetic phases 

[50], The elastic deformation patterns of gels with different structural and mechanical properties are depicted 

[51] tendons are highly anisotropic and behave in a very unconventional manner when stretched, and exhibit 

a negative poisson´s ratio (auxeticity) in some planes when stretched up to 2% along their length, i.e. within 

their normal range of motion [52], auxetic systems [53]. 

Auxetic material behavior: applications: auxetic materials or structures have attracted great attention 

due to their unprecedented mechanical behaviors in recent years. If rationally designed structures can be 

made from high- performance materials the specific properties, This has been exploited in diverse industrial 

applications and academic research: cellular solids [54], functionally graded orthotropic materials [55], stent 

geometries, composites, sensors and satellite components [53], shape memory polymer (SMP) periodic 

cellular structures [56], bone implants [57], double shear lap-joint (DSLJ) damper as an alternative method 

for vibration damping [58], braided composites for civil engineering applications [46], [59], polymeric fibers 

and yarns [60], [61], personal protection materials, such as cut resistance fabrics, bullet proof vest, helmets 

[62], airframe morphing [63], [64], an architectural system life form structure (LFS) with the ability to 

change its shape according to the environment conditions [65], fused filament fabrication (FFF) 3D printing 

of thermoplastic polyurethanes [66], metallic glass chiral nanolattice (MGCN) [67], nanotruss networks [68], 

for load-bearing biomedical applications [69], [70], functionally graded rectangular and skew plates (FGPs) 

for airplane wings [71], compress or stretch-twist coupled smart actuators, biomechanical devices, and micro 

sensors [72], [73] lightweight parts to enhance the passive safety of automobiles and reduce the fuel cost 

consumption [74], patient-specific medical implants [75], morphing skin [76], electromagnetic shielding 

[77], ceramic for harsh temperature environments [78], vibroacoustic engineering fields [79], Piezoelectric 

nanogenerator (PENG) [79]. Some auxetic structures have been developed from unit cells or the combination 

of substructures, some cases are presented in Table 1. 
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Table 1. Auxetic structures 
Structure Obtaining Procedure Application Ref. 

Tessellating 
arrowhead motif 

Locating cylinders at each junction connecting 4 tangentially 
attached ligaments in the arrowhead geometry 

Alternative cylinder-ligament honeycomb 
comprising cylinders 

[28] 

3D re-entrant 

cellular structure 

The structure can be represented by the unit cell Wide range of mechanical property control [80] 

Spider’s web Add small hexagons at the centers of the cells of a hexagonal 
lattice and connect adjacent vertices by straight beams 

Hierarchical fractal-like honeycombs [81] 

Unit cell 

structure 

The unit cell possesses a horizontal, vertical and central 

symmetry 

Two-dimensional morphing [82] 

Unit cell 

structure 

Adding a narrow rib in re-entrant structure Honeycomb-like structure [83] 

Unit cell 
structure 

Composed by two parts that provide separate in-plane and 
out-of-plane deformations contributions. 

Large out-of-plane deformations and 
morphing. 

[84] 

Cellular 

structure 

(AuxHex) made 

using Kirigami 

Combination of cells with different shapes that interlock with 

each other. Origami only allows folding, while Kirigami 

includes sharp cut slits and, if needed, material removal. 

Synclastic as well as anticlastic behavior [85] 

Chiral three-
dimensional 

Material was designed by orthogonal assembling based on 
chiral two-dimensional honeycomb with four ligaments 

Influence of geometries on the equivalent 
elastic parameters 

[86] 

Graded 

structure 

Improved model for banana peel varying wall thickness Energy absorbers design for elevator cabin [87] 

In-plane graded In-plane gradient is introduced by changing the thickness of 

each cell wall of honeycomb unit cell along its side length. 

The crushing behavior and energy 

absorption capacity 

[88] 

Re-entrant Deformation styles in crushing Energy absorbing structure [89] 
Re-entrant 

hexagonal 

Incorporation and reinforcement of the rhombic configuration 

to the normal reentrant hexagonal honeycomb (NRHH). 

Critical buckling strength are significantly 

improved 

[90] 

Re-entrant 
hexagonal 

Use of narrow ribs and rhombuses embedded in each cell of 
the NRHH 

Improving the in-plane stiffness [22] 

3D double-V Inclined beams are defined as stuffer and tensor respectively Quasi-static collapse stress [91] 

Tetrachiral, 
trichiral, 

hexachiral 

Circular loops and square loops, respectively, with inclined 
rods connecting the neighbor layers 

Priory mechanical properties under large 
deformation 

[92] 

Hexagonal 
chiral structure 

A composite metamaterial structure is inserted into the bulk 
into a chiral base structure 

Attenuation of mid to low frequency elastic 
waves 

[93] 

Hierarchical Replacing each three-edge vertex of a regular hexagonal 

honeycomb by a smaller hexagon 

Fractal-like honeycombs with self-similar 

hierarchy 

[94] 

Quasi-hexagon 

structure 

Integrating triangular tubes with sinewave corrugated plates Triangular tube reinforced corrugated 

honeycomb 

[95] 

Structures Symmetry imposition and post-processing for stress 

avoidance using the penalty isotropic solid microstructure 

method. 

Morphing skin applications [76] 

Chiral Connecting neighbor chiral honeycomb layers by inclined 

rods 

3D metamaterial [96] 

Half re-entrant Mirroring the horizontal series-connected parallelograms 
along the vertical direction 

Elastic behavior [97] 

Pre-folded Conventional honeycomb with a pre-folded trace, composed 

of multi-layer regular hexagonal oblique prisms 

Energy absorption devices [98] 

Rectangular-

shaped cells 

The use of alternating bimaterial strips to form rectangular 

cells in triangular array 

Triangular array [99] 

Re-entrant 
hierarchical 

Replacing the cell walls of re-entrant honeycombs with 
regular hexagon substructure (RHH) and equilateral triangle 

substructure (RHT) 

Exhibit an improved crushing performance, 
and RHT provides the highest energy 

absorption capacity among all specimens. 

[100] 

Re-entrant star-
shaped 

Combining the re-entrant honeycomb and the star-shaped 
honeycomb 

Energy absorption [101] 

Star-arrowhead 

(SAH) 

Adding DAH cells into star-shaped honeycomb (SSH) Higher energy absorption capacity [102] 

Structures Different diameters of elementary cells Crashworthiness properties, wall-thickness [103] 

Variants of HC 

structure 

The role of ligament orientation on their effective elastic, 

piezoelectric and dielectric properties 

3-3 piezoelectric metamaterial networks [104] 

Cylindrical 

DAH 

Composed of several layers and each layer is obtained by 

organized unit cells 

Elastic mechanical properties [105] 

DAH Representative DAH patterns under low velocity impact in z 

direction 

Energy absorptions [106] 

Star-triangular 

(STH) 

The horizontal and vertical ligaments of the star honeycombs 

(SH) are replaced with triangular structures 

Energy absorption [107] 

Unit cell 
structure 

Four kinds of mechanical metamaterials with unit cells of 
triangle and honeycomb configurations 

Triangle and honeycomb (a) regular 
triangle, (b) regular honeycomb, (c) arrow 

like reentrant triangle, (d) reentrant 

honeycomb 

[108] 

Vertex-based 

hierarchical 

Substitution of each vertex of the regular honeycomb using 

triangular lattices 

Crushing behaviors [109] 
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Regarding biomedical applications, it was found that auxetic material are applied in tissue 

engineering, cell proliferation, skeletal muscle regeneration, transportation, bioprothesis and biomaterial, the 

summary is presented in the Table 2. In the future, other unit cell designs can be used. For example in the 

form of a cross [110], or the inclusion of asymmetries to modify the resonance of the elements [111]. 

 

 

Table 2. Scaffold design 
Kind Application Ref. Year 

Nanometric features tissue engineering [112] 2015 
Tunable tissue engineering and programmable 

flexible electronics 
[113] 2020 

Tubular  tissue engineering and soft robotics [114] 2020 
Laser-made 3D Auxetic Metamaterial tissue engineering [115] 2020 

Composites tissue engineering [116] 2020 
Tunable cartilage repair in tissue engineering [117] 2021 

poly(D, L-lactic-co-glycolic acid) (PLGA) cell proliferation [118] 2016 
Hybrid  cell proliferation [119] 2016 
Tunable cellular differentiation [120] 2017 

Multi-layered, cell-laden cell growth, tissue interaction [121] 2017 
PLGA cell proliferation [122] 2017 

Tunable cellular differentiation. [123] 2018 
Cell-laden auxetic proliferation of human Schwann’s cells [124] 2020 

Resorbable skeletal muscle regeneration [125] 2020 
Cellular solids transportation and medical industries [126] 2021 

Composite semi resorbable armored bioprosthesis [127] 2016 
Out-of-plane auxetic nonwoven meta-biomaterials [128] 2020 

Multi-scale and tunable biomedical [129] 2021 

 

 

5. CONCLUSION  

The growing interest in developing materials with superior properties is an important sign that this 

field is fertile ground for future research that can make significant theoretical and practical contributions both 

within and beyond materials science and engineering. This article aims to investigate the current state of 

development of auxetic materials. Using a systematic review methodology, a total of 845 full-text references 

were screened to answer the research questions “Have auxetic materials been used to date?” and “How have 

these materials been designed, developed and applied to date?” respectively. The results of the review 

showed that design studies and development of auxetic materials have increased exponentially, proposing 

new forms, structures, combination of materials and new applications to obtain properties superior to 

traditional materials, especially for biomedical applications. This suggests that the evolution of engineering 

materials will have auxeticity as a fundamental aspect in order to obtain superior performance. 
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