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Pattern Recognition for
Mass-Spectrometry-Based
Proteomics
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Cavol E. Parker and Christoph H. Borchers

Abstract

Multiomic analysis comprises genomics, proteomics, and metabolomics leads to
meaningful insights but necessitates sifting through voluminous amounts of complex
data. Proteomics in particular focuses on the end product of gene expression - i.e.,
proteins. The mass spectrometric approach has proven to be a workhorse for the qualita-
tive and quantitative study of protein interactions as well as post-translational modifica-
tions (PTMs). A key component of mass spectrometry (MS) is spectral data analysis,
which is complex and has many challenges as it involves identifying patterns across a
multitude of spectra in combination with the meta-data related to the origin of the
spectrum. Artificial Intelligence (AI) along with Machine Learning (ML), and Deep
Learning (DL) algorithms have gained more attention lately for analyzing the complex
spectral data to identify patterns and to create networks of value for biomarker discovery.
In this chapter, we discuss the nature of MS proteomic data, the relevant AI methods, and
demonstrate their applicability. We also show that Al can successfully identify bio-
markers and aid in the diagnosis, prognosis, and treatment of specific diseases.

Keywords: proteomics, mass-spectrometry, artificial intelligence, pattern
recognition, diagnosis

1. Introduction

Central Dogma theory highlights the flow of information in most living systems
from DNA to RNA to Proteins, in which the four bases — adenine (A), cytosine (C),
guanine (G), and thymine (T) in DNA or Uracil (U) in RNA) — encode the 20 amino
acids that are the building blocks of proteins. Proteomics is essentially the study of
100 s to 1000s of proteins in a single shot, made possible by the advancements in
multiplexing technologies.

Proteins are the functional elements of biology, and the information encoded in
DNA or RNA represents a potential protein that may or may not actually be
manufactured by the cell. DNA sequencing has enabled the development of the field
of proteomics by allowing the prediction of the amino acid sequences of the encoded
proteins. The expression of a particular gene leads to the formation of a protein which

1 IntechOpen



Biomedical Signal and Image Processing - Advanced Imaging Technology and Application

plays a vital role in running the cellular machinery — from providing structural sup-
port to catalysis as enzymes, and even controlling gene expression. These proteins, in
turn, form the key components of biological pathways, and may be biomarkers or
targets for drugs. They can form complexes and operate through cellular pathways, in
which even a single point mutation can lead to a disease state.

Amino acids are the building blocks of peptides, and ultimately proteins, which are
then folded into unique three-dimensional shapes. Internal bonding within proteins is
essential for stabilizing their structure, and the final folded form is essential for the
functional activity. Through the years, innumerable techniques have been used to
determine the structure of proteins, but lately, artificial intelligence (AI) is being
increasingly adopted to determine the shape taken by proteins [1].

The Human Genome Project (HGP) mapped the genes to the entire protein col-
lection as expressed in the approximately 230 cell types [2]. Based on data available in
public databases [3], it is estimated that there are about 20,300-20,500 protein-
coding human genes. Legrain, et.al, [4] indicated that approximately 30% of these
genes lacked experimental evidence at the protein level.

The general applications of Artificial Intelligence (AI), Machine Learning (ML),
and Deep Learning (DL) to proteomics include annotation and MS spectral analysis.
This approach started in 2000, but gained momentum after 2006, when it was used
for peptide fragmentation [5, 6] and identification [7]. Al deviates from classical
statistical analysis in that it can handle huge volumes of data and makes fewer
assumptions.

MS data for proteins can be generated from peptides using either the ‘bottom-up”
approach [8], or from an intact protein using the “top-down” approach [9]. In 2013,
Swan, et al. suggested the use of machine learning for analyzing, and interpreting
large sets of MS data [10]. Two areas of applications highlighted included direct
analysis of mass spectral peaks, and proteins identified by sequence database search,
which involves relative protein quantification. The outcome from this analysis would
facilitate the identification of disease biomarkers and the classification samples as
applicable to diagnostics. Challenges include protein prediction, quantification, use of
ML, and dealing with small sample sizes.

In the early stages of in silico design, researchers generated computer models of
protein folding, and created 3D models for understanding drug binding mechanisms.
Now, Al is being increasingly used in proteomics, and this has gained increased
importance due to the current COVID-19 pandemic. This approach can be used to
generate vaccines and to keep pace with the rate at which virus is mutating. Thus, Al
is playing a larger role in figuring out the shape of proteins [1] with implications for all
aspects of drug research. Complex interactions between proteins in living systems can
be deciphered by feeding the right inputs to the algorithms, leading to more accurate
results by leveraging Al. ML algorithms can learn the relationship between sequencing
data and relating it to the function of the proteins. These algorithms can easily predict
mutations. As a result, protein engineering is experiencing rapid growth due to the
application of Al and Ml algorithms.

Proteomics Vocabulary Meaning

Amino acid A biological molecule with the general structure
NH,-HCR;-COOH

Peptide A short chain of amino acids, coupled thru the amide bond
NH,-HCR;-CO-NH-HCR,-COOH
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Proteomics Vocabulary Meaning

Protein A molecule composed of one or more chains of amino acids. Proteins
often function as part of protein complexes (see [11] for examples)

Post-translation modification A modification of a peptide (e.g. acetylation, ubiquitination,
phosphorylation, truncation) that occurs after the peptide or protein is
synthesized in the cell

Biomarker A biological molecule whose concentration is correlated with a disease
state or condition.

Mass Spectrometry (MS) A separation technique that separates charged molecules on the basis
of their mass-to-charge ratios (m/z values). It can be a qualitative or
quantitative technique.

MS is a gas-phase technique that can be interfaced with a separation
technique such as gas chromatography or liquid chromatography.

Matrix-assisted Laser One of the important “soft” ionization techniques used in biological
Desorption/Ionization (MALDI) MS. Sample is co-evaporated with a matrix — a compound that assists
in the transfer of one or more protons to the analyte.
Sample is dried, and is the analyte is ionized with a laser.

Electrospray ionization (ESI) One of the important “soft” ionization techniques used in biological
MS. The sample is ionized as it passes thru a high-voltage needle.
Typically, 2-3 protons are added to a peptide, while dozens of protons
can be transferred to a protein.

Tandem mass spectrometry (MS/ A MS technique that involves two stages of m/z-based separation.

MS) First, a mass spectrum is generated. Then, a selected precursor ion is
passed into a region of the instrument where it is fragmented, and
then a second mass spectrum is generated.

Uncovering biomarkers for drug discovery has been the driving force behind many
of the advances in proteomics [12]. The advanced applications of Al, ML, and DL
algorithms, have added a new dimension to the understanding of the causes of neu-
rological diseases such as Alzheimer’s and Huntington’s diseases, to the design and
development of monoclonal antibodies to fight various types of cancer, and to the
development of vaccines to combat infectious diseases. These biomarker studies, in
turn, have their roots in relating the presence or absence of certain proteins to diseases
states [13, 14]. The current trend is movement from a “one-size-fits all” model to
personalized/precision medicine approach, in which the treatments are based on the
needs of the specific individual or sub-populations [15].

2. Introduction to artificial intelligence

Central to artificial intelligence is the idea of a model. A model is a mathematical
representation of something. If the thing being modeled is physical, the model is
sometimes called a digital twin. The model can have several functions, e.g. it can
forecast the current situation into the future, it can calculate aspects of the situation
that are difficult to measure from other aspects that are easy to measure, and it can
represent sophisticated patterns and make them available for practical use in auto-
mating a variety of processes. Models based on the laws of physics or engineering are
known as first-principles models and are computational in nature. Models generally
have placeholders for numerical values. These parameters or coefficients must be
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determined in some way. For physics-based models, they must be experimentally
determined. In artificial intelligence, these coefficients are “learned” from data using
computational recipes called algorithms.

Al Vocabulary Meaning

Artificial Umbrella term for many diverse methods that convert a dataset into a model.
Intelligence (AI)

Machine Learning ~ Subset of Al that deals with numerical data, as opposed to image or language data.
(ML)

Deep Learning Modern term for Al that is largely synonymous with Al emphasizing that it uses
(DL) models of many “layers,” which is a sign of model complexity that became practical
after about 2010.

Neural Networks One of the many methods and model types available in Al and ML.

Training The process of determining model coefficients from data.
Inference The process of applying a trained model to a novel data point.
Labels The human-provided information that augments the dataset with the desired result

for each data point in the dataset. Using both the data and the labels, the training
process attempts to reconstruct the connection between them, allowing the model to
compute the output from the data.

Machine learning (ML) or artificial intelligence (AI) is the name given to a large
collection of diverse methods that aim to produce models given enough empirical
data. They do not require the use of physical laws or the specification of physical
characteristics. They determine the dependency of the variables among each other by
using the data, and only the data. That is not to say that there is no more need for a
human expert. The human expert is essential but the way the expertise is supplied is
very different to the first-principles model — for ML or AI the human domain knowl-
edge is supplied in the form of labels. Labels are human-generated manual annotations
to empirical data that identify aspects of relevance. In proteomics that might be the
name of a certain peptide whose mass spectrometry signature has been determined
and so on.

The subject of ML and AI has three main parts. First, it consists of many proto-
typical model types that could be applied to the data at hand. These are known by
names such as neural networks, decision trees, or k-means clustering; we will not dive
deeply into what these mean. Second, each of these types comes with several recipes,
called algorithms that tell us how to calculate the model coefficients from a data set.
This calculation is also called training the model. After training, the initial prototype
has been turned into a model for the specific dataset that we provided. Third, the
finished model must be deployed so that it can be used. It is generally far easier and
quicker to evaluate a model than to train a model. In fact, this is one of the primary
features of ML and AI that make it so attractive: Once trained, the model can be used
in real-time. However, it needs to be embedded in the right infrastructure to unfold its
potential.

Associated with ML and Al are two essential topics that are at the heart of data
science. First, the data must be suitably prepared for learning. Second, the resultant
model must be adequately tested, and its performance must be demonstrated
using rigorous mathematical means. This pre-processing and post-processing
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before and after ML or Al is applied to round out the scientific part of a data science
project.

While the field of Al began in the 19507, it has had a rocky evolution over time. It
is really only after about 2010 that the most recent push, known as deep learning
(DL), had wide-spread practical success. It is around 2015 that several tasks could be
handled by AI with a higher accuracy than by humans. This was and remains the most
important practical ramification that underlines the automation benefit of Al — if Al
can do something about as well as humans can do it, then we can get Al to do it more
rapidly and at lower cost.

The difference between the three subjects of Al, ML, and DL is very blurred and
most people use these terms as synonyms. As such, it is difficult to try to draw a
boundary line between them, as most authors will not agree on any one particular
demarcation. It is generally accepted, however, that ML deals only with numerical
data, so visual and language data are reserved for Al.

3. Protein identification

The proteome is the collection of all proteins present in biofluids, cells, and
tissues while proteomics is the study of the proteome. Essentially, in qualitative
proteomics, we ask which proteins are present and in quantitative proteomics we
ask in what quantities they are present. The first challenges appear when we realize
that not all proteins are present in every part of the body in equal measure, for
example, in a blood sample. Furthermore, some proteins are present in large
quantities while others are present only in trace amounts [16]. In fact, the most
common 22 proteins represent over 99% of the total proteome by mass but it is the
remaining tens of thousands of proteins that are potentially interesting as bio-
markers [17-20]. There is a practical challenge to resolve the interesting part of the
proteome in the presence of an overwhelming amount of what, in data analytic
terms, is background noise. The dynamic range of proteins in biofluids or cells or
tissues presents a challenge to the detection and identification of low-abundance
proteins.

3.1 Protein and peptide mass spectra

Working backwards, determining the amino acid sequence, and thereby the mass
of a protein, requires breaking it down to peptides. This can be accomplished by
chemical or enzymatic methods, with the resulting peptides being electrically charged
leading to partial ionization. They are then separated based on their mass-to-charge
(m/z) ratios, using electrical and/or magnetic fields [21]. The technology that makes
this practicable is called mass spectrometry (MS) which has been the driving force
behind proteomics [22, 23]. For the purposes of this paper, we will not go into the
physical, biological, or chemical mechanisms underlying this complex procedure. We
will simply treat MS as a mechanism that produces a spectrum like shown in Figure 1.
A peptide mass spectrum can be thought of as a plot of m/z values (on the x-axis)
versus intensities (y axis). Intensities are proportional to the amount of material at
that m/z ratio, as well as also the sensitivity of that peptide. It is immediately clear
from the spectrum in Figure 1 is that certain m/z values are present in the material
and others are absent.
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Figure 1.

Protein identification using peptide mass fingerprinting. The gel plug containing the protein was digested with
trypsin, and the peptides were extracted. A sequence coverage of 19% was obtained, allowing the identification of
this protein from a database search. Reprinted from [24], with permission.

3.2 Peptide mass fingerprinting

If the sample that was digested was pure, i.e., if it was generated from the digestion
of a single protein, the observed result would be a unique signature or fingerprint of
that protein. Protein identification of single proteins or simple mixtures can be done
by determining the molecular weights (MWs) of the resulting tryptic fragment ions
(if trypsin is the enzyme used to digest the protein) and comparing them to a library
of such signatures. This approach is called peptide mass fingerprinting [25].

3.3 Sequence-tag approach

More complex mixtures require additional separation steps. In about 2000, a
method was developed using two dimensions of mass spectrometry — called MS/MS or
tandem mass spectrometry. This is ideal for the analysis of peptides because a peptide
cleaves between adjacent amino acids. In this technique (called the sequence-tag
approach), a peptide is selected based on its mass in the first stage of mass spectrom-
etry (MS1), fragmented further (in MS2), and then mass analyzed again (in MS3).
The amino acid sequence can be manually “read” from the mass differences in the
spectrum or the peptide. The peptide molecular weight, and a few fragment ions are
often sufficient to identify a protein (Figure 2). In the automated version of this
approach, the peptide and its parent protein can be identified from a genome-based
library of protein amino acid sequences [26-29].
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Figure 2.

Protein identification using the sequence-tag approach. Identification of a tryptic digest of a gel-separated protein
using the sequence-tag approach. The molecular ion of an unknown peptide (at m/z 908) was selected and
fragmented. A nearly complete amino-acid sequence of the peptide T-A-V-D-T-V-F-R was obtained, which led to
the identification of the protein KAA1309/KAA1354. Reprinted from [24], with permission.

3.4 Fingerprinting by Al

The application of Al can vastly improve the untangling the complexity of
MS-based data analytics. Several database-search software programs are already in
widespread use for the interpretation of LC/MS/MS data. These include Mascot [30],
Sequest [31], and X!Tandem [32].

Mass spectral peaks can be characterized using their position on the horizontal
axis, width, and height. Therefore, a full spectrum s(x) is the summation of several
Gaussian distributions, one for each peak,

. —(x —ﬂi)2
i=1 !

where H; is the peak height, y; is the peak position, o; is the line width, N is the
number of peaks present in the spectrum, and &(x) is the noise. With this approxima-
tion, we readily obtain N tuples of (H;, y;, o;) that characterize the spectrum. If these
peaks correspond to peptides, this is the “peptide mass fingerprint” of the protein in
the sample. This can now be compared to a library of M reference spectra y;(x) for a
library index j. In fact, we look for the best linear combination of reference spectra
that explains the spectrum at hand, which is the optimization problem

M
min | s(x) — g ay;(x) (2)
7 ]:1

Numerically, we will want to add the additional criterion that this should be a
sparse fit, i.e., as many o; as possible should be equal to zero. As every y;(x) uniquely
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corresponds to a specific protein, this results in an identification of the proteins
present, with o; providing the relative abundance of each.

3.5 Temporal evolution of spectra

When a MS analysis is repeated at regular intervals in time leading to a time-series
analysis of spectra, i.e., s(x) — s(x, t), changes over time can be detected. This is
especially interesting as molecular effects in a protein’s environment can induce
structural changes that imply functional changes in that protein. Mass spectrometry
can detect such changes [33]. We have been able to observe changes due to protein
degradation as a function of time, and therefore recommend procedures to avoid
adverse conditions that could affect clinical results. In Figure 3, we display such a
time-series which we used to detect protein degradation during processing delays that

occur while a plasma sample is waiting to be processed in a clinical setting [34] or
during transport at room temperature (Figure 3) [35].
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Figure 3.

Heg(;;mﬂp representing 143 proteins quantified in at least 80% of the 50 plasma samples thawed (a) quickly on ice
(QU), or (B) overnight at 4°C (O/N). All values were normalized to the respective time point 0 h. missing values
are depicted in gray. Yellow areas represent log2 values from —o0.25 to 0.25, corresponding to an approximately
1.19-fold difference in protein concentration compared to the respective time point o h. blue and red colors indicate
concentrations that ave >1.2-fold lower/higher than the o h time point. Sections of the heatmaps with MRM assays

that are unstable or particularly stable are shown, and gene names represented by the surrogate peptides quantified
are given. (veprinted from Gaithers, et al. 2022 [34], with permission,).
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Al has specific impact on MS based proteomics, wherein it facilitates the assign-
ment of fragmentation spectra to actual peptide identifications, and thereby assisting
with the quantitation. This data integration has an influence across wide range of
proteomics applications including; expression proteomics, networks highlighting
complex protein interactions in cellular pathways, impact of post-translational modi-
fications (PTMs), and cross-functional relationships with other omics studies. PTMs
of proteins act as signals for localization, degradation, and other functions. Analyzing
PTM-bearing peptides is challenging considering the wide spectrum of isoforms, and
the complexity of their fragmentation spectra. They might not even follow the tryptic
peptide cleavage rules. Al applications can be adopted to solve this challenge and the
initial work was highlighted by Wang et al. in 2017 [36], and Yang et al. in 2021 [37].
This can also be applied to Major Histo Compatibility (MHC) Class I and II peptides.
The identification rates of these peptides were increased by several fold, as
highlighted by Li et al. in 2020 [38].

In addition to direct spectral analysis using DL, the application can also be
extended for predicting chromatographic separation retention times. This can be
accomplished by direct modeling or through transfer learning [39]. Combining DL for
predicting MS/MS spectra with retention times provides more value than experimen-
tal library search using Data Independent Acquisition (DIA) [40]. This in turn opens
the door for combining DI with real-time data acquisition. The image captioning
feature in DL can be used to sequence peptides from MS/MS without the need for a
database (DeepNovo) and has shown a 5-20% improvement over other DeNovo
sequencing tools [41]. The DIA-NN (Data Independent Acquisition Neural networks)
program is one example where deep neural networks were able to increase the sensi-
tivity of matching DIA fragmentation to in-silico derived spectral libraries [42].

There are challenges to MS based analysis of proteins and this pertains to accu-
rately recognizing the protein patterns. MS analysis is done by reviewing smaller parts
of amino acid sequences, and then this data is searched against a database, and
assigned to proteins. In doing so, some proteins are missed. This challenge can be
overcome by training neural networks to recognize protein patterns, with minimal or
no errors. Commercial software such as Prosit from the technical University of
Munich is available to accomplish this task. Al can also be used to analyze large
datasets, and Ml algorithms have been developed by scientists from Novo Nordisk
Foundation for Protein Research, and Niels Bohr Institute for recognizing protein
patterns in a rapid manner [43].

3.6 Analysis of mass spectra

Much of the data generated by “shotgun” (non-targeted) proteomics is predictable
by ML if adequate training data is available. ML methods can analyze the patterns in
the data to identify biomarkers, and DI can be used to extract additional features. Over
the past two decades, Al has been increasingly applied to bottom-up MS-based prote-
omics analyses. In this regard, ML algorithms, have been used for peptide identifica-
tion, predicting retention times [44-46], as well as for MS/MS spectrum prediction
[5, 47, 48]. The earliest ML tool for proteomics was the Percolator algorithm [7],
which was able to increase the number of identified peptides by 5-16% [49]. These
algorithms has found value in identifying peptides, and have also been used for
matching MS1-identified features with value for protein quantitation [50]. It was
Zhou, et al. in 2017 [51] who used DL for predicting fragmentation spectra of a
peptide from its sequence. DL approaches have gained much value for predicting
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peptide behavior from sequences, considering the availability of large amount of
peptides in databases such as PRIDE [52]. In 2020, Liu, et al. [53] showed that DL can
be used to predict full MS/MS spectra, as opposed to just backbone fragment
intensities.

In comparing experimental results from one sample to a library of reference data
that have themselves been obtained from experiments, we must be aware that mea-
surement errors and noise are ubiquitous. Both sides of the comparison are not just
imprecise, but some peptides might be missing in the data — peptides expected by the
library might be missing in our data sample, or peptides present in our data sample
might be missing in the library [54]. In practice, the matching is often done via a
similarity score [21]. Despite this development, the key challenge for mass spectrom-
etry in proteomics is to develop data analysis tools [8].

In some of the established analysis tool, outliers are removed by performing the
Grubbs test [55], but the foundational assumption of this test is that the data is
normally distributed. In the case of a normal spectrum, this is unfortunately not the
case, as most data points are at the low end of the relative abundance scale. We must
find other ways of cleaning up a spectrum and analyzing it.

Depending on the technique, the peaks in the mass spectrum will either be indi-
vidual peptides (in peptide mass fingerprinting), or fragment ions (in a tandem MS
(i.e., an MS/MS) experiment). The peak heights or intensities depend on the relative
sensitivities of the peptide or fragment ion and the abundances of that component in
the mixture under investigation. As with all experimental methods, the presence of
noise makes analysis difficult and can hide small peaks in the spectrum; the well-
known signal-to-noise (S/N) ratio challenge. Similarly, this analysis depends on the
availability of a library of known spectra for proteins or peptides — standards against
which the experimental spectrum must be compared. The scientific analysis of the
data must begin with an experimental spectrum by removing as much noise from it as
possible. There are two common ways of doing this: filtering and subtraction.

One method of filtering is to transform the spectrum into its companion domain by
using the Fourier Transform. We may then delete the low frequency (high-band-pass
filter) or high frequency (low-band-pass filter) features. We can also multiply the
frequency features by a factor (Wiener filter [56]) in order to suppress the noisy
elements not caught by band passing. If we have a more sophisticated idea of the
mechanism producing the noise, we could use a Kalman filter [57] as well, which is a
statistical estimation of the joint probability distribution of all independent variables
in an effort to extract a linear quadratic probabilistic model of the error. After this, the
spectrum is transformed back into its original form, again using a Fourier Transform.
It is now de-noised. These methods are very computationally efficient and have been
incorporated into in many different software tools. If the noise source is deemed to be
white noise (i.e., structure free), then these methods are probably the best one can do.

Subtraction is a method by which the noise signal is simply subtracted from the
real signal. For this, we must either measure the noise signal or model it in some
computational way. The way to experimentally measure the noise is to pass a well-
known pure protein source through the identical experimental setup and measure its
signal. This would best be done with several different pure proteins so that the signals
could be compared, and a holistic noise spectrum built up. Modeling the noise source
amounts to constructing a first-principles computer simulation of the process, which
may not be commercially feasible.

Unfortunately, real-world noise is always structured and never completely white.
Thus, removing structured noise consumes significantly more effort. This is the
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reason that so much developmental work in mass spectrometry instrumentation has
been focused on the physical apparatus in trying to get ever cleaner signals [58].
Nonetheless, these can always be cleaned further by data analytics.

4. Applications

In living systems, proteins can exert their functional influence either individually
and/or by interacting with other molecules. The latter can be studied in-depth by
using interactomics to pull down the complexes, and then analyzing the network of
molecules involved in the interactions. The data derived from this analysis needs to be
integrated and studied along with data from genomics, epigenomics, transcriptomics,
metabolomics, and lipidomics. Al is gaining increased attention both for biomarker
discovery, and validation, as well as for integrating proteomics data with other omics
data along with clinical data to derive a more complete picture of the patient’s health
status. Specifically the data can be used in predicting 3D structure of a target protein,
drug-protein interactions, and de novo drug design.

4.1 Biomarker discovery and validation

MS based proteomics can be leveraged to identify the “needle in the haystack”
along with quantitative data, with one or more unique proteins turning out to be the
biomarkers of choice for clinical diagnostics, and/or drug discovery — potentially
leading to development of therapeutics. Commencing the analysis with a large sample
set from multiple cohorts, proteomic datasets that can be assembled into correlation
maps [59]. This will allow us to identify and understand proteins that are co-regulated
and those that are connected in their functional pathways. ML can aid in uncovering
signals and predictors, leading to the creation of decision trees, and grouping classes
based on specific features. Methods are also available to differentiate between classes
based on unique features, and it assists in interpretability, and accurate classification
[60]. One pitfall to watch out for is the over-fitting arising from the training dataset.
Identification of biomarkers by ML needs rigorous oversight on classifying the posi-
tives, and negatives diagonally, with the incorrect ones being off-diagonal, and
reflected in the ROC curves.

Practical outcomes for applying ML techniques to proteomic data sets for circulat-
ing biomarkers in alcoholic liver disease was shown by Matthias Mann’s group [61].
Additionally, they also showed the classification of biomarkers for Alzheimer’ disease
from CSF in a three cohort study [62]. In their observations, they felt that the ML
methods performed well, with the only consideration being the data points used to
train the model. The next step would be to translate these potential biomarkers into a
clinical test, which will undergo a rigorous scrutiny by the regulatory agencies. If this
involves a multi-analyte panel, then the entire pipeline, including the ML method
needs to be simple, robust, explainable, and reproducible in order to obtain the
regulatory approval. In this regard the ML acts as the final step in filtering the
complex proteomics dataset into selectable biomarker candidates that can pass the
acid test of the regulatory bodies. One of the key considerations for the outcomes from
the AI based analysis is the chance of bias when the datasets are derived from a non-
diverse source [63]. Overcoming this bias will require the analysis of samples from
diverse populations.
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Although a few proteins in a cell are present in high abundance, it is the remaining
tens of thousands of proteins that are potentially interesting as biomarkers [17-20]. To
determine a biomarker of a disease, one has to be able to quantitatively compare
samples from patients with different disease states. This poses additional challenges,
the first is detection sensitivity, the second (if the method is to have clinical value), it
has to be reproducible in both intra- and inter laboratory studies [64, 65].

Al has been successfully applied to biomarker identification based on MS data
[10]. In a recent paper [66], machine learning was used to accurately predict the
survival of COVID patients on the day they were admitted to the hospital ICU, based
on the plasma concentrations of 10 proteins and 5 metabolites, as determined by MS.
While humans can visually detect differences in the concentration of a single protein
biomarker, but for sorting out the data from thousands of proteins, computerized
methods are needed. In effect, one is trying to detect a decision surface in n-
dimensional space. This is typically done by Principal Component Analysis (PCA).
Both the proteomics and metabolomics markers allowed the prediction of survival
separately, with accuracies of 83% (AUC 0.90) and 84% (AUC 0.93), respectively.
When combined, however, the concentration measurements of all markers yielded an
accuracy of 92% (AUC 0.97), see Figure 4.

When combined with real-world evidence (RWE) about diseases [67, 68] from
published literature, databases, images, patient health records, and clinical data
[69, 70] the overall insight lends itself well for the current trends in personalized/
precision medicine. From individual to cohorts, this analysis can be extended to
population studies, where ML, DL, and text mining lend themselves to the extraction
of relationships between all interacting partners [71, 72]. Knowledge graphs [73]
highlight the complex interactions in a biological network, and the insight derived
from analyzing these knowledge graphs are more insightful. Clinical Knowledge
Graphs (CKG) which contain millions of protein nodes, and greater than 100 million
connections were developed by Mathias Mann’s group [74]. This in turn has been used
to integrate knowledge from the proteome project [75], and ML and DL algorithms
can be leveraged to study these knowledge graphs.

4.2 Multiomics and proteomic data integration

Deriving a meaningful outcome that is representative of the final phenotype also
needs the interaction of other omics data along with that of the proteomics data.
Molecular interactions in living systems are complex, and proteins tend to interact
with nucleic acids, other proteins, lipids, and small molecules in exerting the cellular
function. Proteins bind to DNA or RNA which, in turn, has an influence on replica-
tion, transcription, DNA repair, and transport, translation, splicing, and silencing in
the case of RNA [76]. Protein-protein interactions are critical in many cellular pro-
cesses; for example in the use of therapeutic monoclonal antibodies [77], peptide
drugs [78], and chimeric antigen receptor T cells [79]. Proteins interact with lipids in
multiple ways and this has functional significance such as selective transport, and cell-
cell communication [80]. Finally, protein interactions with small molecules especially
drugs can be analyzed by leveraging mass spectrometry [81].

Elucidating these complex interactions of proteins with other molecules can be
accomplished by using baits in a pull-down assay [82]. These interactome analyses
generates complex data, and the application of ML, and DL technologies is still at the
early stages with most of it being used for data pre-processing [83]. As of today, the
lack of detailed analyses using Al techniques probably arises from the lack of adequate
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Figure 4.

Reliable and accurate prediction of survival upon hospitalization. (A) The performance of the support vector
machine classifier was used to predict COVID-19 patient survival based on proteomics (10 proteins),
metabolomics (5 metabolites), and combined multi-omics models (10 proteins +5 metabolites) and using all data
points (days o, 2, 7 after admission). (B) Receiver-operating chavacteristic (ROC) curves show that the best
performance was obtained with the multi-omics model (10 proteins +5 metabolites). (C) ROC curve analysis for
proteomics-only, metabolomics-only, and multi-omics models at different time points after admission (days o, 2,
or 7). Upper row — Proteomics model based on 10 proteins, middle row — Metabolomics model based on 5
metabolites, bottom row — Combined multi-omics model based on 10 proteins and 5 metabolites. (figure and figure
legend from [66], with permission).

sample sets of data, validation data, and the ability to interpret the data [63]. Ribo-
somal Binding Protein-RNA (RBP-RNA) interactions are of importance to drug dis-
covery and to other biological functions, because of their critical role in gene
expression [84]. The paradigms for studying these interactions include; binding site
prediction, binding preference prediction, and a merged approach that predicts both
the binding sites, and binding preference [85]. DL methodologies add value to the
study of RBP-RNA interactions by operating directly on the structure data [86, 87].
Proteins tend to operate through complexes to maintain the functional aspects of a
living organism. Understanding the interactome, will intern shed light on the complex
aspects of biology in these organisms, and also facilitate drug development. Lack of
structural knowledge of many proteins prevented the construction of an interactome.
This changed in 2020 when DeepMind released Al technologies termed “AlphaFold”,
and “RoseTTAFold”, that enabled the prediction of protein structures from the gene
sequences. Researchers from UT Southwestern and University of Washington, used
Al and evolutionary analysis to produce 3D models of eukaryotic protein interactions.
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Their study, published in Science ([88], identified 100 protein complexes, and pro-
vided structural models for 700 previously uncharacterized ones [89].

It has been estimated that 25% of cellular proteins are membrane proteins [90] that
can be either transmembrane or positioned on the periphery [91]. Cellular membranes
are one of the fundamental protective elements of the cell wherein the proteins are
embedded within the lipid bilayer. Besides offering structural integrity, these proteins
also have a functional role ranging from molecular transport, signal transduction, cell-
cell recognition, attachment, and enzymatic activity. Molecular dynamics (MD) sim-
ulations have been used to understand the lipid-protein interactions, as well as the
structure and dynamics as influenced by the proteins in the membranes [80]. Ion
channels are an example of protein-lipid structures formed in the membranes, and
they are directly or indirectly associated with cellular disorders indicative of certain
diseases. Hence these ion channels are used as targets for drug discovery and therapy.
Al techniques have proven to be of value in predicting the related genes, mutations,
and the relationship to certain diseases. Taju et al. has used DL methods for the
classification of ion transporters, and ion channels from membrane proteins, by
training the deep neural networks using the position-specific scoring matrix profile as
the input [92]. ML has been used to derive the feature vectors of ion channels includ-
ing SVMProt, and k-skip-n-gram methods, 188-, and 400 dimensional features,
respectively [93].

4.3 Structural proteomics

In addition to its value for biomarker discovery, and validation (Section 4.1), and
proteomic data integration from multiomics analysis (Section 4.2), Al also offers
immense value in structural proteomics. This arises from the fact that proteins have 4
levels of structure, namely primary, secondary, tertiary, and quaternary. The com-
plexity of the structure increases as the proteins assumes the tertiary, and quaternary
structure, and associates with other molecules. A typical protein contains 200-400
amino acids (Figure 5) and typically folds into a three-dimensional shape. It has been
estimated that the number of possible protein folds found in nature is anywhere from
a few hundred [97] to approximately 2200 [98] different folds. Protein misfolding
leading to aggregation of the prion protein is the cause of Creutzfeldt-Jakob disease
(i.e., “mad cow disease” in animals) and of cystic fibrosis, most often caused by one
missing amino acid (F508A) out of the ~1480 amino acids in the normal CFTR
protein. Protein misfolding may also be the involved in diseases such as Alzheimer’s or
Huntington’s disease. On the other hand, proteins such as antibodies can also be the
cure for viral and bacterial infections.

Molecular modeling and molecular dynamics simulations have already played a
large part in protein structure determination [99-103]. The breakthrough Alphafold
[104, 105] program will undoubtedly also play a large role in protein structure deter-
mination, although there are limitations on its applicability, particularly for dynamic
systems and stems where there can be multiple states of a protein [106, 107].

Crosslinking has played a key role in protein structure determination, both for
individual proteins and protein complexes. Crosslinks of different lengths, connecting
specific amino acid residues, and can be used as a molecular ruler [108] to determine
the distances between these residues in a folded protein. Crosslinks connecting resi-
dues that are too far apart in a structural model crosslinker can be used to “rule out”
certain structures (pun intended). Because a mass spectrum is essentially a plot of
intensity vs. mass, crosslinked peptides can be detected because they have higher
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Distribution of protein lengths in Escherichia coli, budding yeast and human HeLa cells. (TOP) protein length is
calculated in amino acids (AA), based on the coding sequences in the genome. (BOTTOM) distributions are
drawn after weighting each gene with the protein copy number inferred from mass spectrometry proteomic studies
[94], M9 + glucose [95, 96]. Continuous lines are Gaussian kernel-density estimates for the distributions serving as
a guide to the eye. (figure and figure legend from [11], http://book.bionumbers.ovg/how-big-is-the-average-prote
in/ #:~:text=A%20simple%2 0rule%2 00f%2 othumb,proteins%2 othat%2 omake%:2 ocells%2 owork.

molecular weights than unlinked residues. Crosslinkers have been specifically
designed for use with MS-based research [109-111]. Features included in these
crosslinkers include the use of stable isotopes to create unique and detectable signa-
tures (patterns) in the mass spectrum that can be detected by software programs
[110].

In addition to providing confirmation of MD results, MS-derived crosslinking data
has been used as constraints in molecular dynamics simulations [112], with the result
of reducing the conformational space and achieving the correct protein folding on
practical time scales [113]. We have applied this approach to structural studies of
prion monomers and p-oligomers [114], as well as native a-synuclein [115] and the
“unstructured” Tau protein [116].

5. Challenges of artificial intelligence

Applying Al to proteomics is challenging for some reasons that are unique to
proteomics [117] or medicine [118], and also for some reasons that are general [119].
The most important of these challenges are as follows. First, expertise in both Al and
proteomics is required and this is rarely available in the same individual and thus
requires interdisciplinary teamwork [120]. Second, data must generally be labeled or
annotated by human experts to prepare the data for AI model training, which is a
time-consuming and expensive activity that dominates the total cost of the project
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[121]. Third, models trained on readily available, small, or restricted datasets often fail
to generalize to real-life datasets and thus do not deliver value [122]. Fourth, Al
cannot be a “black box” and so either the model must be interpretable [123], or the
model’s output explainable [124] to provide actionable insights to a human actor.
Fifth, it is a misconception that Al is rapid and inexpensive because it is automated -
in fact, doing responsible and sustainable Al requires a long-term investment in
people and infrastructure.

Another challenge specific to proteomics, and biomarker discovery is the
overfitting of the training data for ML and DL data [63], where the model is biased
towards the information in the training data, leaving out the information in new and
unseen data. This could lead to differences in biomarkers identified in different
patient cohorts. This challenge could be overcome by leveraging the largest training
and testing data, followed by cross-validation on both the training, and unseen data.

Al is not a specific technology but rather an umbrella term for many different
methods. The overriding idea is the creation of a mathematical summary of empirical
data that can be used to interpolate and extrapolate beyond the empirical data to make
predictions about new situations. The dividing line between Al and related disciplines,
such as statistics, can get blurred.

6. Conclusion and future outlook

Al represents a powerful toolbox that represents substantial value for proteomics
and life-sciences in general. There are many applications already, as we have seen, and
many more will arise in the near future. These are necessarily inter-disciplinary efforts
that require experts from both Al and the domain. Notwithstanding the above men-
tioned challenges, the work for Al is dominated by preparing a suitable, large, clean,
representative, and significant dataset. This will make AI’s promise more accessible to
those who already have large amounts of data and the experts to prepare such data for
analysis.

The value of Al lies in automation and in making processes accessible in the first
place through its speed and automation. The most promising such direction is per-
sonalized medicine. If a single individual’s proteome could be inferred from a blood
sample in an instant, the troublesome proteins or the absent proteins could be identi-
fied, and suitable strategies developed for producing counter-agents or the missing
links, this could produce a treatment specific to that person as opposed to giving
everyone with some condition the same mass-produced treatment and hoping for the
best.
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