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In many turbulent flows, significant interactions between fluctuations and mean velocity gradients
occur in nonequilibrium conditions, i.e., the turbulence does not have sufficient time to adjust to
changes in the velocity gradients applied by the large scales. The simplest flow that retains such
physics is the time dependent homogeneous strain flow. A detailed experimental study of initially
isotropic turbulence subjected to a straining and destraining cycle was reported by Chen et al.
�“Scale interactions of turbulence subjected to a straining-relaxation-destraining cycle,” J. Fluid
Mech. 562, 123 �2006��. Direct numerical simulation �DNS� of the experiment of Chen et al.
�“Scale interactions of turbulence subjected to a straining-relaxation-destraining cycle,” J. Fluid
Mech. 562, 123 �2006�� is undertaken, applying the measured straining and destraining cycle in the
DNS. By necessity, the Reynolds number in the DNS is lower. The DNS study provides a
complement to the experimental one including time evolution of small-scale gradients and pressure
terms that could not be measured in the experiments. The turbulence response is characterized in
terms of velocity variances, and similarities and differences between the experimental data and the
DNS results are discussed. Most of the differences can be attributed to the response of the largest
eddies, which, even if are subjected to the same straining cycle, evolve under different conditions
in the simulations and experiment. To explore this issue, the time evolution of different initial
conditions parametrized in terms of the integral scale is analyzed in computational domains with
different aspect ratios. This systematic analysis is necessary to minimize artifacts due to unphysical
confinement effects of the flow. The evolution of turbulent kinetic energy production predicted by
DNS, in agreement with experimental data, provides a significant backscatter of kinetic energy
during the destraining phase. This behavior is explained in terms of Reynolds stress anisotropy and
nonequilibrium conditions. From the DNS, a substantial persistency of anisotropy is observed up to
small scales, i.e., at the level of velocity gradients. Due to the time dependent deformation, we find
that the major contribution in the Reynolds stresses budget is provided by the production term and
by the pressure/strain correlation, resulting in large time variation of velocity intensities. The DNS
data are compared with predictions from the classical Launder–Reece–Rodi isoptropic production
�B. E. Launder et al., “Progress in the development of a Reynolds stress turbulence closure,” J. Fluid
Mech. 68, 537 �1975�� Reynolds stress model, showing good agreement with some differences for
the redistribution term. © 2010 American Institute of Physics. �doi:10.1063/1.3453709�

I. INTRODUCTION

Many turbulent flows occur under nonequilibrium con-
ditions, when the turbulence does not have sufficient time to
adjust to changes in the velocity gradients, strains, rotation,
as applied by the large scales or the mean flow. Examples
include impinging turbulent boundary layers on propeller
blades,1 stagnation point flows, or the flow in the combustion
chamber of reciprocating internal combustion engines.2

Modeling scale interactions of turbulence in such scenario is
challenging both for Reynolds averaged Navier–Stokes
�RANS� and large eddy simulations �LESs�, where many
models assume some sort of equilibrium conditions3–7 even
though others include unsteady effects.8–13

Understanding turbulence that is out of equilibrium in
the time domain is aided if the spatial structure of the flow
can be simplified. Many basic topics in turbulence theory

have been clarified in the idealized conditions of spatially
homogeneous shear flows. For instance, fundamental issue of
isotropy recovery at small scales has been successfully ad-
dressed both experimentally14–17 and numerically.18–20 Tur-
bulence subjected to large-scale deformation has been con-
sidered in various papers since the seminal works of
Batchelor21 and Townsend.22 The first data have been ob-
tained in wind tunnel experiments, where properly designed
distorting ducts were employed to achieve the desired large-
scale deformation of spatially decaying turbulence.23–27

From a theoretical point of view, rapid distortion theory
�RDT� can be successfully employed whenever the charac-
teristic time scale of the mean flow is much faster than the
turbulent characteristic time scales �see, e.g., Refs. 28–32�.
Numerical experiments33,34 have studied the response of tur-
bulence to various types of straining flows. For instance, the
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RDT calculation by Girimaji et al.35 accounts for the effects
of a rotating shear on velocity fluctuations, while the DNS of
Yu et al.36 analyzes the effects of a periodic shear.

Experimentally, the response of nearly steady isotropic
fluctuations subjected to an irrotational two-dimensional
�2D� axisymmetric strain was addressed in Refs. 37 and 38,
while Chen et al.39,40 analyzed the response of turbulence
subjected to a straining-relaxation and destraining cycle. In
this experiment, a planar strain was applied to isotropic tur-
bulence in a water tank using a rapidly moving piston. Then
a relaxation phase allowed the turbulence to begin relaxing
toward isotropy, and then the deformation was reversed by
pulling the piston back in a “destraining phase” of the cycle.
2D particle image velocimetry �PIV� was applied to measure
velocities in a plane at various times during the cycle. How-
ever, the out of plane velocity was not available during the
cycle, nor could pressure terms of velocity gradients at the
viscous scale be evaluated to more fully characterize the tur-
bulence during the cycle.

In the present paper, direct numerical simulation �DNS�
reproducing the general conditions of the experiment of
Chen et al.39,40 are undertaken, but limited to smaller
Reynolds number. We thus consider the response of initially
isotropic turbulence subjected to a 2D time dependent strain
flow as done experimentally by Chen et al.40 Our aim is to
complete the description of unsteady forced turbulence ad-
dressing complex observables, which are not amenable to
experimental measurements. For instance, we can access the
full velocity gradient tensor which allows a systematic re-
duction of the coherent vortical structures or characterizes
the residual anisotropy at small scales. For modeling pur-
poses, we also address the Reynolds stresses budget. In the
strongly time dependent conditions we show that the produc-
tion term is balanced only partially by the pressure/strain
correlation, resulting in large time variation of velocity vari-
ances. While we also find that small scales are strongly an-
isotropic, the contribution of the pseudodissipation term in
the budget is still negligible due to its much smaller magni-
tude compared to the other terms during the distortion. To
shed more light into the various terms in the Reynolds stress
budget, we compare the DNS data against the behavior of the
pressure/strain term as predicted by a classical Reynolds
stress transport model �in this case, we use the Launder–
Reece–Rodi isotropic production �LRR-IP� model41�.

This paper is organized as follows. In Sec. II, the formu-
lation of Navier–Stokes equations for the homogeneous
strain flow is discussed. Motivated by the comparison with
experimental data by Chen et al.40 reported in Sec. III, in
Sec. IV, we present a detailed discussion of the role of the
initial condition and the issues related to the confinement
effects induced by the computational box. Sections V and VI
report our major findings in terms of lack of isotropy recov-
ery at small scales and Reynolds stresses budgets under
nonequilibrium conditions. In Sec. VII, we summarize our
conclusions.

II. HOMOGENEOUS STRAIN FLOW

We consider a turbulent flow in a confined box with an
imposed mean velocity U�x , t�. The total velocity v�x , t�
is decomposed into its mean and fluctuation u�x , t�, i.e.,
v=U+u. The mean flow is given by a homogeneous time
dependent, irrotational plane straining flow, i.e., U1�x , t�
=a1�t�x1 ; U2�x , t�=a2�t�x2, subjected to a1�t�+a2�t�=0 due
to incompressibility. The mean flow is in the plane �x1 ,x2�,
while x3 is the spanwise coordinate. In making connections
with the experiments �see Refs. 39 and 40�, we will also
denote x1 as the horizontal coordinate and x2 as the vertical
coordinate.

The equations for the turbulent fluctuations follow from
the decomposed Navier–Stokes equations, namely,

� · u = 0,

�1�
�u

�t
+ U · �u + u · �U = �u � �� − �� + ��2u + f .

In Eq. �1�, �=��u is the fluctuating vorticity, �= p /�
+u2 /2 is the modified pressure, and f is an external isotropic
forcing that we will discuss exhaustively in Sec. IV The di-
vergence of the Reynolds stresses does not appear in Eq. �1�
due to spatial homogeneity. The nonhomogeneous term
U ·�u can be eliminated by using the transformation of vari-
ables proposed by Rogallo.42 In the case of a planar 2D
strain, the transformation of variables reads �see Ref. 33� as

�1 = x1 exp�− f1�t�� ,

�2 = x2 exp�− f2�t�� , �2�

�3 = x3,

where f i�t�=�0
t ai�t��dt� is the total deformation. Using the

transformation �2�, the Navier–Stokes equations can be writ-
ten in the deforming frame where the nonhomogeneous term
is absorbed into the time derivative which transforms accord-
ing to �t→�t−U ·�u. Therefore,

� · u = 0,

�3�
�u

�t
+ u · �U = �u � �� − �� + ��2u + f .

In Eq. �3�, the differential operators are defined in the trans-
formed space by Eq. �2�, namely, �= ���1

e−f1 ;��2
e−f2 ;��3

�.
The differentiation includes time dependent metric factors
which account for the deformation of the computational box
in physical space. For instance, a domain of sides �1

0��2
0

��3
0 in physical space, after a time t, will be deformed into

a box of edges �i�t�=�i
0efi�t� �no summation over the index i

is intended�. Since the mean flow is irrotational, the compu-
tational box in physical space is stretched and squeezed with-
out angular deformation. Equation �3� is now homogeneous
in the fluctuations and highly accurate pseudospectral meth-
ods based on Fourier decomposition can be adopted for their
numerical solution. In fact, in Fourier space, the divergence-
free condition can be easily imposed by solving the Poisson
equation for the modified pressure,
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�2� = � · �h + f� − �u:�UT − �U:�uT, �4�

where we have defined the nonlinear term as h=u��.
Note that in Fourier space, wavenumbers depend on

time �see Ref. 43� k̃ni
�t�=kni

e−f i�t�, where kni
=2�ni /�i

0,
ni=−Ni /2, . . . ,Ni /2−1 and Ni denotes the number of Fourier
modes in the ith direction �see Table I for details�. Time
integration is performed by a low-storage fourth order ex-
plicit Runge–Kutta method, while the diffusive term is com-
puted implicitly �see Ref. 44 for further details�.

The initial conditions for the homogeneous strain simu-
lations are provided by an ensemble of statistically steady
turbulent fields obtained by forced DNS of homogeneous
isotropic turbulence. Once initial conditions with targeted
characteristics are achieved �see Sec. IV�, the mean flow is
switched on and the response of turbulent fluctuations to the
imposed large-scale deformation is computed. The straining
cycle is selected, specifying the mean velocity gradient
a�t�=a1�t�=−a2�t�. In the simulations listed in Table I, the
cycle has been chosen to match the experimental data of
Chen et al.40 In fact, the experimental data–displayed as
symbols in Fig. 1—give the nondimensional strain rate
S�=ak0 /�0 as a function of the nondimensional time
t�= t�0 /k0. In these definitions, k0 and �0 are the turbulent
kinetic energy �tke� and the energy dissipation rate of the
isotropic turbulence initial condition, respectively. The ex-
perimental data have been interpolated with piecewise
polynomials—lines in Fig. 1—which are then used to evalu-
ate the applied strain in the computational units of the simu-
lations. Both k0 and �0 are known from the initial condition
and, for any time t, the strain in the DNS units is computed
as a�t�=S��0 /k0.

Before entering into more quantitative comparisons in
Sec. III, we present in Fig. 2, some snapshots of the simu-
lated coherent vortical structures along the cycle, providing a
visual impression of the flow which might help the reader in
appreciating latter discussions. This is for the simulation case
�2dh� of Table I. The eduction criteria of the coherent struc-

tures are based on the velocity gradient tensor invariants Q
and R,45 combined in the discriminant D=27 /4R2+Q3. This
parameter provides good results when applied to flows char-
acterized by intense mean velocity gradients.46,47 We choose
surfaces corresponding to the �positive� root-mean-square of
D. Panels �a�–�c� of Fig. 2 show the vortical structures at
three time instants during the straining phase. Initially, the
flow is characterized by wormlike structures typical of iso-
tropic turbulence. This is followed by stretching in the hori-
zontal direction and contraction in the vertical one under the
action of the applied strain. Consequently, the structures are
tilted and aligned in the direction of the positive strain and
vortex stretching is effective, resulting in large fluctuations in

TABLE I. Summary of parameters of the various DNS. Runs �2a�– �2e� refer to simulations with kf =2. The
aspect ratio of the initial box is changed systematically for cases �2a�– �2d�. Case �2dh� has a higher Reynolds
number. Results for run �2e� have been averaged over 20 different initial conditions. Cases labeled �5a�– �5d�
are for forcing at kf =5, with computational boxes of different sizes. The last case, simulation 10�a�, refers to a
forcing at kf =10. The Taylor Reynolds number is defined as Re	=urms	 /�, where urms= �2 /3k0�1/2,
	0=10�k0 /�0, and k0= 1

2 �uiui� denotes the turbulent kinetic energy.

Run �1
0��2

0��3
0 N1�N2�N3 kf Re	0

k0 �0 L0 
0

�2a� 2��2��2� 256�48�72 2 35 1.49 0.97 0.95 0.038

�2b� 2��4��2� 256�96�72 2 33 1.33 0.91 0.91 0.038

�2c� 2��6��2� 256�144�72 2 33 1.44 1.03 0.88 0.038

�2d� 2��8��2� 256�192�72 2 40 1.52 1.00 0.93 0.037

�2dh� 2��8��2� 768�576�216 2 80 1.39 0.82 0.71 0.011

�2e� 2��8��2� 256�192�72 2 40 1.45 0.98 0.91 0.037

�5a� 2��2��2� 512�96�144 5 33 0.90 1.00 0.40 0.019

�5b� 2��4��2� 512�192�144 5 33 0.90 0.98 0.39 0.019

�5c� ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

�5d� 2��8��2� 512�384�144 5 33 0.91 1.00 0.39 0.018

�10a� 2��2��2� 1152�216�324 10 40 0.64 1.00 0.20 0.008

tε0/k0

S
* =

a
k 0/

ε 0

0 0.2 0.4 0.6 0.8 1
-10

-8

-6

-4

-2

0

2

4

6

8

10
|- - Initial - -| - - Plane straining - -| - Relax. -| - - Plane destraining

FIG. 1. Evolution of dimensionless strain rate S�=ak0 /�0 as a function of
dimensionless time t�= t�0 /k0. Experimental data �symbols� have been inter-
polated using with sixth order piecewise polynomials �solid line�. The
straining cycle is characterized by four phases: initially isotropic during 0
� t��0.24; plane straining during 0.24� t��0.6; relaxation phase 0.6� t�

�0.72; and plane destraining phase during 0.72� t��0.92. Data are made
dimensionless with k0 and �0, the turbulent kinetic energy and the energy
dissipation rate of the turbulence during the initial condition, respectively.
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the vertical and spanwise velocity components �this will be
examined in more detail later�. At the end of the straining
phase, turbulence is strongly anisotropic as revealed by the
preferential alignment of vortical structures �and the large
differences in the three velocity variances to be seen later�.
During the relaxation period, fluctuations are only stirred by
the external forcing and isotropy recovery eventually takes
place. Compare, for instance, panels �c� and �d� in Fig. 2
which correspond to the end of the straining phase and the
end of the relaxation period, respectively. The signature of
reisotropization is clear. The preferential alignment of the

coherent structures in the longitudinal direction is progres-
sively lost and structures resemble much more the initial
isotropic state even though, as we will discuss more quanti-
tatively later, a fully isotropic state is not reached at the end
of the relaxation phase. When the deformation is reversed
during the destraining phase, the structures quickly align in
the direction of the positive strain, see panels �e� and �f� of
Fig. 2, where two snapshots corresponding to the peak of the
negative strain and to the end of the destraining phase are
shown, respectively. During the destraining phase, vortex
stretching produces fluctuations in the horizontal velocity

FIG. 2. Snapshots of the coherent vortical structures during the straining cycle visualized as isosurfaces of the invariant D=27 /4R2+Q3. The invariants Q and
R are the coefficients of the characteristic equation of the velocity gradient tensor. Isosurfaces of D�0 correspond to region where the local relative motion
of two fluid particles is spiraling in a plane and are stretched in the orthogonal direction. In the snapshots isosurfaces corresponding to the value
D= �D2�1/2 are shown. From top to bottom and from left to right: initial isotropic state �a�, peak of the applied straining �b�, maximum deformation �c�, end
of the relaxation phase �d�, peak of the negative straining �e�, and end of the destraining phase �f�. At the bottom right panel, the position of the snapshots
during the straining cycle is indicated by black squares.
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component in agreement with the observed growth of its
variance, as discussed in Sec. III.

An alternative and more quantitative description of the
small-scale structure of the velocity gradient tensor is pro-
vided by the joint probability distribution function �PDF� of
the R-Q invariants45–47 in Fig. 3. The events with D�0 and
R�0 correspond to a locally stable spiraling motion, i.e.,
vortices. The half plane D�0 identifies strain-dominated
motions, both unstable and stable R0, respectively. Panels
from left to right and from top to bottom in Fig. 3 correspond
to the snapshots reported in Fig. 2. Initially, isotropic turbu-
lence is characterized by the typical tear-drop shape of the
joint PDF in the R-Q plane. Successively when fluctuations
are subjected to the deformation imposed by the mean flow,
the shape of the joint PDF is altered. During the straining
phase, relatively more likely events occur in the unstable
focus/stretching region �stable vortices� �see, for instance,
the top right panel of Fig. 3 corresponding to the end of the
straining phase�. At the same time, the probability of events
in the stable focus/stretching region and unstable node/
saddle/saddle �vortex sheets� is reduced. After this stage, dur-
ing the relaxation phase, the signature of isotropy recovery
can be seen in the reappearance of the typical tear-drop shape
�see bottom left panel of Fig. 3�. Afterward, when the strain
is reversed, the shape of the joint PDF is altered with the
same trend discussed during the straining phase. Since the
invariants R and Q are invariant under coordinate system

rotation, it makes sense that this description does not distin-
guish between effects of deformation in x1 or x2 directions.

III. COMPARISON WITH EXPERIMENTAL DATA

We begin with a presentation of the results of the most
physically realistic simulation case, namely, case �2dh� of
Table I, and a comparison against the experimental data of
Chen et al.40 The DNS is limited to moderate values of the
Reynolds number, ranging from an initial value of Re	0

=80
to a maximum value of Re	=130 during the cycle. This
is to be contrasted to the experimental Reynolds number
Re	=400 of the initial condition in the experiment.

Figure 4 shows the energy spectra of the initial condi-
tions normalized in Kolmogorov units �panel �a�� and large-
scale units �panel �b��. The symbols refer to the experimental
data, while lines show the initial spectra of the various DNS
that differ on how the forcing is applied. Different forcings
are parametrized by the wavenumber kf where its spectral
density peaks �see Table I and Eq. �5��. The details of these
cases will be discussed later in Sec. IV A. An inertial-like
range seems to develop only for the highest Reynolds num-
ber DNS data set, i.e., run �2dh�, which is the case considered
in the comparison. When the spectra are rescaled with
Kolmogorov variables, as expected some collapse is ob-
served in the high wavenumber range. Still, the experimental
data did not show a decrease in the viscous range due to the

FIG. 3. �Color� Joint probability density function of the R-Q invariants of the velocity gradient tensor. The sample variables reported on the axis of the plots
have been normalized with �R2�1/2 and �Q2�1/2, respectively. Time along the straining cycle is increasing from left to right and from top to bottom. Different
panels correspond to the snapshots shown in Fig. 2. Top left initially isotropic turbulence, top center maximum strain intensity, top right end of the straining
phase, bottom left end of the relaxation phase, bottom center maximum negative strain, and bottom right end of the destraining phase.

065104-5 Direct numerical simulations of turbulence Phys. Fluids 22, 065104 �2010�

Downloaded 10 Jan 2012 to 151.100.85.27. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



effects of experimental noise of the PIV at the largest re-
solved wavenumbers. When the data are made dimensionless
in terms of the integral scale quantities, a collapse is not seen
due essentially to inherent differences at the level of the larg-
est energy containing scales of the flows. In the experimental
setup, the initially statistically steady isotropic turbulence is
realized in a water tank by means of spinning grids. As dis-
cussed by Chen et al.,40 experimental data are available only
for an intermediate range of scales since the largest scales are
not spatially resolved in the finite size PIV measurement
window. Also, at the largest scales the experiment is not
expected to be completely isotropic due to confinement ef-
fects of the tank walls. See Ref. 40 for more details.

Even though the match of the two initial conditions is
clearly incomplete, especially in the energy containing range,
in Fig. 5�a� we compare the response of turbulence in terms
of the horizontal and vertical velocity variances, normalized
with corresponding values of the initial condition. Compar-
ing experiments �symbols� and DNS �lines�, the trends are
seen to be similar. The amplitude of the variance in the hori-
zontal direction is well reproduced until t�0 /k0�0.6. The
peak of �u1

2� and �u2
2� occurs at comparable times in the ex-

periments and the DNS. During the relaxation period �u1
2� is

almost constant in the experimental data, while it increases
more rapidly in the DNS. This is due to a more intense
redistribution of energy among the velocity components

given by the pressure/velocity correlation since the vertical
component is more energetic in the DNS than in the experi-
ments. As is evident, the amplitude for the vertical velocity
component differs significantly, with peak variance of the
DNS exceeding that of the experiment by almost a factor of
2, i.e., rms values differ by about 40%.

In Fig. 5�b�, we compare the normalized turbulent ki-
netic energy production rate, P=−a1�t��u1

2�−a2�t��u2
2�. As for

the vertical velocity variance, the amplitude of the produc-
tion is larger in the DNS when compared with experiments
even though the position of the production peak is in good
agreement. Notably, at the end of the relaxation phase, as
soon as the mean flow is reversed, the DNS data show nega-
tive production, meaning that kinetic energy is transferred
from the fluctuations to the mean flow �backscatter�. This
particular feature of nonequilibrium turbulence was also ob-
served in the experimental data even if with a lower ampli-
tude. In Fig. 6, a measure of the large-scale anisotropy of
turbulent fluctuations is presented. To compare with the ex-
perimental data, a 2D surrogate of the Reynolds stresses de-
viatoric tensor is used, namely, b11

s = �u1
2� / ��u1

2�+ �u2
2��−1 /2.

Note that this observable does not imply any normalization
with the initial data and vanishes in a purely isotropic en-

FIG. 4. Comparison of the energy spectra of initially isotropic turbulence.
Experimental data �symbols�. DNS data �lines� are reported for different
cases: �2e� dotted line, �2dh� solid line, �5d� dashed-dotted line, and �10a�
dashed line �see Table I�. �a� Energy spectra in Kolmogorov viscous units,
the forcing power spectral density F is reported for case �2dh� �long dashed
line�. �b� Same data normalized with large-scale variables.

FIG. 5. �a� Comparison of the horizontal and vertical variances, normalized
with their initial values. Experimental data, symbols: �u1

2� / �u1
2�0 �squares�

and �u2
2� / �u2

2�0 �triangles�. DNS data: �2dh� solid lines. �b� Turbulent kinetic
energy production P=−a1�t��u1

2�−a2�t��u2
2� normalized with the dissipation

rate of the initial condition �0. Experimental data �squares�. DNS data: �2e�
�circles�, �2dh� �solid line�, �5d� �dotted line�, and �10a� �heavy dashed line�.
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semble. The agreement between DNS �lines� and the experi-
ments �symbols� is very good, indicating that the degree of
anisotropy is comparable between DNS and experiments
when expressed in a dimensionless fashion.

Considering again the initial energy spectra normalized
in terms of the tke k0 and dissipation rate �0 �see Fig. 4�,
experimental and numerical data show a substantial differ-
ence. The energy containing range of the DNS is shifted
toward the largest scales where corresponding experimental
data are, unfortunately, not available. Since the response of
turbulence in terms of velocity fluctuations and energy pro-
duction is dominated by these scales, it is reasonable to ex-
pect substantial differences when comparing the two data
sets. However, when we compute the Reynolds stresses de-
viatoric tensor, we are comparing the velocity variance of a
single velocity component with the turbulent kinetic energy.
This normalization measures a relative evolution of the ve-
locity variances which is perhaps less dependent on the ab-
solute position of the energy containing range.

The comparison between experimental and DNS data
poses some important questions about the response of turbu-
lence in a box, when an external large-scale deformation is
imposed. In particular, the response of the largest eddies and
possible confinement effects of the periodic computational
box need to be examined in more detail. This is the subject
of Sec. IV, before proceeding further to any physical analysis
of the numerical data.

IV. INITIAL CONDITION AND CONFINEMENT
EFFECTS

Motivated by the initial comparisons with experimental
data in Sec. III, we now present a systematic analysis of
finite size effects associated with the computational box. The
box size can be compared with the integral scale of the tur-
bulence in the initial condition. The latter is determined by
the position of the applied forcing term f, which can be char-

acterized by its spectrum. Actually, the wavenumber kf

where the forcing spectrum peaks is expected to fix the inte-
gral scale of the resulting turbulence.

A. Forcing

The initial conditions for the homogeneous strain simu-
lations are provided by companion DNS of homogeneous
and isotropic turbulence. Statistically steady isotropic fields
are obtained by an external random forcing term f, delta-
correlated in time. We adopt the scheme described in Ref. 48.
Unlike forcing in a few wavenumbers with fixed injection
rate, or linear forcing scheme,49,50 in the method of Ref. 48,
the forcing is uncorrelated with the turbulent field. The en-
ergy injection rate can be controlled only by the forcing vari-
ance according to �f ·u�� �f2� �see Ref. 48�. With this type of
forcing, the energy injection rate can be constant in time
even during applied straining. The forcing is given in Fourier

space by the coefficients f i
̂�k , t�= f i

0F1/2�	k	�exp�ı��, where
f i

0 is the amplitude selected to achieve the desired energy
injection rate, � is a random variable with uniform distribu-
tion in �0,2��, and F�	k	� is the forcing spectral density
given by

F�	k	� = 
�k/kf�6exp�3�1 − �k/kf�2�� , 0 � k � kf

Ckk
−5/3, kf � k � k1

C
 exp�− ��k − k1�� , k � k1.
� �5�

In Eq. �5�, the constants Ck and C
 are chosen to make the
function F�	k	� continuous at k=kf and k=k1. The value kf

determines the position where the forcing has its peak,
k1=1.5kf and �=0.25.

The initial energy spectra of velocity fluctuations
achieved by means of Eq. �5� is shown in Fig. 4�a� for dif-
ferent values of kf and Reynolds number. For comparison we
have also plotted the forcing spectral density F for case
�2dh�.

Desired targeted initial conditions can be achieved by
tuning the properties of the external forcing. In a statistically
steady ensemble, the energy dissipation rate is controlled by
the large-scale energy injection rate. In the simulation units,
it is fixed approximately to �0�1. The initial value of the
integral scale can be tuned by the forcing wavenumber kf

�see Table I for values achieved�. Once �0 and kf have been
selected, the Taylor Reynolds number is fixed by the kine-
matic viscosity �.

B. Finite-size computational domain effects

In this subsection, we address the finite size effects in-
duced by the computational domain. We show that the re-
sponse of turbulence to the imposed mean strain is greatly
affected by the value of the initial integral scale in relation to
the size and aspect ratio of the computational box. We dis-
cuss the various simulations reported in Table I, which differ
for the position of the forcing wavenumber kf, the aspect
ratio of the box, and Reynolds number. The first lines of
Table I refer to a set of simulations where the forcing wave-
number is fixed, kf =2, and the aspect ratio of the box is
systematically changed at fixed Reynolds number �cases

|- - Initial - -| - - Plane straining - -| - Relax. -| - - Plane destraining

tε0/k0

b 11s

0 0.2 0.4 0.6 0.8 1
-0.5

-0.25

0

0.25
|- - Initial - -| - - Plane straining - -| - Relax. -| - - Plane destraining

FIG. 6. 2D surrogate of the deviatoric Reynolds stresses tensor b11
s �see text

for the definition�. Experimental data �squares� are compared with DNS data
�2dh� �solid line�.
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�2a�– �2d��. The data labeled �2dh� refer to kf =2 in the larg-
est box and at a higher value of the Reynolds number using
a large number of grid points. Case �2e� has been run at a
lower Reynolds number but for a large number of ensembles
for better statistical convergence. This case is computed for
an ensemble of 20 different initial conditions. This data set
provides a measure of sensitivity to statistical convergence
compared to the other simulations, where data from a single
realization are presented. The next entries of Table I report a
set of simulations where the forcing wavenumber has been
shifted toward the smallest scales, i.e., kf =5 and kf =10 for
runs �5a�– �5d� and �10a�, keeping the Reynolds number
constant. As a general comment, as the integral scale L0 is
progressively reduced, i.e., kf is shifted toward the highest
wavenumbers, the Kolmogorov scale 
0= ��3 /�0�1/4 becomes
smaller. This, coupled with the need to still resolve the large
scales of the flow at wavenumbers below kf, explains the
relatively high numerical resolution needed for our DNS
even for a relatively small Reynolds number.

In Fig. 7�a�, we show the time history of the horizontal
�1�t� and vertical �2�t� computational box lengths during

the straining cycle. Data are normalized with the correspond-
ing values at t=0. During the straining phase, the box is
stretched by a factor of 5 in the horizontal direction and
compressed by the same ratio in the vertical direction. Dur-
ing the destraining phase, the deformation is reversed almost
completely. A rendering of the computational box in physical
space has already been provided before in Fig. 2, where
snapshots of the flow were visualized along the cycle. The
same picture holds in Fourier space where the wavenumber

in the vertical direction k̃2�t� first increased and then de-
creased, while the wavenumber in the horizontal direction

k̃1�t� have an opposite behavior. In Fig. 7�b�, we show

min k̃2�t� during the cycle for the four different values of �2
0

labeled �a�– �d�, respectively. In this plot the position of kf

during the cycle corresponds to a fixed horizontal line �the
physical scale where the forcing is applied is fixed� that can

be compared with min k̃2�t� for boxes with different aspect
ratio.

The evolution of velocity variances �u1
2�, �u2

2�, and �u3
2� is

shown in Figs. 8 and 9 for cases �2a�– �2d� and �2e�. In such
comparisons, the initial integral scale is fixed �i.e., all cases

FIG. 7. �a� Deformation of the computational box in physical space during
the straining cycle. The initial box is stretched by a factor of 5 in the
horizontal direction �solid line�, while it is compressed by the same ratio in

the vertical direction �dashed line�. �b� Time evolution of min k̃2�t� for four
different aspect ratios of the computational. Dashed line �2

0=2�, dashed-
dotted line �2

0=4�, dotted line �2
0=6�, and solid line �2

0=8�. Data pro-
gressively been labeled as �a�– �d�. The dimensions in the plane �x1 ,x3� are
�1

0��3
0=2��2� for all the simulations, see Table I.

FIG. 8. �a� Time evolution of the velocity variance in the horizontal direc-
tion r11= �u1

2� / �u1
2�0 for kf =2 and different aspect ratio of the initial box.

From the smallest to the largest �2
0, �2a� �dashed line�, �2b� �dashed-dotted

line�, �2c� �dotted line�, and �2d� �solid line�. Data for case �2e� �symbols�
are also reported for comparison. Error bars are estimated by ensemble
averaging on 20 different initial conditions. The amplitude of the error bar
corresponds to 2� /n, where n=20 and � is the variance. The error bars are
on the order of the symbol size. �b� Same symbols as in the top panel. Data
refer to the velocity variance in the vertical direction r22= �u2

2� / �u2
2�0.
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have kf =2�, while the aspect ratio of the computational box
is changed systematically at fixed Reynolds number. Angular
brackets denote spatial average and, for run �2e� also
ensemble averaging over the time evolution of 20 different
initial conditions. Results are normalized with the corre-
sponding values at t=0 and are denoted by r11, r22, and r33,
respectively. During the initial phase, turbulence is in equi-
librium with the external forcing, and it remains isotropic.
During the straining phase, the variance �u1

2� decreases, while
�u2

2� increases, in agreement with the fact that the principal
axis of the Reynolds stress tensor is aligned with that of the
mean deformation tensor when turbulence is initially isotro-
pic. The response of the vertical velocity variance �u2

2� ap-
pears to be strongly dependent on the aspect ratio of the
computational domain, as seen in Fig. 8�b�. This suggests
that there are considerable confinement effects due to the
finite size of the computational box. In fact, during the cycle,
the position of the most energetic mode is fixed by kf, while
the minimum wavenumber resolved in the vertical direction

min k̃y�t� grows �see Fig. 7�b��. Therefore, kf, i.e., the largest
scales, may not be sufficiently resolved in the simulation for
cases �2a� and �2b�. Only the data set �2d� allows for an
appropriate resolution of the largest modes. The same con-
clusions are achieved by considering the evolution of the
spanwise velocity variance r33 in Fig. 9�a�. It grows during
the straining phase because of the energy redistribution

among velocity components due to the pressure/strain corre-
lation �w�zp�. Note that the time evolution of the u3 compo-
nent was not measured in the experiments.

The sensitivity of turbulent fluctuations on the aspect
ratio of the computational box can be also characterized in
terms of the time evolution of the normalized integral scale

�Fig. 9�b��. Only when kf �min k̃y�t� along the entire cycle,
one may expect that the integral scale will remain signifi-
cantly smaller than the computational box size thus avoiding
artificial confinement effects. For cases �2a�– �2c�, the inte-
gral scale does not remain much smaller than the smallest
dimension of the computational box, and therefore they are
not very realistic at least at the largest scales of turbulence.

Our results show how a proper resolution of the largest
scales of turbulent fluctuation is crucial in strained flows.
The challenge of proper large-scale resolution of eddies also
arises in the context of decaying isotropic turbulence.51,52

During the decay, the largest scales of the flow grow con-
tinuously and eventually become on the order of the box
size. It follows that the largest structures cannot be captured
by the simulation and the onset of the self-similar behavior
of turbulent fluctuations may be not correctly predicted, lead-
ing to a large scatter both of experimental and numerical
data. Here, because of the more rapid change in large-eddy
length scales, the challenges are even more pronounced.

Concerning the destraining phase, velocity variances are
still anisotropic when the negative strain is applied after the
relaxation phase. Under the effect of an opposite strain, the
Reynolds stresses are first forced back to an isotropic state
and then aligned again along the new principal directions as
imposed by the mean flow. Actually, in the destraining phase,
�u1

2� is always increasing, while �u2
2� decreases at a faster rate

with respect to the relaxation phase. A different behavior is
observed for �u3

2�, which passes through a relative minimum.
Figures 10 and 11 present the results for all the other

cases reported in Table I. In order to establish the sensitivity
of the response to the Reynolds number, see results for case
�2dh�, and for the sensitivity to a shifting of the forcing to-
ward higher wavenumbers, see results for cases �5a�– �5d�
soon becomes independent of the aspect ratio of the box,

since then the confinement constraint min k̃y�t��kf is more
easily satisfied. Actually, by doubling the initial box length in
the vertical direction once �see run �5b�� and twice �see run
�5d��, the response of the system does not change substan-
tially as confirmed by a further shift of the forcing wavenum-
ber up to kf =10 for run �10a�. Note that all the simulations
where confinement effects are absent are characterized by the
similar response in terms of velocity variances and integral
scale when rescaled with the forcing wavelength � f =2� /kf

�see Fig. 11�b��. For the most relevant cases, i.e., �2e�, �2dh�,
�5d�, and �10a�, we show in Fig. 5�b� the tke production rate.
In agreement with experimental data, at the beginning of the
destraining phase, a negative value of turbulent kinetic en-
ergy production occurs due to a lack of isotropy recovery of
the largest scales during the relaxation period. In these con-
ditions turbulent kinetic energy goes from the fluctuations
toward the mean flow, i.e., backscatter occurs. This observa-

FIG. 9. �a� Time evolution of the velocity variance in the spanwise direction
r33= �u3

2� / �u3
2�0 for kf =2 and different aspect ratio of the initial box. �b�

Evolution of the integral scale normalized with the initial box length in the
vertical direction �2

0 /2. Symbols and data as in Fig. 8.
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tion is independent of the parameter kf once the largest scale
of the flow are properly resolved, i.e., when confinement
effects are avoided.

V. ANISOTROPY EVOLUTION AT LARGE
AND SMALL SCALES

A fundamental paradigm in turbulence theory is small-
scale isotropy being recovered through the orientational ran-
domization associated with the inertial range energy transfer.
Of course, in this case, the invariance under rotation of the
Navier–Stokes equations is broken by the time dependent
mean flow. In this section, we document anisotropy evolution
at the large scales using the Reynolds stress tensor and at
small scales using the pseudodissipation tensor.

At large scales, we focus on the deviatoric component of
the Reynolds stresses tensor bij = �uiuj� / �ukuk�−1 /3�ij. This
indicator vanishes in a purely isotropic field where the three
velocity variances are expected to be equal. Note that here
we present results based on the three-dimensional data from
the DNS and so we do not use 2D surrogates as had been
done in Sec. III when comparing with experiments. The three
nonvanishing components of the tensor bij are presented in
Fig. 12�a�. The cases differ in the forcing wavenumber kf,

initial Reynolds number, and aspect ratio of the computa-
tional box. They all give almost the same results. Turbulence
is initially isotropic and persists in this state until the produc-
tion term becomes active during the straining phase, leading
to strongly anisotropic fluctuations. During the relaxation
phase, the production of turbulent kinetic energy due to the
Reynolds stresses is inactive. Fluctuations are forced by the
isotropic random forcing and are redistributed by the
pressure-strain term. Hence, a relaxation toward a new iso-
tropic state takes place.53,54 However, the relaxation period
Tr=0.15 is too short when compared with the large-scale
eddy turn over time �=k /��1 at the end of the straining
phase. This means that there is only an incomplete isotropy
recovery of the large scales. During the successive destrain-
ing phase turbulent fluctuations are first forced back to an
isotropic state—note the transition in the slope of bij as soon
as the destraining phase starts—which is achieved in corre-
spondence of the negative peak of the strain �see Fig. 1�.
Successively, a new �reversed� anisotropic state is reached at
the end of the destraining phase.

In a similar manner, small-scale anisotropy can be quan-
tified by considering the deviatoric component of the
pseudodissipation tensor �ij =2���kui�kuj�, i.e., by computing
dij =�ij /�kk−1 /3�ij, which is shown in Fig. 12�b�. Consider-
ations similar to those discussed for bij can be repeated. Ini-
tially, isotropic small scales are forced toward an anisotropic
state during the straining phase. This means that the tke pro-
duction mechanisms are effective also at small scales. Actu-

FIG. 10. �a� Time evolution of the velocity variance in the horizontal direc-
tion r11= �u1

2� / �u1
2�0 for kf =2,5 ,10 and different aspect ratio of the box.

From the smallest to the largest �2
0, �2e� �symbols�, �2dh� �dotted line� and

�5a� �dashed line�, �5b� �dashed-dotted line�, �5d� �solid line�, and �10a�
�heavy dashed line�. Data �2e� �symbols� are reported to check statistical
convergence, data set �2dh� provides sensitivity of the Reynolds number. �b�
r22= �u2

2� / �u2
2�0. Same data and symbols as in the top panel.

FIG. 11. Data as in Fig. 10. �a� Time evolution of the velocity variance in
the spanwise direction r33= �u3

2� / �u3
2�0. �b� Normalized integral scale.
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ally, the anisotropy levels achieved by the velocity gradients
are of the same order of magnitude compared to the degree
of Reynolds stresses anisotropy �compare scales for panels
�a� and �b� in Fig. 12�.

During the successive relaxation phase, small scales
evolve toward an isotropic state much quickly as compared
to the largest ones. The Kolmogorov time is an estimate for
the time needed for reisotropization at the small scales. In
fact, at the end of the straining phase �
=0.026, which is
significantly smaller when compared to Tr=0.15. Finally,
during the destraining phase, small scales are forced first
toward an isotropic state to reach a new anisotropic configu-
ration at the end of the cycle. In contrast to the values as-
sumed by b33, a large contribution to the small-scale aniso-
tropy comes from the term d33 that characterizes the velocity
gradients of the spanwise velocity in the vertical direction
�u3 /�x2. This component is particularly active and related to
the orientation of the vortical structures �see Fig. 2�.

Finally, we observe that bij and dij can be expressed as
structure functions evaluated at large and small scales, re-
spectively. Considering the structure tensor ��ui�uj�, where
�ui=ui�x+r�−ui�x�, in the limit of large scales ��ui�uj�r→L0
→ �uiuj�, while in the limit of small scales, e.g., r→
 we
have ��ui�uj� / 	r	2→�ij. It follows that the isotropy recovery

is controlled by the scaling laws of the observable ��ui�uj�
�see, e.g., Ref. 20�. An in-depth study of this quantity as
function of scale can be helpful in clarifying the process of
small-scale isotropy recovery in the context of nonequilib-
rium turbulence and is relegated for a future study. Such an
analysis can then be compared to results obtained in statisti-
cally steady homogeneous and nonhomogeneous anisotropic
shear flows.14,15,17,55,56 Our data can be used to extend such
approaches to time dependent anisotropic flows �see, e.g.,
Ref. 57 in the context of decaying anisotropic turbulence�.

VI. REYNOLDS STRESSES BUDGET

The dynamics of the time evolution of the variances in
homogeneous unsteady flow can be analyzed by considering
the balance equation for the Reynolds stresses. In homoge-
neous conditions it reduces to

�

�t
�uiuj� = �ij + Pij − �ij + Fij . �6�

In Eq. �6�, �ij =−�p� jui+ p�iuj� is the pressure/strain correla-
tion, Pij =−�uiuk��kUi− �ujuk��kUj is the production term,
�ij =2���kui�kuj� is the pseudodissipation tensor, and
Fij = �f iuj�+ �f jui� is the forcing/velocity correlation �see, e.g.,
Ref. 3�. The Reynolds stresses budget reduces to tke
k= �u2� /2 equation when its trace is computed

�k

�t
= P − � + F , �7�

where P=−a1�t��u1
2�−a2�t��u2

2� is the tke production,
�=���kui�kui� is energy dissipation rate, and F= �f iui� is the
energy injection rate. The trace of the pressure/strain corre-
lation �ii does not appear in this equation because of incom-
pressibility. It is of interest to assess the role of the different
terms in the budget of Eq. �6�. Given the large-scale aniso-
tropy of the turbulent fluctuations, the pressure/strain corre-
lation is expected to be active in redistributing the energy
among the three velocity components. Since our data indi-
cate that residual anisotropy at small scales is comparable
with the large scales �see Fig. 12�, it is also interesting to
assess the role of the pseudodissipation anisotropy in the
budget.

The budget �6� is checked against the available DNS
data in the left column of Fig. 13 where the three panels,
labeled �a�, �b�, and �c� refer to the horizontal �u1

2�, vertical
�u2

2�, and spanwise �u3
2� velocity components, respectively.

Error bars computed for run �2e� are omitted in the plot for
clarity since their amplitude 2� /n is on the order of the
symbols size. The budget �6� is first checked by comparing
the right hand side �RHS�, i.e., RHSij =�ij +Pij −�ij +Fij �dia-
monds in Fig. 13� with a direct measure of the unsteady term
�t�uiuj� �dashed line in Fig. 13�. Excellent agreement can be
seen.

Note the fluctuations of �t�uiuj� around zero during the
initial phase and the relaxation phase where turbulence is
essentially statistically time independent. This is due to a
lack of enough statistical samples. In any case, the budget �6�
is well verified by our data. In fact, the direct measure of the

FIG. 12. �a� Large scale isotropy indicator bij = �uiuj� / �ukuk�−1 /3�ij. Run
2e, b11 �circles�, b22 �delta�, and b33 �squares�. For comparison case �2dh�
�solid line�, �5d� �dashed-dotted line�, and run �10a� �dashed line�. �b� Small
scale isotropy indicator dij =�ij /�kk−1 /3�ij. Data and symbols as in the top
panel.

065104-11 Direct numerical simulations of turbulence Phys. Fluids 22, 065104 �2010�

Downloaded 10 Jan 2012 to 151.100.85.27. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



unsteady term implies the evaluation of a time derivative that
results noisy in the phases where the flow is not time depen-
dent. However, during straining and destraining phases
which are the most interesting for our purposes, the matching
between RHSij and �t�uiuj� is clean. The comparison of the
data set �2e� �symbols� with runs �5d� and �10a� �lines� pro-
vides the sensitivity to various forcing scales kf, while run
�2dh� shows the effects of Reynolds number.

We discuss first the budget for the vertical velocity com-
ponent �u2

2� shown in Fig. 13, panel �b�. During the straining
phase the production P22 is positive, while the pressure/
strain term �22 acts as a sink which removes energy from the
vertical component and redistributes it toward the other two

fluctuating velocity components. As we see from the plot, the
production term P22 is about twice larger with respect to the
pressure/strain term �22. Hence, the budget yields a positive
�t�u2

2�, leading to the growth of the vertical velocity variance
during the straining phase. The dissipative and the forcing
terms have been plotted together �triangles� and both are
small when compared with the other terms in the budget. A
similar behavior is observed during the destraining phase
where the production term P22 is now negative and the pres-
sure term �22 acts as a source term. Now the budget yields a
negative �t�u2

2�, resulting in a depletion of the vertical veloc-
ity variance.

Similar features are observed for the horizontal velocity

FIG. 13. �Panels �a�–�c�� Reynolds stresses budget �Eq. �6�� for run �2e� �symbols�. Production −ai�ui
2� �circles�, pressure/strain correlation −2�ui�ip�

�squares�, pseudodissipation, and forcing −�ii+ �f iui� �triangles�. No sun on the repeated index in all the terms. The RHS of Eq. �6� �diamonds� is compared
against a direct measure of the unsteady term �t�ui

2� �dashed line�. Cases �5d� �dashed-dotted line� and �10a� �dashed line� provide the sensitivity to kf, run
�2dh� �solid line� to Re	. The error bars for case �2e� �not shown� are estimated as 2� /n, where � is the variance evaluated for the n=20 different initial
conditions are of the order of the symbol size. �Panels �d�–�f�� The pressure/strain correlation �squares� is compared against the LRR-IP model �solid line�
�Ref. 41�.
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component. Here, the role of production and pressure/strain
correlation is exchanged along the cycle. During the strain-
ing phase the production term P11 is negative, while the pres-
sure term �11 acts as a source for fluctuations, thus requiring
�t�u1

2� to be negative. Successively, during the relaxation
phase, �11�0 since pressure is redistributing energy among
the velocity components resulting in an increase of the hori-
zontal velocity variance, �t�u1

2���11�0, in agreement with
the reisotropization occurring during this phase. Finally, dur-
ing destraining the production term is positive and the pres-
sure term acts as a sink. The budget is again balanced by a
positive unsteady term. Both dissipation and forcing give a
negligible contribution.

The budget for the spanwise variance �u3
2� shown in

panel �c� differs from the previous two because the produc-
tion term is absent. Hence, the balance is essentially between
the pressure/strain correlation �33 and the unsteady term
�t�u3

2�. The relative contribution of dissipation and forcing
can now be appreciated more during some phases of the
cycle. �33 is a source for fluctuations during the straining
phase, while at the end of the relaxation phase, it acts first as
a sink and then as a source again. The behavior of �33 re-
sembles the turbulent kinetic energy production term P
shown in Fig. 5. At the end of the relaxation period, both
�t�u1

2� and �t�u2
2� are small when compared with the other

terms in the budget. It follows that 0��11+P11 and
0��22+P22, hence �t�u3

2���33=−��11+�22��P11+P22

=P�0.
As a final note, we comment on the dissipation aniso-

tropy and its relative irrelevance in the budget. In Sec. V, we
have shown how the dimensionless anisotropy at small
scales was large and of the same order of the large-scale
anisotropy directly induced by the mean flow on velocity
fluctuations �see Fig. 12�. However, the role the pseudodis-
sipation tensor in the Reynolds stresses budget is very small.
This is due to the fact that the applied straining generates
production that dwarves the molecular dissipation rate.
Therefore, even if the dissipation tensor is relatively highly
anisotropic, its magnitude is still small compared to produc-
tion, the pressure/strain correlation, and the unsteady term.

To conclude this section, we use the data as a benchmark
for a classic Reynolds stress closure model, while an exhaus-
tive comparison with different models is out of the scope of
this paper. We consider the classical LRR-IP model by
Lauder et al.41 and we compare the pressure/strain correla-
tion against its “a priori” estimate. In the right column of
Fig. 13, we have plotted the pressure/strain term as directly
measured from the DNS data for case �2e� �squares�. Panels
from top to bottom refer to the three velocity components,
respectively. The solid line in the panels gives the estimate
provided by the LRR-IP model

�ij
mod = − CR

k

�
��uiuj� −

2

3
k�ij� − C2�Pij −

2

3
P�ij� , �8�

with CR=1.8, C2=3 /5, and P=Pkk /2 �as taken from Ref. 3�.
It is an a priori comparison because we use the measured
Reynolds stress and production terms to evaluate the RHS of
Eq. �8� for the model.

In the model the first term on the RHS accounts for the
return to isotropy of initially anisotropic turbulence, while
the second is the so called isotropization of production, i.e.,
it accounts for the effect of pressure/strain term in redistrib-
uting energy among the velocity components when initially
isotropic turbulence is subjected to anisotropic production.
Both these features are present in our flow. In fact, during the
straining phase, initially isotropic turbulence is subjected to
anisotropic production, while isotropy recovery occurs dur-
ing the relaxation phase. The qualitative behavior of the
pressure/strain term is captured well by the model �see the
right column of Fig. 13�. However, the amplitude of the re-
distribution is predicted well only for the vertical velocity
component �panel �e��. Concerning the horizontal component
shown in panel �d�, the model overpredicts the pressure/
strain term during the straining phase, while it gives reason-
able results during the relaxation and destraining phases. In
panel �f�, we show the comparison for the spanwise compo-
nent, which is the least accurate prediction.

VII. FINAL REMARKS

The response of homogeneous turbulence subjected to a
straining and destraining cycle has been studied using DNS.
One goal has been to supplement the experiments of Chen
et al.,40 who measured turbulence during such a cycle experi-
mentally. The DNS has been analyzed using several one-
point observables such as velocity variances, large- and
small-scale anisotropy indicators, turbulent kinetic energy
production rates, and the various terms in the Reynolds
stresses budget equation.

Particular attention has been placed in identifying appro-
priate forcing scales with respect to the computational box
size and aspect ratio. In particular, we have shown that
confinement effects occur whenever the largest scales of
the flow are poorly resolved in the simulation. Whenever

kf �min k̃y�t� during the straining cycle, the response of tur-
bulence is noticeably affected by confinement effects and
depends on the aspect ratio of the box. On the contrary, when
largest scales are well resolved during the entire cycle, i.e.,
when the integral scale is always considerably smaller, the
smallest dimension of the computational box, the response of
turbulence is free from artificial confinement effects and is
independent of the position of the random forcing, i.e., inde-
pendent of the parameter kf.

Numerical results are compared against the experimental
findings of Chen et al.40 Velocity variances present the same
qualitative behavior as found experimentally even though the
amplitude of the response is larger in the DNS simulations,
in the contracting direction in which the variances grow the
most. This difference has been explained in terms of a sub-
stantial mismatch between experiments and simulations at
the largest scales. Quantities that are nondimensionalized us-
ing time-evolving quantities, such as the Reynolds stresses
anisotropy tensor, show very good agreement between simu-
lation and experiments.

The lack of isotropy recovery of the largest scales at the
end of the relaxation phase leads to a negative value of the
turbulent kinetic energy production rate when the strain is
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reversed. This behavior, as already observed experimentally,
results in a backscatter of turbulent kinetic energy from the
fluctuations to the mean flow. Probing the DNS further, it is
shown that small scales reach levels of anisotropy compa-
rable with those of the largest scales during the most strained
phases of the cycle. It follows that in nonequilibrium condi-
tions, a significant range of scales is affected by the aniso-
tropic mechanisms of turbulent kinetic energy production.

The budget of the Reynolds stresses has been studied
during the entire cycle to better understand the role of the
pressure/strain correlation during nonequilibrium conditions.
This term redistributes energy among the different velocity
components. We find that the production term is only par-
tially balanced by the pressure/strain correlation. Since the
dissipation tensor turns out to have only minor contributions
during straining or destraining, the rate of change is large,
consistent with the observed large variation of the velocity
variances during the cycle.

Finally, we have compared the predictions of the classi-
cal LRR-IP model with the measurements. Qualitatively, the
agreement is good, but leaves much to be desired in predict-
ing the correct amplitudes of the pressure-strain correlation
term for two out of the three components of variance. Further
studies of the scale-dependence response of stresses and
comparisons with more RANS and LES models could pro-
vide further understanding of this nonequilibrium turbulent
flow.
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