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An Algorithm to Determine Non-Perfect Colorings that arise
from Plane Crystallographic Groups

Ma. Louise Antonette N. De Las Pe~nas

Ateneo de Manila University, Quezon City, Philippines

mlp@mathsci.math.admu.edu.ph

Abstract: This paper presents a computer algorithm that assists us in

our research on non-perfect colorings of plane crystallographic patterns.

Introduction

A periodic or repeating pattern in the plane is a design having the

following property: There exists a �nite region and two linearly indepen-

dent translations such that the set of all images of the region when acted

on by the group generated by these translations produces the original de-

sign. In addition, it is assumed that there is a translation vector of mini-

mum length that maps the pattern onto itself. In addition to translations, a

periodic pattern may be mapped onto itself by any of the other plane isome-

tries: rotations, re
ections or glide re
ections. The symmetry group of

the pattern is the set of all isometries which map the pattern onto itself.

The classi�cation of periodic patterns according to their symmetry groups is

the two-dimensional counterpart of the system used by crystallographers to

classify crystals. Hence, these groups are called two-dimensional or plane

crystallographic groups.

In color symmetry, one of the problems that remain of interest today

is the study and classi�cation of colorings associated with plane crystallo-

graphic patterns. There are two types of such colorings. Given a plane

crystallographic group G as the symmetry group of a pattern with the col-

ors disregarded, the pattern is said to be perfectly colored if every element

of G e�ects a permutation of the colors of the pattern. In certain instances

when not all elements of G permute the colors of the pattern, we obtain a

non-perfectly colored pattern.

Perfect colorings have been completely characterized in [12]. However it

has just been recently that non-perfect colorings have been studied closely

with the framework for their study provided for in the paper "On Imperfect

Colorings of Symmetrical Patterns" by R. P. Felix and F. C. Gorospe. The

method provided by Felix and Gorospe determines for a given plane crys-

tallographic group G which is the symmetry group of an uncolored pattern,

all colorings where a subgroup H of G permutes the colors and a subgroup

K of G �xes the colors or is the symmetry group of the colored pattern.



With this theory of studying non-perfect colorings available, a classi�cation

of non-perfect colorings associated with plane crystallographic patterns may

be done systematically.

In this paper, we develop a computer algorithm to facilitate our classi-

�cation of non-perfect colorings of plane crystallographic patterns. There

are altogether seventeen(17) plane crystallographic group types that arise

from in�nitely repeating designs and patterns in the plane. To study in a

meaningful manner non-perfect colorings associated with each of these plane

crystallographic group types, it is important to consider the plane crystallo-

graphic group G which is the symmetry group G of the uncolored pattern,

the subgroup H of G consisting of elements which e�ect color permutations

and the subgroup K of G consisting of elements which �x all colors or is

the symmetry group of the colored pattern. Now, there are too many dif-

ferent subgroups of varying structures in the group G depending on the

index of each subgroup in the group. To complete the classi�cation of the

non-perfect colorings would entail studying as many examples of colorings

associated with each of the 17 plane crystallographic groups, which we take

as the group G; as well as looking at the colorings obtained by specifying

particular subgroups H; K in G: A computer program can surely make

the enormous task of listing such colorings manageable, and will allow us to

consider as many examples of colorings as possible.

In this paper, we give the computer algorithm that

(i) determines the colorings that arise from plane crystallographic groups for

which the elements of a given subgroup H of the symmetry group G of the

uncolored pattern permute the colors and the elements of a given subgroup

K of G �x the colors; and

(ii) determines for the colorings obtained in (i) the subgroup H 0 of G consist-

ing of all elements permuting the colors (H � H 0
� G) and the subgroup K 0

of G consisting of all elements �xing the colors (K � K 0); which are essential

in the classi�cation of non-perfect colorings.

A Setting for Coloring Symmetrical Patterns

Let G be a plane crystallographic group or a subgroup of a plane crystal-

lographic group. Consider a subset S of a fundamental region for G: The set

fg(S) = g 2 Gg is called the G-orbit of S: Our assumption is that the given

pattern can be obtained as the G-orbit of some subset S of a fundamental do-

main for G: This G-orbit of S and G are in one-to-one correspondence under

the rule g(S) ! g for each g 2 G; so that each element of the G-orbit may

be labeled by g: By assigning a color to each element of G; we assign a color

to each g(S): This assignment of colors is a coloring of the pattern. This

results in a partition P of G where a set in P consists of elements assigned
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the same color, thus, a coloring may be treated as simply a partition of G:

Suppose H is a subgroup of G: A partition P of G is said to be H-invariant

if P goes to itself under multiplication on the left by h 2 H:

The following example illustrates the coloring of a pattern we described

above. The uncolored pattern in Figure 1a has symmetry group G = D4 =

fe; a; a2; a3; b; ab; a2b; a3bg ; the group of all isometries of the Euclidean plane

which send the square to itself where a is a 90Æ counterclockwise rotation

about the center of the square, and b is a re
ection in the horizontal line

through the center of the square. If S is the triangular region labeled \e" in

Figure 1b, then for each g 2 G; the triangular region g (S) is labeled \g": If

we partition G into the sets fa3; b; a3bg ; fa2; a2bg and fe; a; abg; and assign

the respective colors red, white and blue to these sets, we obtain the coloring

in Figure 1c.

There are three groups that play a vital role in the analysis of a given

colored pattern: G the symmetry group of the uncolored pattern, H the

subgroup of G consisting of elements which e�ect color permutations, and

K the symmetry group of the colored pattern or subgroup of elements of G

which �x all colors.

We will assume that [G : K] is �nite andK is not the trivial group. It is in

this sense that we will consider the coloring of the pattern as a symmetrical

coloring. The groups G, H; K are such that K � H � G. If the group

G permutes the colors of the pattern, that is, H = G; then the coloring is

perfect. To analyze non-perfect colorings we will look at the case [G : H] > 1:

In our study, we will give particular attention to the case where [G : H] = 2

or 3: Given a color, its stabilizer in G will lie between H and K: Since H acts

on the set C of colors of the pattern, this action induces a homomorphism

f : H ! A (C) ; where A (C) is the group of permutations of the set C of

colors of the pattern. For h 2 H; f (h) is the permutation of the colors that

h induces. An element h is in the kernel of f if and only if f (h) is the

identity permutation, that is, h �xes all the colors. Thus the kernel of f is K

and the resulting group of color permutations f (h) is isomorphic to H=K:

Consequently, K is a normal subgroup of H:

If we consider the coloring as a decomposition of G resulting in the par-

tition P = fPi : i 2 Ig ; then H = fh 2 G : for each i 2 I; hPi = Pj for some

j 2 Ig and K = fk 2 G : kPi = Pi for all i 2 Ig:

A Method for Analyzing and Enumerating Colored Patterns

A coloring is perfect if and only if it is a coloring using left cosets of a

subgroup S in G: By such a coloring we mean a decomposition of G into the

left cosets of S in G, G = [
g2G

gS where each left coset is given a unique color.
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A perfect coloring is transitive and the resulting group of color permutations

is isomorphic to G=core S: Consequently, perfect colorings having a subgroup

K of G as the symmetry group of the corresponding colored pattern are the

colorings using left cosets of a subgroup J of G such that core J = K:

To obtain more general colored patterns, we look at colorings using right

cosets of a subgroup S in G given by G = [
g2G

Sg: Generally, these colorings

are non-perfect unless S is a normal subgroup of G: The normalizer of S in

G; NG(S) is the group of elements of G which permute the colors for such

colorings.

Theorem 1 Let G be a group and S a subgroup of G: Then a 2 G permutes

the set SnG of right cosets of S in G by left multiplication if and only if

a 2 NG(S); the normalizer of S in G: The resulting action of NG(S) on SnG

induces the homomorphism f on NG(S) where for each a 2 NG(S); f(a) is

the permutation sending Sg to aSg = Sag: The image of f is isomorphic to

NG(S)=S:

We mention in the previous section that given the symmetry group G of

an uncolored pattern, the subgroup H of G which e�ects color permutations

contains K as a normal subgroup of elements of H which �x the colors.

Consequently, H � NG(K): Now, the above theorem tells us that NG(K)

acts on the set KnG of right cosets of K in G by left multiplication. This

means that H also acts on KnG suggesting that KnG plays an important

role in the analysis of a colored pattern. In fact, we see in the next theorem

that in a coloring or decomposition G = [Pi if K �xes all the colors or

kPi = Pi for all k 2 K; then Pi is a union of right cosets of K in G:

Theorem 2 Let G be a group, X a non-empty subset of G and K a subgroup

of G. Then kX = X for all k in K if and only if X is a union of right cosets

of K in G:

Through the subsequent theorems, we pave the way to formulate a sys-

tematic approach to the study of non-perfect colorings. The action of H on

KnG is described and this action enables us to analyze a coloring better by

looking at the H-orbits of KnG of which there are [G : H]: Moreover, we can

see that the corresponding decomposition of KnG;KnG =
s
[
i=1

Bi is deter-

mined by the G-invariant partition fBi : i = 1; :::sg where each Bi consists

of right cosets of K in G whose union is a left coset of J in G and s = [G : J ]:

Theorem 3 Let G be a group and H;K subgroups of G such that K �

H � NG(K): Then H acts on the set of right cosets of K in G by left
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multiplication. Moreover, this action results in a group of permutations of

KnG which is isomorphic to H=K: An orbit of the action consists of right

cosets of K in G whose union is a right coset of H in G: The number of

orbits is [G : H] each of size [H : K] and for any orbit, the action of H on

the orbit is equivalent to the action of H on H=K by left multiplication.

Theorem 4 Let G be a group and K a normal subgroup of G: Let G act

on G=K by left multiplication. Then (i) If J is a subgroup of G contain-

ing K; then the left cosets of J in G determine a G-invariant partition

fBi : i = 1; :::; sg of G=K where the set of left cosets of K in J form one

block B (B = Bi for some i) and the other blocks are the sets gB where

g 2 G: (ii) If fBi : i = 1; :::; sg is a G-invariant partition of G=K and K is

in a block B; then the union of the left cosets of K in block B is a subgroup

J of G containing K:

Theorem 5 Let G be a group and K a subgroup of G: Let KnG =
s

[
i=1

Bi

be a decomposition of KnG into non-empty disjoint subsets Bi: For any

H;K � H � NG(K); the following are equivalent. (i) fBi : i = 1; :::; sg

is H-invariant under left multiplication by elements of H: (ii) For all h 2 H;

if Ka 2 Bi and hKa 2 Bj; then Kc 2 Bi implies hKc 2 Bj: Moreover, if

the orbits of H are Ok; k = 1; 2; :::; [G : H]; and (i) and (ii) hold, then for

each k; fBi \Ok : 1; :::; sg is an H-invariant partition of Ok:

Thinking of the Bi as colors, statement (i) is equivalent to saying that

H permutes the colors while statement (ii) says that if two right cosets are

assigned the same color, then their images under h 2 H should have the same

color. With this interpretation, it is clear why (i) and (ii) are equivalent.

Based on the above theorems(proofs of which are found in [4]) , we now

give the method of Felix and Gorospe that determines all H- invariant par-

titions of KnG or colorings for which H permutes the colors:

Let G be a group and H; K subgroups of G with K � H � NG(K).

1. Get the orbits of H under its action on KnG by left multiplication.

2. Color each orbit using an H-invariant partition of H=K under the

action of H on H=K by left multiplication. If the orbit is fKhg : h 2 Hg

where g 2 G, then Khg is given the color given to Kh in the partition of

H=K that is used. Any H-invariant partition of H=K may be used as long

as the set of colors used for the orbit is disjoint from the set of colors used

in the other orbits.

5



3. If a color to be used in an orbitO0has been used in another orbitO, then

the assignment of colors in O0 is completely determined by the assignment of

colors in O, i.e., if Ka 2 O and Ka0 2 O0 have the same color, then if h 2 H;

hKa and hKa0 should have the same color.

Algorithm and Implementation

In this section, we give the algorithm we used to classify non-perfect

colorings.

Initial condition: Given a plane crystallographic group G which is the

symmetry group of an uncolored pattern

Input: Select H;K subgroups of G from menu (K � H � NG(K))

Output: All colorings with H permuting the colors and K �xing the col-

ors of the corresponding colored pattern. Moreover, for each colored pattern,

we have:

1. The elements of the group G belonging to the same right coset of K

in G may be determined. Each right coset of K in G is assigned a unique

number from N = f0; 1; :::; [G : K] � 1g by the program. Every element of

G is accorded the number assigned to the right coset of K in G to which

it belongs. The program labels each triangular region corresponding to an

element g of G with the number assigned to g: Consequently, the regions

corresponding to the elements of G belonging to the same right coset of K

in G are given the same number.

2. The subgroup H 0 permuting the set of colors of the corresponding

colored pattern may be determined. Since [G : H] = 2 or 3 the program

determines if H 0 = G(perfect coloring) or H 0 = H(non-perfect coloring).

3. The subgroup K 0 �xing the colors of the current colored pattern may

be arrived at. The program labels the triangular region of the colored pattern

corresponding to the element g 2 G that �xes the colors.

We describe the algorithm as follows relevant to 1 - 3 above:

Step 1: Compute right cosets of K in G; KCos(i); i = 0; 1; :::; [G : K]� 1:

Assign a color j; j 2 f0; 1; :::; 15g to each right coset of KCos(i) in

G:This coloring is based on the method of Felix and Gorospe mentioned

in the previous section. There are at most 16 colors for this program,

each color is given a code j:

Step 2: Determine for each KCos(i); i = 0; 1; :::; [G : K]� 1 a right coset

representative ni:

Step 3: For every g 2 G; determine the coset no. i indicating the right

coset KCos(i) to which g belongs. Given g 2 G; compute h = gn
�1

i
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for every ni(i = 0; 1; :::; [G : K]� 1) obtained in Step 2. If h 2 K; then

g has coset no. i:

Step 4: Fix the vertices pt1; pt2; pt3 of a triangular fundamental region

S: For every g 2 G; apply g to pt1; pt2; pt3 giving ppt1; ppt2; ppt3;

vertices of g (S) : Draw image g(S) and label it with the coset no. i of

g obtained in Step 3.

Step 5: a) For every generator a of G; initialize color code array, CC[j] =

�1; j = 0; 1; :::; 15:

b) Take a generating region given by g0(S); g0 2 G0; G0
� G: Get

the coset no. i of g0 obtained in Step 3. Consider the color j; j 2

f0; 1; :::; 15g that is assigned to KCos(i) in Step 1. Apply a to g0(S)

to get the transformed image g00(S) where g00 = ag0 2 G: Now look at

coset no. k of g00 also obtained in Step 3 and determine the color j 0;

j 0 2 f0; 1; :::; 15g assigned to KCos (k) :

c) If CC[j] = �1 then let CC[j] = j 0 and go to b): If CC[j] 6= �1

check if CC[j] 6= j 0: If yes write H 0 = H and go to Step 6. If no, then

proceed.

d) Determine if you have considered every generating region g0(S) 8g0 2

G0: If no, then go to b). If yes, proceed.

e) Check if you have exhausted all generators of G. If yes, write H 0 =

G. Otherwise go to a).

Step 6: a) Consider an element g of G:

b) Take a generating region given by g0(S); g0 2 G0; G0
� G: Apply

g to g0(S) getting a transformed image g00(S) where g00 = gg0: In a

similar process mentioned in Step 5 b), obtain respective colors j; j 0 2

f0; 1; :::; 15g corresponding to the elements g0 and g00 of G:

c) If j 6= j 0; go to d). If j = j 0 then determine if you have considered all

generating regions g0(S) 8g0 2 G: If yes, label the region corresponding

to g with the no. obtained in Step 3 and go to d). Otherwise, go to

b).

d) Check if you have tested every element of G: If no, go to a). Oth-

erwise, end routine.

The algorithm above was implemented in the C programming language.

The program is designed to run on an IBM PC-based computer with a VGA

monitor. It uses the following header �les which contain fuction prototypes,
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data and constant de�nitions: group.h, key.h, menu.h, mouse.h, and the fol-

lowing C source �les: color2.c, colorings.c, menu.c andmouse.c with auxillary

data �les: tables.inc and colorings.dat.

The main program �le is colorings.c and the �les menu.c and mouse.c are

for the graphical interface support routines. The �le color2.c is an auxillary

routine to change the colors of the pattern currently shown in the screen.

tables.inc Refer to the color tables depending on speci�ed subgroups H;K

in G: colorings.dat Contain speci�cations regarding characteristics for the

subgroups H and K in G: (e.g. index of H;K in G)

We describe brie
y the computer representation of plane crystallographic

groups as de�ned in header �le group.h. For more information about details

of the computer program see [2].

The header �le group.h de�nes the elements of a group as a geometric

transformation matrix of dimension 3 X 3 in homogeneous coordinates, viz.

typedef double mat3x3[3][3];

A rotation or re
ection/glide re
ection speci�ed in this form may be

interpreted as the respective matrices.2
4
cos(�) �sin(�) 0

sin(�) cos(�) 0

x y 1

3
5

2
4
cos(2�) �sin(2�) 0

sin(2�) cos(2�) 0

x y 1

3
5

The upper 2 X 2 submatrix in the upper left correspond to a rotation

or re
ection of the point group and the lower (x; y) submatrix represent the

translation component in the x; y axis.

The identity isometry is represented by a matrix with 1.0 in the main

diagonal and zero elsewhere.

A point in a plane is represented as a row vector

typedef double point[3]; /* [ x y 1.0 ] */

where the third element is always 1.0.

A group is represented as an aggregate data type whose structure is shown

below.

struc grouprec

mat3x3 PG[16]; /* point group elements */

mat3x3 gen1,gen2; /* point group generators */

int order1, order2; /* order of the generators */

int nGen; /* number of generators */

int nPg; /* number of elements in the point group */

double Ux, Uy, /* translation vectors */

Vx, Vy;

double invUx, invUy, /* inverse of the translation vectors */

invVx, invVy

8



The point group PG is the �nite group consisting of rotations and mirror

re
ections having at least the origin of the plane unmoved.

Now, we give the following example that illustrates the output of the com-

puter program that implements our algorithm. We choose the largest plane

crystallographic group p6m in terms of its number of subgroups. It takes .54

seconds to generate approximately 240 colored elements of a crystallographic

group p6m(1coloring):

Input: G : plane crystallographic group p6m with generators a;60Æ coun-

terclockwise rotation about the indicated point p; b; a re
ection in a hori-

zontal line through p; and x; y translations whose vectors are indicated. (See

Figure 2)

H : plane crystallographic group p31m with generators a2; b; x; y

K :plane crystallographic group p3 with generators a2; x3; xy

Output: 28 colorings with H permuting the colors and K �xing the

colors of the corresponding colored pattern. (We give in Figure 2, 4 out of

the 28 colorings)

The computer program also gives the following information for these 4

colorings:

Coloring H0 K0

1 H < a2; x; y >�= p3

2 G < a2; x3; xy >�= p3

3 H < a2; b; x3; xy >�= p3m1

4 H < a2; x3; xy >�= p3

In addition, we give in the table below the number of non-perfect colorings

corresponding to a few other subgroups H;K of the plane crystallographic

group p6m: These have also been obtained by the computer program. Notice

that non-perfect colorings corresponding to * include the colorings 1, 3 and

4 in the table above.
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Subgroup H of G : [G : H] Subgroup K of H : [H : K] Non-Perfect

Generators Generators Colorings

*p31m : a2; b; x; y 2 p3 : a2; x; y 2 2

p3m1 : a2; b; x3; xy 3 2

*p3 : a2; x3; xy 6 8

cmm : a3; b; x; y 3 pgg : a3; ya3b; x; y2 2 26

pmg : ya3; a3b; x; y2 2 26

pmm : a3; b; x; y2 2 26

cm : b; x; y 2 25

cm : a3b; x; y 2 25

pg : yb; x; y2 4 236

pg : ya3b; x; y2 4 236

pm : b; x; y2 4 236

pm : a3b; x; y2 4 236

p2 : a3; x; y2 4 236

p2 : ya3; x; y2 4 236

Results and Conclusion

We have used the computer as a convenient tool to determine for an

uncolored pattern with symmetry group G and subgroups H;K of G with

K � H � NG(K); colorings where the elements of H permute the colors and

the elements of K �x the colors of the corresponding colored pattern. The

computer algorithm we have written to determine H 0 and K 0 consisting of

elements of G permuting and �xing the colors respectively, we have applied

to a speci�c plane crystallographic group G: Consequently, this has helped us

solve the problem of determining H 0 and K 0 for the cases where [G : H] = 2

and 3: The results of which are presented in [3]. For our future studies, we

would like to develop a general formula for H 0 and K 0 for the more general

cases where [G : H] > 3: It would still take some time for non-perfectly

colored patterns to be enumerated and classi�ed completely. However, with

the direction provided here using computers, the task of doing so seems

manageable.

Finally, it has to be mentioned that the computer program we have de-

veloped here can also be a useful tool in teaching abstract group theory.

By merely working with perfect/non-perfect colorings generated by the pro-

gram, students can identify symmetry groups, subgroups and their cosets,

determine which ones are normal subgroups and �nd the corresponding per-

mutation representation of the group using color symmetry. They can also

gain valuable insight into conjugacy, group extensions and other algebra con-

cepts.
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