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BACKGROUND: The inherent fluorescent properties of
nucleosides, nucleotides, and nucleic acids are limited,
and thus the need has arisen for fluorescent labeling of
these molecules for a variety of analytical applications.

CONTENT: This review traces the analytical ancestry of
fluorescent labeling of nucleosides, nucleotides, and
nucleic acids, with an emphasis on the first to publish
or patent. The scope of labeling includes (a) direct la-
beling by covalent labeling of nucleic acids with a fluo-
rescent label or noncovalent binding or intercalation of
a fluorescent dye to nucleic acids and (b) indirect label-
ing via covalent attachment of a secondary label to a
nucleic acid, and then binding this to a fluorescently
labeled ligand binder. An alternative indirect strategy
involves binding of a nucleic acid to a nucleic acid
binder molecule (e.g., antibody, antibiotic, histone, an-
tibody, nuclease) that is labeled with a fluorophore.
Fluorescent labels for nucleic acids include organic flu-
orescent dyes, metal chelates, carbon nanotubes, quan-
tum dots, gold particles, and fluorescent minerals.

SUMMARY: Fluorescently labeled nucleosides, nucleo-
tides, and nucleic acids are important types of reagents
for biological assay methods and underpin current
methods of chromosome analysis, gel staining, DNA
sequencing and quantitative PCR. Although these
methods use predominantly organic fluorophores,
new types of particulate fluorophores in the form of
nanoparticles, nanorods, and nanotubes may provide
the basis of a new generation of fluorescent labels and
nucleic acid detection methods.
© 2009 American Association for Clinical Chemistry

In science, being the first to invent or describe a
method or a composition of matter or expound a valid
theory carries significant prestige. Tangible rewards for
being first may include granting of a limited-term mo-
nopoly in the form of a patent or international recog-
nition and the award of major scientific prizes (1 ). De-
termining who was first is not always straightforward,
however. History is replete with corrections and con-
flicts on this highly charged and often commercially
sensitive topic, as is evident from the controversy that
surrounds such familiar concepts as calculus and items
such as the slide rule, laser, and telephone (2–5 ).

In this review, we trace the origins of fluorescent
labeling of nucleic acids, tracking the evolution of ideas
and emergence of techniques and examining the asso-
ciated intellectual property via issued patents. Our fo-
cus is on who was first to describe or discover a partic-
ular type of compound or technique or property of
matter. This information is of particular significance
for inquiries into the validity of patents through antic-
ipation and obviousness analysis (6 ). As others have
noted about earliest dates, however, they “have a way of
becoming unfixed as the history of the subject is further
studied” and “there is no way of knowing what future
students will unearth” (7 ). The scope of the article is
limited to labels that produce fluorescence upon irra-
diation with excitation energy of the appropriate wave-
length. We do not consider phosphorescent labels, la-
bels that can be converted to a fluorophore (e.g.,
fluorescein diacetate nanocrystal labels) (8 ), or labels
that act on other substances to produce fluorescent
products (e.g., alkaline phosphatase label and a fluoro-
genic substrate).

The scientific literature is now enormous.
PubMed includes more than 17 million citations back
to the 1950s (9 ), the CAplus database contains more
than 27 million patent and journal articles (10 ), and
more than 7 million US patents have been issued (11 ).
We have searched extensively in this massive collection
of abstracts, papers, reviews, and books; however, an
ever-present danger is that we have overlooked an ob-
scure publication or a public disclosure at a scientific
meeting captured in an abstract book that did not make
its way into a library or into a public database. Likewise,
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we have inevitable linguistic biases, and publications in
some languages may have escaped our scrutiny.

FLUORESCENCE IN NUCLEIC ACID ANALYSIS

Fluorescence was observed in antiquity, but the science
of fluorescence dates back to work by Sir George Stokes
(Stokes Law of Fluorescence: the wavelength of fluores-

cence emission is greater than that of the exciting radi-
ation) who coined the term “fluorescence” in 1852
(Fig. 1) (12 ). The term “fluorophore” to describe a
chemical group associated with fluorescence was
coined by Richard Meyer in 1897 (13 ). Other impor-
tant landmarks were the synthesis of the fluorescent
dye, fluorescein, by Adolph von Baeyer in 1871 (14 )

Fig. 1. Landmarks in fluorescence and nucleic acid chemistry.

P, patent priority.
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and the development of the fluorescence microscope in
1911 by Heimstadt and Lehman (15 ) and the epifluo-
rescence microscope in 1929 by Ellinger and Hirt (16 ).
The range of fluorescence emission spans the electro-
magnetic spectrum from the x-ray (�10 nm) through
the visible (380 –750 nm) to the infrared (IR)4 (630 nm
to 3000 �m) regions of the spectrum. Nucleic acids
have been labeled with fluorophores with emissions in
the x-ray (17 ), visible (18, 19 ), and IR (20, 21 ) regions
of the spectrum.

As the discovery of fluorescence precedes that of
nucleic acids, the starting point of our inquiries was the
history of nucleic acids. The nucleic acid DNA was first
isolated in 1869 by Friedrich Miescher (22 ). However,
following its successful separation into a protein and an
acid molecule, his pupil, Richard Altmann, named it
“nucleic acid” in 1889 (23 ). The structural compo-
nents (the 4 bases, the sugar, and the phosphate chain)
were identified in 1929 by Phoebus Levene, and he
showed that the components of DNA were linked in
the order phosphate-sugar-base (24 ). He called each of
these units a nucleotide and proposed that the DNA
molecule consisted of a string of nucleotides linked to-
gether via the phosphate “backbone” of the molecule.
Subsequently, in 1953, Watson and Crick solved the
3-dimensional structure of the DNA molecule and
showed it to be a double helix (25 ).

The study of the fluorescence of nucleic acids and
the development of fluorescently labeled nucleic acids
is set against a historical background of fluorescent
methods for bioanalysis (26 ). Fluorescence was already
established by the late 1940s for both in vitro (27 ) and
in vivo applications (28 ) and had been in use in other
areas of analysis since at least 1922, when Hadding used
x-ray fluorescence to analyze minerals (29 ). By the
1930s, patents had been granted covering fluorescence-
detecting apparatus useful in the diagnosis of disease
(30 ), and during the 1960s and 1970s, numerous pat-
ents were issued on the use of fluorescence for analysis
of cells (31, 32 ) and virus particles (33 ). Filing of pat-
ents for fluorescent nucleic acid probes began in the
early 1980s and included directly labeled probes (34 –
37 ) and indirectly labeled probes (34, 35, 38, 39 ). Fil-
ings for the application of fluorescent labels in se-
quencing also began to appear in the 1980s for both
direct (40, 41 ) and indirect (42, 43 ) labeling.

Study of the fluorescence of bases, nucleosides,
nucleotides, and their polymers has a long history dat-
ing back to the early part of the 20th century (44 – 46 ).
However, the fluorescence of nucleic acids is weak and
has not proved particularly useful analytically, except
in the case of nucleic acids containing certain modified
bases that are naturally fluorescent. The first to be de-
scribed was a base designated as “Y” [wybutosine (yW)]
(47 ) in L-phenylalanyl-tRNAPhe, and this has been
chemically modified to another fluorescent form of the
base by treatment with ammonium carbonate (48 ).
Subsequently, other fluorescent modified bases (e.g.,
pseudo uridine, 4-thiouridine, dihydrouridine, N4-
acetylcytidine, 7-methylguanine, 7-methylinosine) were
discovered (49 –53 ).

In view of the limited fluorescent properties of nu-
cleic acids, the application of fluorescence in nucleic
acids analysis has followed several pathways (Fig. 2).
Direct labeling can be achieved by covalent labeling of
nucleic acids with a fluorescent label or noncovalent
binding (staining or intercalation) of a fluorescent dye
to nucleic acids (Fig. 2A, B). Indirect labeling can be
achieved by first covalently attaching a secondary label
to a nucleic acid and then binding this to a fluorescently
labeled ligand binder (Fig. 2C). Alternatively, a nucleic
acid can be bound to nucleic acid binder molecule (e.g.,
antibody, antibiotic, histone, antibody, nuclease) that
is labeled with a fluorophore (Fig. 2D).

MOTIVATION FOR FLUORESCENCE LABELING

By and large, the motivation for combining fluores-
cence and nucleic acids has been to provide a noniso-
topic label (tag or marker or reporter group) that has
a detectable signal to study nucleic acid sequence,
structure, structural dynamics, protein and ligand in-
teractions, or hybridization with other nucleic acids
(probing) (34 ) (fluorescent labeling of the broad class
of receptors, specifically nucleic acids, has been de-
scribed (54 )). The impetus for synthesizing fluorescent
nucleoside or nucleotide analogs has been for photo-
affinity labeling, preparing coenzyme analogs, improv-
ing detectability in chromatographic analysis, and ren-
dering DNA fragments detectable in polyacrylamide
gel electrophoresis as part of dideoxy DNA sequencing
protocols, or in quantitative PCR reactions.

It should be appreciated that the genesis of some
fluorescently labeled nucleic acids, nucleotides, or
nucleosides has not always been motivated by a spe-
cific desire to develop fluorescently labeled materials.
For example, nucleic acids fluorescently labeled at the
C-8 of guanine bases have been isolated or synthesized
in studies of the mechanism of the interaction of
DNA and carcinogens such as 2-acetylaminofluorene
(AAF) (55 ).

4 Nonstandard abbreviations: IR, infrared; yW, wybutosine; AAF, 2-acetylamin-
ofluorene; NIR, near infrared; CNT, carbon nanotube; tRNA, transfer RNA; sRNA,
soluble RNA; 5BrU, 5-bromouracil; TdT, terminal deoxynucleotidyl transferase;
TMR, tetramethylrhodamine; YOYO, oxazole yellow homodimer; TO, thiazole
orange; TOTO, thiazole orange homodimer; dsDNA, double-stranded DNA;
ssDNA, single-stranded DNA; TMV, tobacco mosaic virus.
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SCOPE AND SELECTION OF FLUORESCENT LABELS

The vast majority of fluorescent nucleic acid labeling
studies have used organic fluorescent dye molecules
(e.g., fluorescein, rhodamine); however, fluorescent
metal chelates that have a long-lived time-resolvable
signals (e.g., europium chelates) and various organic
(e.g., carbon nanotubes) and inorganic (e.g., quantum
dots, gold particles, fluorescent minerals) particles
have also been used. In most cases, the fluorescent la-
bels used for nucleic acids had been previously used as
labels in immunoassays.

Considerations in the choice of the fluorophore
include factors such as fluorescence quantum yield,
Stokes shift, fluorescence emission spectrum (includ-
ing time-resolvability) and ability to use several fluoro-
phore labels simultaneously, susceptibility to photo-
bleaching, and reduction of background interference,
as in the case of time-resolved fluorescent labels based
on lanthanide chelates (37, 56 ) and cyanine (57 ) and
metal (20, 21 ) chelate-based IR labels.

At a pragmatic level, the choice of the fluorophore
has been guided by its availability and ease of attach-
ment, and in this regard various activated fluorescein
molecules have enjoyed considerable popularity (e.g.,
fluorescein isothiocyanate). The signal from a fluores-
cent label is determined in part by the fluorescence
quantum yield of the fluorophore, and, the near unity
quantum yield of fluorescein underlies the popularity
of this label. The fluorescent signal emitted from a flu-
orophore depends directly on the intensity of the exci-

tation light. As the excitation light intensity increases,
however, there is a tendency for organic molecules to
decompose, and this leads to photobleaching and loss
of fluorescent signal. Inorganic fluorophore labels such
as quantum dots are not prone to photobleaching, and
this has spurred their application in nucleic analysis.
The Stokes shift is another important characteristic of a
fluorophore label. A large Stokes shift is advantageous
because it minimizes interference by the excitation
light in the measurement of the fluorescence emission.
Stokes shifts of up to 200 nm are possible with semi-
naphthofluorone type dyes (Stokes shift for fluorescein
is approximately 20 nm) (58 ). An emission wavelength
in the near infrared (NIR) can be advantageous for a
fluorophore label, as this minimizes interfering fluo-
rescence from biological samples, reduces scattering,
increases tissue penetration for the signal, and allows
the use of low-cost laser diode excitation sources
(37, 56 ). Also, the overall structure of a fluorophore
label can influence the ability of a labeled nucleic acid
to serve as a substrate for an enzyme. This has been a
critical factor in the development of labeled nucleo-
tides for sequencing using a polymerase, and the linker
that attaches a fluorophore label to a nucleotide has a
pronounced effect on the effectiveness of a DNA poly-
merase to incorporate a fluorescent nucleotide (59 ).

An interesting trend has been the impact of micro-
and nanotechnology on direct and indirect fluores-
cent labeling of nucleic acids in the form of micro- or
nanosized organic or inorganic particles. The scope of

Fig. 2. Covalent (A) and noncovalent (B–D) fluorescent labeling strategies.

(A), Direct covalent labeling. (B), Staining or intercalation. (C), Indirect labeling via binding of a fluorescently labeled ligand
binder to a ligand covalently attached to a nucleic acid. (D), Indirect labeling via binding of a fluorescently labeled nucleic acid
binder directly to a nucleic acid.
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this strategy includes quantum dots (60 – 62 ), metal
nanoparticles and nanorods (63 ), carbon nanotubes
(CNTs) (64, 65 ), dye-doped core-shell particles (66 ),
dyed latex particles (67, 68 ), and liposomes or polymer
shells filled with fluorescent particles (e.g., quantum
dots, dyed polymer beads, and naturally occurring
minerals such as eucryptite) (69 ).

Fluorescent metal chelates. A chelate-based strategy for
fluorescent labeling presents an interesting aspect of
determining who was first to describe a particular type
of fluorescent labeling. A patent published in 1977 de-
scribes labeling of “target substance” with rare-earth
complexes (70 ), and another patent with a priority in
1979 describes labeling of antigens with fluorescent
metal chelates (71 ). Because a nucleic acid such as
DNA is an example of a target substance and is an an-
tigen, these generic claims could be viewed as a disclo-
sure of fluorescent metal chelate labeling of a nucleic
acid. Likewise, another patent (priority 1981) describes
the fluorescent lanthanide chelate labeling of a “biolog-
ically active substance,” which of course would include
a nucleic acid (72 ). Subsequently, lanthanide chelates
were specifically described in a patent (priority 1981) as
labels for DNA in a sandwich hybridization assay (37 ).

Quantum dot. A quantum dot is a nanocrystal com-
posed of periodic group II–VI (e.g., CdSe, CdS), II–V
(InP, InAs), or IV–VI (e.g., PbTe, PbS) materials. It can
contain as few as 10 –50 atoms and have a diameter as
small as 2–10 nm (73–75 ).

Advantages of quantum dots compared with con-
ventional organic fluorescent dyes include high quan-
tum yield (bright signal), less susceptibility to photo-
bleaching, and a fluorescence emission wavelength that
is directly related to the diameter of the quantum dot. A
quantum dot is usually coated with a shell to improve
quantum efficiency and stability. The shell surface of a
“core/shell” quantum dot can be functionalized by treat-
ment with organic molecules (e.g., silanes) that provide
points of attachment for nucleosides or nucleotides
(60, 61 ) or DNA (62 ). Early suggestions for the use of
quantum dots are to be found in articles published in
1998 (76, 77 ). Interestingly, quantum dots had been
attached to nucleic acids such as transfer RNA (tRNA)
as part of a quantum dot synthesis scheme in which
the tRNA, dispersed in a gel matrix, acted as an ion-
exchange/nucleation site for formation of the quantum
dots (e.g., AgO, CdS) (78 ).

Metal nanoparticle or nanorod. A starting point for gold
as a fluorescent label was the description of the fluores-
cence of bulk gold by Mooradian in 1969 (79 ). Subse-
quently, the fluorescence of gold nanoparticle clusters
and nanorods (80, 81 ) was demonstrated. In hind-
sight, all of the early work using colloidal gold–labeled

nucleic acids (82 ) could be considered fluorescent la-
beling, as could the DNA self-assembly of gold nano-
particle studies (83 ), albeit in neither case was the gold
detected by fluorescence. Recently, however, fluores-
cent gold nanorod labels (17 nm diameter, 230 nm
long; emissions at 743 and 793 nm) have been used to
label DNA. The nanorod label was attached to thiolated
DNA via Au-SH binding (80 ).

Carbon nanotube. A CNT is a nanometer-diameter cy-
lindrical carbon molecule, and as discovered in 2002, it
fluoresces in the near-infrared part of the spectrum
(84 ). A CNT can be derivatized to contain carboxyl
groups, and these serve as points of attachment for flu-
orescent labeling of nucleic acids (64, 65 ).

DIRECT COVALENT LABELING OF NUCLEIC ACIDS WITH A

FLUORESCENT LABEL

There are several sites on a nucleic acid molecule at
which covalent attachment is possible, including at-
tachment sites on the sugar, the phosphate, and the
different purine and pyrimidine bases (Fig. 3) (85 ).
Most labeling reactions are designed to target a specific
location on a nucleic acid, but indiscriminate covalent
labeling is possible using nitrenes that react at random
with other molecular species by interatomic radical
insertion reactions involving, for example, carbon–
hydrogen, oxygen– hydrogen, and nitrogen– hydrogen
bonds. This highly reactive functional group has been
used to attach an ethidium fluorophore to DNA by
reacting the DNA with ethidium azide (86 ). This strat-
egy is analogous to other photochemically generated
free radical– based labeling reactions developed in the
1960s for proteins (87 ).

Labeling the sugar. It appears that the first example
of covalent labeling of a nucleic acid at any position
involved the ribose sugar and can be attributed to
Feulgen in 1924 (18, 88 ). Acid hydrolysis of DNA
causes depurination, and the liberated aldehyde group
of the ribose sugar is then available to react with the
amine group of a pararosaniline (fuchsin) Schiff re-
agent. A specifically fluorescent Feulgen method was
published by Ornstein et al. in 1957 (89 ) and was
based on acriflavine as the Schiff-type aldehyde re-
agent; this produced a green fluorescent staining of
nuclei in tissue sections. The scope of this reaction
was subsequently expanded to other fluorogenic Schiff
reagents by Kasten et al. (90 ). The first example of co-
valent labeling of a nucleic acid in solution, as opposed
to a tissue section, was described in 1958 by Kissane
and Robins (19 ). They were interested in developing a
fluorometric assay for DNA in brain tissue. Their
method entailed depurination of the DNA followed by
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reaction of the aldehyde group in the deoxyribose with
3,5-diaminobenzoic acid to produce a fluorescent
Schiff base product.

An alternative nondepurinating labeling method
was described by Churchich in 1963 (91 ). Periodate-
oxidative ring opening of the ribose sugar ring of solu-

Fig. 3. Sites of attachment for fluorescent labels on a nucleic acid.

Analytical Ancestry Reviews

Clinical Chemistry 55:4 (2009) 675



ble RNA (sRNA) and subsequent reaction of the
aldehydes produced with the reactive amino groups
of acriflavine (3,6-diamino-10-methylacridine) gave
fluorescently labeled sRNA. This was used to deter-
mine the relaxation time of the sRNA by a fluorescence
polarization method.

Fluorescent labeling of an intact sugar at the 3� or
5� position dates back to 1973 (92 ). Thymidine,
blocked at the 3� or 5� position, was reacted with
�-naphthyl isocyanate to produce thymidine 3�- or 5�-
naphthylcarbamate. Subsequently, the scope of the
fluorophores attached to these sugar ring positions
was expanded to include other well-known fluoro-
phores such as anthracene (93 ) and dansyl (94 ). Alter-
native strategies use 5�-N-protected 5�-amino phosphor-
amidites, and after deprotection, the amino group is
reacted with an activated fluorescent dye (e.g., fluores-
cein isothiocyanate) (95 ).

Labeling via a reaction that bridges the 3� and
5� position was also developed in 1973 (96). ATP was
trinitrophenylated by simultaneous reaction at the
2�- and 3�-hydroxyl groups of the ribose sugar to give
an ATP derivative that fluoresced in ethanol–water
solutions.

Labeling the phosphate. The first fluorescent labeling
of the phosphate group at the 5� position dates back
to 1973 (97). This was achieved by first synthesizing dan-
syl or anthraniloyl phosphoromorpholidate derivatives
and then reacting these with the 5�-phosphate of tRNA.
Labeling of the 3�-phosphate was reported by Gohlke et al.
(98) as part of studies to make fluorogenic substrates for a
ribonuclease assay (e.g., 2�,5�-bis-tert-butyldimethylsilyl
3�-uridine-4-methylumbelliferone-7-yl)phosphate).

In 1989, the scope of phosphate labeling was ex-
panded by labeling an internucleotide phosphate (99 ).
Oligonucleotides synthesized to contain reactive phos-
phorthioate diesters at specific locations were dansy-
lated to form fluorescent phosphorthioate triesters.

Labeling the base. Direct fluorescent labeling of a base
can be traced back to work on the photoreaction be-
tween skin-photosensitizing furocoumarins and flavin
mononucleotide (100 ) and the expansion of the reac-
tion to pyrimidine bases of nucleic acids, such as thy-
mine (101–106 ). Usually, labeling of thymine is prob-
lematic because the 5-methyl substituent blocks the
reactive 5-position. However, fluorescent labeling that
involves reaction at the 5- and 6-positions of a thymine
base or other pyrimidine bases is possible via a photo-
chemically induced cyclo-addition reaction with vari-
ous furocoumarins (e.g., 5-methoxypsoralen) (103 ).
Thymine has also been rendered fluorescent by an
alkylation reaction to produce a 1-(2,3-dioxobutyl)
thymine derivative (107 ).

Subsequently, guanosine was labeled at the 8-
position with N-acetoxyl-N-2-fluorenyl acetamide as
part of studies on the reactions of the carcinogen N-
acetoxy-N-2-fluorenylacetamide with guanosine (55 ).
Ring amine groups of guanine can also be labeled via
reaction with a diazotized fluorescein derivative (108 ).

Labeling of AMP or dAMP, or labeling of A in
poly(A) [single stranded or complexed with poly(U)],
was achieved in 1974 by reaction with 9-bromomethyl-
anthracene (109 ). Reaction occurred at the amino
group at the 6-position and also at the 1-position in the
case of the mononucleotide. Fluorescent labeling of
adenosine and cytidine by a reaction that bridges the 1-
and 6-position of adenine and the 3- and 4-position
of cytidine to produce etheno compounds can be
achieved via a cyclization reaction with chloroacetalde-
hyde. This was first described by Kochetov et al. (85 )
and developed for fluorescent labeling purposes by
others (110, 111 ).

The synthesis of a fluorescent 1-(2,3-dioxobutyl)
uracil derivative was reported in 1978 (107). Later, Saito
et al. (112) adapted a photochemical alkylation reaction
to make strongly fluorescent 5-pyrenyl uridine.

Labeling of aminoacylated nucleic acids. Some nucleic
acids, such as tRNA, are modified by addition of an
amino acid, and reactive chemical groups on the amino
acid provide convenient sites for covalent attach-
ment of a label. This is exemplified by the naphthoxy-
hpacetylation of the amino group in the amino acid
moiety in tRNA using a 2-naphthoxy acetyl ester of
N-hydroxysuccinimide. This synthetic procedure was
described in 1968 using a series of tRNAs (e.g.,
tRNAAsp) (113 ) and applied as a fluorescent labeling
strategy several years later for tRNAIle (114 ).

Labeling of modified bases and nucleic acids. Several of
the modified bases that occur in the nucleic acids of
some organisms have chemically reactive side chains
that are suitable for attachment of fluorescent labels
(115 ). The first examples of this type of labeling were
reported in 1971. The thiol substituent in 4-thiouridine
and 4-thiouracil was reacted with a fluorescent couma-
rin derivative to give the fluorescent sulfide (116 ). An-
other contemporaneous route to a fluorescent tRNA
derivative involves photodimerization of 4-thiouridine
with cytidine, followed by sodium borohydride reduc-
tion of the photodimer (117 ). Table1 lists other mod-
ified bases that have been fluorescent labeled (see re-
view by Favre and Thomas (118 )).

Labeling via enzymatic incorporation of a fluorescent an-
alog or fluorescent base or modified base. Among the
earliest examples is to be found in the work of Zeitz and
Lee (1963) (17 ). As part of their studies on the radio-
sensitivity of DNA, they replaced thymine with 5-
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bromouracil (5BrU) in a DNA sample by growing
E. coli B 15T– in a medium containing 5BrU, and then
detected the bromine atom in the incorporated 5BrU
by irradiating the sample with x-rays and detecting the
fluorescence emission of the bromine at approximately
0.1040 nm.

Subsequently, the availability of various enzymes
facilitated development of in vitro protocols for label-
ing nucleic acids. These were originally developed for
nonfluorescent labeling and subsequently expanded to
include fluorescent labeling of nucleic acids. In vitro
fluorescent labeling was initially achieved with an
E. coli RNA polymerase-catalyzed incorporation re-
action using a d(A-T) template and the fluorescent
analogs of ATP, formycin, 2-aminopurine, or 2,6-
diaminopurine. These same analogs were also attached
to the terminus of a tRNA molecule using tRNA-CCA
pyrophosphorylase (38, 39 ).

Other enzymes used for in vitro labeling include
terminal deoxynucleotidyl transferase (TdT) that cata-
lyzed the incorporation of fluorescent bases such as
3-O-acyl(fluorescein or rhodamine) UTP (119 ). A
variant on this procedure used TdT to incorporate
4-thiouridine at the 3� end of DNA, and the thiol group
of the incorporated 4-thiouridine was in turn labeled
with fluorescein, eosin, or aminonaphthalene 1-sulfonic
acid derivatives (120 ). T4 RNA ligase is also useful for
fluorescent labeling. By using fluorescein and tetra-
methylrhodamine (TMR) derivatives of P1-(6-amino-
hex-1-yl)-P2-(5�-adenosine), it was possible to intro-
duce a fluorescent fluorescein or TMR label onto the
3�-hydroxyl group of RNA in good yield (121 ).

NONCOVALENT LABELING OF NUCLEIC ACIDS WITH A

FLUORESCENT LABEL

The 2 principal methods of noncovalent labeling are
direct methods in which a fluorescent dye or particle
binds to a single- or double-stranded nucleic acid
(staining) (Fig. 2B) and indirect methods in which a
fluorescently labeled nucleic acid binding agent (e.g.,
avidin or an antibody) binds to a secondary label (e.g.,
biotin, iminobiotin) covalently attached to the nucleic
acid (Fig. 2C) or to a specific structure, e.g., an RNA:
DNA hybrid (Fig. 2D).

Direct noncovalent binding of fluorescent dyes to nucleic
acids (staining). The scope of dye-binding detection
methods encompasses dyes that bind to nucleotides
(122 ), double- and single-stranded nucleic acid; dyes
that have selectivity for double- vs single-stranded nu-
cleic acid, DNA vs RNA (123 ); and dyes that bind to the
minor groove, e.g., Hoechst 33258 (124 ), and the ma-
jor groove, e.g., methyl green (125 ), of DNA.

Study of the interactions between fluorescent dyes

and nucleic acids traces back to the turn of the 20th
century and studies on vital fluorochroming using
eosin and erythrosin (126 ), and this in turn has its or-
igins in the colorimetric histochemical staining reac-
tions pioneered by Raspail in the early 1800s (127 ).
Binding of the 10-methyl homolog of ethidium bro-
mide to DNA was suggested in 1953 (128 ), and the
intercalative binding of acridine, proflavine, acridine
orange, and ethidium bromide to nucleic acids was
demonstrated over the next decade (129 –132 ). Ensu-
ing years saw the introduction of superior variants of
ethidium bromide, e.g., ethidium homodimer (133 );
intercalating dyes based on oxazoles [e.g., oxazole
yellow homodimer (YOYO)] and thiazoles [e.g., thia-
zole orange (TO) and thiazole orange homodimer
(TOTO)] that showed greater fluorescent enhance-
ment when bound to double-stranded DNA (dsDNA)
(134, 135 ); and dyes such as PicoGreen that show
greater selectivity for dsDNA vs RNA or single-
stranded DNA (ssDNA) (136 ).

Sensitive quantitative fluorescent DNA detection
in solution using ethidium bromide was described in
1964 (131, 137, 138 ). However, the application of in-
tercalating dyes to solid phase DNA detection, e.g., in
agarose gels, is controversial (139 ). Aaij and Borst de-
scribed this method in 1972 (140 ), inspired by the
bright orange bands observed when DNA was sepa-
rated in preparative CsCl-ethidium gradients, but an
article in the following year has been more commonly
cited (141 ).

Single-stranded nucleic acids can also be stained.
For example, acridine orange staining of single-
stranded virus RNA [tobacco mosaic virus (TMV)] was
described in 1961 (142 ). Subsequently, other dyes that
stain ssRNA, e.g., Cuprolinic blue–magnesium chlo-
ride (143 ), dyes for ssDNA including TOTO and
YOYO (144 ), and also dyes such as Hoechst 33258 that
are selective for dsDNA in the presence of RNA and for
dsDNA in the presence of ssDNA (145 ) have been de-
veloped. Triple-stranded nucleic acids will also bind to
ethidium bromide (137, 138, 146 ).

Generally, intercalating dyes show no sequence se-
lectivity, but some dyes, such as ethidium bromide,
bind to A-T base pair–rich regions (147 ), and TOTO
binds preferentially to 5�-pyrimidine-pyrimidine-
purine-purine-3� motifs in dsDNA (5�-CTAG-3� pre-
ferred binding site) (148 ).

Indirect noncovalent labeling via binding of fluorescent
binding agents to secondary-labeled nucleic acids. Sec-
ondary labeling of a nucleic acid with an antigen or
hapten provides a general route to indirect DNA label-
ing through subsequent binding of the secondary label
to a fluorescently labeled binding agent.

Reviews

678 Clinical Chemistry 55:4 (2009)



Biotin and iminobiotin are secondary labels that
provide a route to indirect fluorescent labeling of
nucleic acids. For example, biotin covalently linked
to a nucleic acid can be bound to an antibiotin anti-
body that is labeled with a fluorophore (34 ), a strepta-
vidinylated particle such as a latex bead containing
fluorophores (149 ), or a silica particle. Alternatively,
the biotin secondary label can be bound to rabbit
antibiotin antibody, and this in turn immunocom-
plexed with a goat antirabbit IgG labeled with a fluoro-
phore (150 ).

Fluorescein is antigenic, and so a route to indirect
fluorescent labeling a nucleic acid is to first label it with
fluorescein and then react the fluorescein hapten with
antifluorescein antibodies that have been labeled with a
fluorophore, e.g., fluorescein. This strategy was applied
to detect DNA using fluorescein labeled RNA. The fur-
ther indirect labeling of the RNA using fluorescein-
labeled antifluorescein antibodies produced a 5- to 10-
fold amplification compared to direct detection of
the fluorescein-labeled RNA probe (151 ). A similar
strategy has been developed for biotin and iminobiotin
ligands that will bind to fluorophore-labeled avidin or
streptavidin (38, 39 ).

Somewhat analogous is the use of a dipalmitoyl-
phosphatidyl secondary label that can be incorporated
into the wall of a liposome that encapsulates a fluo-
rescent dye. A dipalmitoylphosphatidyl-labeled DNA–
containing liposome encapsulating sulforhodamine B
exemplifies this strategy (152).

Indirect noncovalent labeling via binding of fluorescent
binding agents to nucleic acid hybrids. A range of mac-
romolecules show binding affinity toward nucleic acid
sequences. By labeling these macromolecules with a
fluorophore, it is possible to achieve indirect labeling of
a nucleic acid. The range of macromolecules includes
antibiotics (e.g., olivomycins) (153 ), histones (154 ),
antibodies (155 ), nucleases (e.g., deoxyribonuclease)
(156 ), inactive restriction endonucleases (e.g., EcoR1)
(68 ), and of course, nucleic acids. For example, poly-
adenylated RNA can be labeled by hybridization to
poly(U) (50 –1000 bases) that is covalently attached
to a dansylated 300-angstrom-diameter latex micro-
sphere (157, 158 ).

Fluorescently labeled monoclonal antibodies ca-
pable of distinguishing DNA-RNA hybrid complexes
from single-stranded DNA and RNA and double-
stranded DNA and RNA can be used to fluorescently
label a DNA-RNA hybrid (159, 160 ). This forms the
basis of the monoclonal anti-DNA:RNA hybrid cap-
ture assay strategy (161 ).

DEGREE OF LABELING AND LOCATION OF LABELS

Labeling methods have been developed that control the
location and number of fluorescent labels attached to a
nucleic acid. The ability to attach a fluorescent label at
a specific location has assumed importance for probes
used in energy transfer assays.

Double labeling has been achieved with 2 natural
fluorescent bases (e.g., pseudoU � dihydroU) (50 ),
a natural fluorescent base plus labeled base (e.g.,
Y � 3�-acriflavine) (162 ), or 2 labeled bases (e.g., 3�-
acriflavine � 5�-anthrinoyl) (50 ). More recently, dou-
ble labeling of the same oligonucleotide has assumed
particular importance in the context of energy transfer
probes, in which the donor and acceptor labels are
located sufficiently close to quench fluorescence signal
generation. Such probes are now widely used in the
form of TaqMan probes for quantitative PCR assays
(163 ), energy transfer primers for DNA sequencing
(164, 165 ), and molecular beacons (166, 167 ).

Conclusions

Fluorescently labeled nucleosides, nucleotides, and nu-
cleic acids continue to be important types of reagents
for biological assay methods and underpin current
methods of chromosome analysis, gel staining, DNA
sequencing, and quantitative PCR. These methods use
predominantly organic fluorophores, but nanotech-
nology is now offering new types of particulate fluoro-
phores in the form of nanoparticles, nanorods, and
nanotubes that may provide the basis of a new genera-
tion of fluorescent labels and nucleic acid detection
methods.
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