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Chapter

A Review of the EnKF for
Parameter Estimation
Neil K. Chada

Abstract

The ensemble Kalman filter is a well-known and celebrated data assimilation
algorithm. It is of particular relevance as it used for high-dimensional problems, by
updating an ensemble of particles through a sample mean and covariance matrices. In
this chapter we present a relatively recent topic which is the application of the
EnKF to inverse problems, known as ensemble Kalman Inversion (EKI). EKI is used
for parameter estimation, which can be viewed as a black-box optimizer for
PDE-constrained inverse problems. We present in this chapter a review of the
discussed methodology, while presenting emerging and new areas of research, where
numerical experiments are provided on numerous interesting models arising in
geosciences and numerical weather prediction.

Keywords: ensemble Kalman filter, Kalman filter, inverse problems, parameter
estimation, data assimilation, optimization

1. Introduction

Inverse problems [1–3] are a class of mathematical problems which have gained
significant attention of recent. Simply put, inverse problems are concerned with the
recovery of some parameter of interest from noisy unstructured data. Mathematically
we can express an inverse problem as the recovery of u∈X from noisy measurements
of data y∈Y, expressed as

y ¼ G uð Þ þ η, (1)

where G : X ! Y is the forward operator, and η � N 0, Γð Þ is some form of addi-
tive Gaussian noise. Specifically N 0, Γð Þ denotes a normal distribution with mean 0
and variance Γ. Commonly the covariance can be taken to be some form of the
identity, i.e. Γ ¼ γ2I, where γ ∈ is some constant and I is the identity. Inverse
problems are of high interest due to the amount of relevant problems that arise in
wide variety of applications, most notably geophysical sciences, medical imaging and
numerical weather prediction [4–6]. The classical approach to solving inverse prob-
lems, which is the theme of this chapter, is to construct a least-squares functional, and
the solution is represented as a minimizer of some functional of the form
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u ∗≔argmin
u∈X

1

2
∥y� G uð Þ∥2

Γ
þ λR uð Þ, (2)

where λ>0 is a regularization parameter and R uð Þ is some regularization term,
usually required to prevent the overfitting of the data. A common example is

Tikhonov regularization, i.e. R uð Þ ¼ 1
2 ∥u∥

2. Traditional methods for solving (1)
include optimization schemes such as the Gauss–Newton method, or Levenburg–
Marquardt method which require derivative information of G, which can prove costly
and cumbersome. Therefore a motivation for solving inverse problems is to provide
gradient-free optimizers which can reduce this computational burden, while attaining
a good level of accuracy. The methodology that we motivate, which alleviates these
issues, is that of ensemble Kalman inversion (EKI). EKI can be viewed as the applica-
tion of the ensemble Kalman filter (EnKF) to inverse problems, which is a natural way
to solve inverse problems given the connections between data assimilation and inverse
problems. The EnKF is a Monte-Carlo version of the celebrated Kalman filter, which is
more favorable in high-dimensions. It operates by updating an ensemble of particles
through sample mean and covariances. In particular we will take the viewpoint of EKI
which acts as PDE-constrained derivative-free optimizer. Therefore EKI can be
viewed as a black-box solver where no derivative information is required. Since this
method was proposed for inverse problems, it has seen wide applications to various
engineering-based applications, as well as developments related to both theory and
methodology. In this chapter we discuss some of these keys concepts and insights,
while briefly mentioning particular directions with EKI.

The general outline of these chapter is as follows. In Section 2 we provide the
necessary background material, which covers the basics of EKI with some intuition
and motivation We will discuss the algorithm in both the usual discrete-time setting,
but also the continuous-time setting. This will lead onto Section 3 where we discuss
one recent direction which is that of regularization theory, and its application to EKI.
Furthermore we will also discuss how EKI can be extended to the notion of sampling
in statistics within Section 4. Other, less-developed, directions are provided in Section
5. Numerical experiments are provided in basic settings in Section 6 on a number of
basic differential equations, before providing some future remarks and a conclusion in
Section 7.

2. EKI: background material

In this section we provide the background material related to the understanding
and intiution of EKI. This will begin with a discussion on the ensemble Kalman filter,
and how it connections with EKI. We will then present EKI in its vanilla form, which
is a discrete-time optimizer, before discussing its connections with various existing
methods. Finally we will extend the original formulation to the setting of continuous-
time where we aim to provide a gradient flow structure of the resulting equations.

2.1 Kalman filtering

The ensemble Kalman filter (EnKF), is a popular methodology based on the cele-
brated Kalman filter (KF), which was originally developed by Rudolph Kalman in the
1960s [7, 8]. The Kalman filters initial aim was to solve a recursive estimation problem
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from dynamics processes and systems. Specifically the KF aims to merge data with
model, or signal, dynamics where both equations have the form

unþ1 ¼ Ψ unð Þ þ ξn, ξnf gn∈ℤ
þ � N 0, Σð Þ, (3)

ynþ1 ¼ H unþ1ð Þ þ ηnþ1, ηnþ1

� �

n∈ℤ
þ � N 0, Γð Þ: (4)

Here unf gn∈ℤ
þ is our signal which is updated through a forward operator

Ψ : 
m ! 

m, which when combined with noise, provides the update unþ1. Our data is
denoted as ynþ1 which is produced by sending our updated signal through the operator

H : 
m ! 

m, where m>m, which is known as observational operator. Our initial
conditions for the system are given as u0 � N m0, C0ð Þ. This area of recursive estima-
tion, in this setup, became to be known as data assimilation [9, 10].

In particular in the linear and Gaussian setting, where the dynamics and noise are
Gaussian, the KF updates state using the first two moments, which we know are the
mean and covariance. Assume that the state-space dimension is d∈Rþ, then the cost

of the KF has complexity O d2
� �

. For high-dimensional examples this can be an issue,

therefore an algorithm that was developed to alleviate this is the EnKF, a Monte Carlo
version, proposed by Evensen [11, 12].

The EnKF operates by replacing the true covariance by a sample covariance and

mean and updates an ensemble of particles u
jð Þ
n , with 1≤ j≤ J particles, using these

moments combined with information from the data. The EnKF can be split into a two-
step procedure, which is the prediction step

û
jð Þ
nþ1 ¼ Ψ u jð Þ

n

� �

þ ξ jð Þ
n , m̂nþ1 ¼

1

J

X

J

j¼1

u
jð Þ
nþ1,

Ĉnþ1 ¼
1

J � 1

X

J

j¼1

u
jð Þ
nþ1 � m̂nþ1

� �

u
jð Þ
nþ1 � m̂nþ1

� �T
,

(5)

and update step

Knþ1 ¼ Ĉnþ1H
T HĈnþ1H

T þ Γ

� �

,

u
jð Þ
nþ1 ¼ I � Kjþ1H

� �

û
jð Þ
nþ1 þ Knþ1y

jð Þ
nþ1,

y
jð Þ
nþ1 ¼ ynþ1 þ η

jð Þ
nþ1,

(6)

where Knþ1 represents the Kalman gain matrix and ξ jð Þ
n and η

jð Þ
nþ1 are i.i.d. Gaussian

noise. In the EnKF context our prediction step defines a sample mean and covariance
from our signal. From this in the analysis step we define our Kalman gain through

our sample covariance, which updates our signal, which is given by u
jð Þ
nþ1. This is

aided by aiming to minimize the discrepancy of the data y
jð Þ
nþ1 and the quantity H uð Þ.

To better understand this discrepancy, there is an alternative approach of looking at
the EnKF is through a variational approach, where we consider the follow cost
function

In uð Þ≔ 1

2
y

jð Þ
nþ1 �H uð Þ

�

�

�

�

�

�

2

Γ

þ 1

2
u� û

jð Þ
nþ1

�

�

�

�

�

�

2

Ĉnþ1

, (7)
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for which we aim to minimize, which is defined as the updated mean

m̂nþ1 ¼ argmin
u

In uð Þ: (8)

This minimization procedure relies on the updated covariance Ĉnþ1 which is

dependent entirely on û jð Þ. As described in the prediction step and update step of
filtering, a mapping is presented between distributions. As we related the distribu-
tions in the filtering setting, for each step, we can do so similarly for the EnKF, i.e.

u jð Þ
n

n oJ

j¼1
↦ u

jð Þ
nþ1

n oJ

j¼1
, u

jð Þ
nþ1

n oJ

j¼1
↦ û

jð Þ
nþ1

n oJ

j¼1
: (9)

With the EnKF, compared to KF, the computational complexity associated with it
is O Jdð Þ, where one usually assumes J < d, therefore implying the reduction in cost.

2.2 EnKF applied to inverse problems

Since the formulation of the EnKF, there has been a huge interest from practitioners
in various applicable disciplines. Most notably this has been within numerical weather
prediction, geophysical sciences and signal processing related to state estimation. In
this chapter our focus is on the application of the EnKF to inverse problems, namely to
solve (1). We now introduce this application which is known as ensemble Kalman
inversion (EKI), which was introduced by Iglesias et al., motivated from Li et al., [13]
as a derivative-free optimizer for PDE-constrained inverse problems.

As with the EnKF, we are concerned with updating an ensemble of particles, for
which now we modify notation with n now denoting the iteration count. Given an

initial ensemble u
jð Þ
0

n o

, our aim is to learn a true underlying unknown u†. To do so, as

done with the EnKF, we first define our sample mean and covariance matrices

u jð Þ
n ¼ 1

J

X

J

j¼1

u jð Þ
n , u jð Þ

n ¼ 1

J

X

J

j¼1

G u jð Þ
n

� �

,

Cuu
n ¼ 1

J � 1

X

J

j¼1

u jð Þ
n � u

� �

u jð Þ
n � u

� �T
, Cup

n ¼ 1

J � 1

X

u jð Þ
n � u

� �

G u jð Þ
n

� �

� G
� �T

:

(10)

which we can through the update equation

u
jð Þ
nþ1 ¼ u jð Þ

n þ hCup hCpp þ Γð Þ�1 y jð Þ
n � G u jð Þ

n

� �� �

, (11)

y jð Þ
n ¼ yþ η jð Þ

n , (12)

where y represents our true data and h>0 denotes a step size related to the level of
discretization. Figure 1 provides a pictorial description of the EnKF, which has been
described above.

The update equation of EKI (11) is of interest as it coincides with the update
formula for Tikhonov regularization for linear statistical inverse problems. Namely if

we consider R uð Þ ¼ 1
2 ∥u∥

2
C0
, then the update formula, in the linear G �ð Þ ¼ G and

Gaussian setting is given as
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uTP ¼ uþ CG ∗ GCG ∗ þ Γð Þ�1 y� Guð Þ, (13)

where G ∗ denotes the derivative of the operator G. This connection is of relevance
and was discussed in [14], where it was shown that taking the limit as J ! ∞, it was
shown that u ! uTP. This is of interest as the minimizing the regularized functional
(13) is equivalent to the following maximization procedure in statistics

u≔argmax
u∈X

ℙ ujyð Þ: (14)

known as the MAP formulation, where ℙ ujyð Þ ¼ ℙ yjuð Þℙ uð Þ denotes the posterior
distribution. This connection is discussed in [15]. Therefore this provides some insight
into EKI and its connection with other known existing methodologies in inverse
problems. An important entity to discuss is a property that EKI inherits, which is the
subspace property. It is given by the following lemma.

Lemma 1.1 Let A be the linear span of the initial ensemble u
jð Þ
0

n oJ

j¼1
, then we

that blacku jð Þ
n

n oJ

j¼1
∈A for all n∈ℕ.

The essence of the subspace property states that the updated ensemble of particles
is spanned by the initial ensemble. This is important, because it provides a justification
on the performance, whether the initial ensemble is a good choice or not. Therefore it
can act as an advantage or a disadvantage.

2.3 Continuous-time formulation

The original representation of EKI, as shown in (11), is a discrete-time iterative
scheme similar to other optimization methods. However it is of interest to under-
stand EKI in a continuos-time setting, which was considered by Schillings et al.
[16, 17]. This is primarily for two reasons; (i) firstly that one can understand more
easily how the dynamics of (11) and (12) behaves, and secondly (ii) it provides

Figure 1.
Dynamics of the ensemble Kalman filter, split into the prediction and update steps.
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new numerical schemes for EKI, which is specific in the continuous-time setting.
In order to derive such equations, as usual we require to take the step-size to zero,
i.e. h ! 0. Once we do this, we have the following set of stochastic differential
equations

du jð Þ

dt
¼ Cuw uð ÞΓ�1 y� G u jð Þ

� �� �

þ Cuw uð Þ
ffiffiffiffiffiffiffiffi

Γ
�1

p dW jð Þ

dt
, (15)

with W jð Þ denoting independent cylindrical Brownian motions. By substituting the
form of the covariance operator, we see

du jð Þ

dt
¼ 1

J

X

J

k¼1

G u kð Þ
� �

� G, y� G u jð Þ
� �

þ
ffiffiffi

Γ

p dW jð Þ

dt

* +

Γ

u kð Þ � u
� �

: (16)

For this we take our forward operator G �ð Þ ¼ A� to be bounded and linear. Using
this notion and by substituting our linear operator A in (16) we have the following
diffusion limit

du jð Þ

dt
¼ 1

J

X

J

k¼1

A u kð Þ � u
� �

, y� Au jð Þ
D E

Γ

u kð Þ � u
� �

: (17)

By defining the empirical covariance operator

C uð Þ ¼ 1

J � 1

X

J

k¼1

u kð Þ � u
� �

⊗ u kð Þ � u
� �

, (18)

and taking Γ ¼ 0 we can express (17) as

du jð Þ

dt
¼ �C uð ÞDuΦ u jð Þ; y

� �

,

Φ u; yð Þ ¼ 1

2
∥Γ�1=2 y� Auð Þ∥2:

(19)

Thus we note that each particle performs a preconditioned gradient descent
for Φ �; yð Þ where all the gradient descents are preconditioned through the
covariance C uð Þ. Since our covariance operator C uð Þ is semi-positive definite we
have that

d

dt
Φ u tð Þ; yð Þ ¼ d

dt

1

2
∥Γ�1=2 y� Auð Þ∥2 ≤0: (20)

In the context of EKI this is of interest as it is a first result providing some
indication of the dynamics, which was not achievable through the discrete-time
update formula (11). Indeed given the gradient flow structure, we are able to see that
the EKI abides by a usual optimization function, with the dynamics following the
direction of the negative gradient, or in other-words towards to minimizer of Φ. Since
the continuous-time formulation was derived, there has been different works deriving
further analysis, most notably with recent success on the nonlinear setting, and other
well-known results. This can be found in [18].
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3. Regularization

In this section we discuss the role of regularization in EKI. We will begin with an
introduction into iterative regularization schemes, that have been used before
discussing Tikhonov regularization, Lp and particular adaptive choices.

As briefly discussed regularization is an important tool in optimization, and
inverse problems aimed at preventing the over-fitting, or influence, of the data. We
refer the reader to various pieces of literature that give a concise overview on this
[19, 20]. The over-fitting of data can cause issues in inverse problems, such as the
divergence of the error, therefore careful consideration is needed to prevent this. A
cartoon representation of this is given in Figure 2.

To initiate this chapter, there are two main forms of regularization one can apply
for inverse problems. The first is related to iterative regularization, where the regular-
ization is included within the iterative scheme. This can be included directly such as
the form

u
jð Þ
nþ1 ¼ u jð Þ

n þ hCup hCpp þ αnΓð Þ�1 y jð Þ
n � G u jð Þ

n

� �� �

, (21)

or in the presence of a discrepancy principle of the form

∥Γ�1 y� u jð Þ
n

� �

∥2 ≤ϑη, ϑ∈ 0, 1ð Þ, (22)

which controls the error between the updated ensemble and the true unknown.
The discrepancy principle acts as a stopping rule if the error becomes big, and the the
modified update formula contains a sequence of numbers αnf gn∈ℕ

aimed at also
preventing the overfitting of the data. This sequence is chosen in such a way that is
related to a discrepancy principle. Specifically for EKI this has been considered in
numerous work by Iglesias et al. [21, 22].

However more recent work has considered regularization through the least-
squares functional (LSF) (2). For EKI the first known form to consider this, is

Tikhonov regularization which has the penalty form of R uð Þ ¼ 1
2 ∥u∥

2
C0
. This form of

regularization is a natural choice, as it very well-known and understood but can view
viewed as a Gaussian form of regularization, which smoothes the problems. In the
context of EKI this makes sense, as commonly one assumes Gaussian dynamics. The

Figure 2.
The figure presents two simulations of EKI as the iterations increase. The black curve represents what we aim to
achieve, however in certain situations the data is commonly overfitted. Therefore this can cause a divergence in the
relative error, as shown by the dashed red curve.

7

A Review of the EnKF for Parameter Estimation
DOI: http://dx.doi.org/10.5772/intechopen.108218



work of Chada et al. [23] first developed this extension, which was done by modifying
(1) to the following

y ¼ G uð Þ þ η1,

u ¼ η2,
(23)

where η1 � N 0, Γð Þ,η2 � N 0, λ�1C0

� �

:.
Now we introduce z,η and the mapping F : X � X↦Y � X as follows:

z ¼ y

0


 �

, F uð Þ ¼ G uð Þ
u


 �

, η ¼ η1

η2


 �

, (24)

and

η � N 0, Σð Þ, Σ ¼
Γ 0

0 λ�1C0


 �

: (25)

Therefore our inverse problem is now reformulated at

z ¼ F uð Þ þ η: (26)

now from this we can modify EKI to include the above setup, for which we refer to
it as Tikhonov ensemble Kalman inversion (TEKI), which takes the following form

u
jð Þ
nþ1 ¼ u jð Þ

n þ hBup hBpp þ Γð Þ�1 z jð Þ
n � F u jð Þ

n

� �� �

, (27)

where we have now modified covariance matrices Bup,Bpp. From this inclusion, the
authors of [23] were able to show that analytically, the subspace property still holds,
while other such results as observability and controllability and the ensemble collapse.
More importantly through the numerical simulations, it was shown that one can
prevent the over-fitting phenomenon.

Since this work a number of useful extensions have been considered, such as its
understanding in the continuous-case, as well as the new variants in the discrete-time
setting [24]. Two recent developments on this have been firstly on the extension to Lp

regularization [25, 26], which is to motivate reconstructing edges or lines, where the
LSF is modified to

Φ u; yð Þ≔ 1

2
∥y� G uð Þ∥2

Γ
þ λ∥u∥p, p≥ 1: (28)

Finally another direction is related to producing adaptive strategies for TEKI.
Adaptive regularization schemes are of importance, as choosing a correct choice of the
regularization parameter λ>0 can have a big impact on the reconstruction. Therefore
thinking adaptively allows one to evolve the parameter over the iteration count, now
denoted as λn. The work of Weissmann et al. [27] provides these developments in an
adaptive fashion.

4. Ensemble Kalman sampling

Although the EKI has been introduced through the application of the EnKF to
inverse problems and hence sequential sampling method, the trending viewpoint of

8
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EKI lies in optimization. So far, we have seen its motivation from the gradient flow
structure in the continuous-time formulation in Section 2.3 and the representation as
SDE. For applying EKI as a consistent sampling method, we would instead of taking
the limit t ! ∞ rather consider the limit t ! 1. For linear forward models EKI is
consistent with the posterior distribution, however, it is known to be not consistent
with the Bayesian perspective in the nonlinear setting [28].

Building up on this fact, the motivation behind the ensemble Kalman sampler [29]
is to modify the time-dynamical system of EKI in a way such that the limiting
distribution for t ! ∞ corresponds to the posterior distribution. We will start the
discussion with an introductory example.

Example 1.1 Let π ∗ be a pdf of the form π ∗ xð Þ∝ exp �Φ uð Þð Þ with

Φ uð Þ ¼ 1
2 ∥y� G uð Þ∥2

Γ
þ ∥u∥2C, i.e. π ∗ corresponds to the posterior pdf under Gaussian

prior assumption π0 ¼ N 0, Cð Þ. We consider the Langevin diffusion given by

dut ¼ ∇u log π ∗ utð Þdtþ
ffiffiffi

2
p

dW t, u0 � π0, (29)

where W tð Þt≥0 denotes a Brownian motion in X ¼ 
nu . The evolution of the

distribution ρt of the state ut can then be described through the Fokker–Planck equa-
tion

∂ρt ¼ ∇ � ρt∇ log π ∗ð Þ þ Δρt, ρ0 ¼ π0, (30)

where under certain assumptions on Φ the underlying Markov process utð Þt≥0 is

ergodic and its unique invariant distribution is given by π ∗ [30]. Taking the Fokker–
Planck eq. (30) into account the convergence to equilibrium can be described through

the Kullback–Leibler (KL) divergence KL ¼
Ð

X
q1 xð Þ log q1 xð Þ

q2 xð Þ

� �

dx [31]. Assuming a

log -Sobolev inequality (e.g. satisfied for log -concave π ∗ ), it follows that

KL ρtjπ ∗ð Þ≤ exp �λtð ÞKL ρ0jπ ∗ð Þ (31)

for some λ>0 [32].

4.1 Interacting Langevin sampler

The interacting Langevin sampler has been introduced, motivated by the
preconditioned gradient descent method, as interacting particle system represented
by the coupled system of SDEs

du
jð Þ
t ¼ C utð Þ∇u log π ∗ u

jð Þ
t

� �

dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C utð Þ
p

dW t, j ¼ 1,… ,J, (32)

initialized through an i.i.d. sample u
jð Þ
0 � π0. The idea of preconditioning with C utð Þ

instead of a fixed preconditioning matrix C∈
nu�nu is motivated through the

corresponding mean-field limit. In the large particle limit, the corresponding SDE is
given as

dut ¼ C ρtð Þ∇u log π ∗ utð Þdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2C ρtð Þ
p

dW t, u0 � π0, (33)

where the macroscopic mean and covariance operator are defined as
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m ρð Þ ¼
ð

X

xρ xð Þdx, C ρð Þ ¼
ð

X

x�m ρð Þð Þ⊗ x�m ρð Þð Þdx: (34)

This connects the interacting Langevin system to its origin Langevin diffusion (29).
Hence, in the long-time limit the preconditioning matrix will formally be given by the
covariance operator corresponding to the stationary distribution (assuming it exists).

The resulting modified Fokker–Planck equation is given by

∂ρt ¼ ∇ � ρtC ρtð Þ∇ log π ∗ð Þ þ Tr C ρtð ÞD2ρt
� �

, ρ0 ¼ π0: (35)

Assuming that C ρtð Þ≥ αId and the target distribution of the form

π ∗ uð Þ∝ exp �Φ uð Þð Þ, Φ uð Þ ¼ 1
2 ∥y� G uð Þ∥2

Γ
þ λ∥u∥2C0

, to be log -concave, the solution

ρt of (35) converges exponentially fast to equilibrium

KL ρtjπ ∗ð Þ≤ exp �λtð ÞKL ρ0jπ ∗ð Þ, (36)

for some λ>0 [29], Proposition 3.1. Furthermore, through the preconditioning
with the sample covariance the resulting scheme remains invariant under affine
transformations [33].

4.2 Ensemble Kalman sampler

One of the attractive features of the EnKF as well as of EKI is its derivative-free
implementation. The basis of the ensemble Kalman sampler (EKS) is to build a
modified interacting Langevin sampler avoiding to compute derivatives. Let

π ∗ uð Þ∝ exp � 1
2 ∥y� G uð Þ∥2

Γ
� ∥u∥2C0

� �

, then the interacting Langevin system is given by

du
jð Þ
t ¼ �C utð ÞDG u

jð Þ
t

� �T
Γ
�1 G u

jð Þ
t

� �

� y
� �

� C utð ÞC�1
0 u

jð Þ
t dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C utð Þ
p

dW t,

j ¼ 1,… ,

J:

(37)

Motivated by the approximation Cuw uð Þ≈C uð ÞDG u jð Þ� �T
the EKS is then formu-

lated as the solution of the system of coupled SDEs

du
jð Þ
t ¼ �Cuw utð ÞΓ�1 G u

jð Þ
t

� �

� y
� �

� C utð ÞC�1
0 u

jð Þ
t dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C utð Þ
p

dW t, j ¼ 1,… ,J:

(38)

We note that the approximation Cuw uð Þ≈C uð ÞDG u jð Þ� �T
is exact for linear forward

models and hence, the EKS coincides with the interacting Langevin sampler in the
linear setting. However, for nonlinear forward models the approximation of deriva-
tives is only accurate in case the particles are close to each other. Since in the applica-
tion of EKS the particles are aiming to represent a distribution, the particles are not
expected to be close to each other. This fact suggests to formulate a localized version
of the preconditioning sample covariance matrix, incorporating more weights on
particles close to each other, but reducing the weight between particles far away.

Therefore, we define the distance-dependent weights between particle u
jð Þ
t and u

ið Þ
t
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w
ji
t ¼

exp � 1
2γ ∥u

jð Þ
t � u

ið Þ
t ∥2D

� �

PJ
l¼1 exp � 1

2γ ∥u
jð Þ
t � u

lð Þ
t ∥2D

� � , (39)

for scaling parameters γ >0 and symmetric positive-definite matrix D∈
nu�nu .

The localized (mixed) sample covariance matrix around particle u
jð Þ
t is the defined as

C u
jð Þ
t

� �

¼
X

J

i¼1

w
ji
t u

ið Þ
t � u

jð Þ
t

� �

⊗ u
ið Þ
t � u

jð Þ
t

� �

,

Cuw u
jð Þ
t

� �

¼
X

J

i¼1

w
ji
t u

ið Þ
t � u

jð Þ
t

� �

⊗ G u
ið Þ
t

� �

� G
jð Þ
t

� �

,

(40)

with localized mean

u
jð Þ
t ¼

X

J

i¼1

w
ji
t u

ið Þ
t , G

jð Þ
t ¼

X

J

i¼1

w
ji
t G u

ið Þ
t

� �

: (41)

The localized EKS then reads as

du
jð Þ
t ¼ �Cuw u

jð Þ
t

� �

Γ
�1 G u

jð Þ
t

� �

� y
� �

� C u
jð Þ
t

� �

C�1
0 u

jð Þ
t dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C u
jð Þ
t

� �

r

dW t, j ¼ 1,… ,J:

(42)

While the original EKS shows promising results for nearly Gaussian target
distribution, the considered localized variant helps to extend the scope to multimodal
target distributions [34]. Other such related work has aimed to provide further
understandings of the EKS. This has included the derivation of providing mean field
limits and, but also providing various generalizations [33, 35].

5. Other directions

As we have discussed some of the more recent developments in EKI, we now focus on
other, more smaller, extensions. In this section we will discuss these each in turn, which
will include machine learning, understanding EKI in the context of nonlinear inverse
problems, and finally applications related to engineering such as geophysical sciences.

5.1 Applications in machine learning

The developments of machine learning methodologies has seen a significant
increase in the last decade, which have been produced to solve problems related to
health-care, imaging, and decision processes. In particular much of the these devel-
opments has been to due the advancements in optimizaion theory. As a result,
ensemble Kalman methods can be viewed as a natural class of algorithms to be directly
applied, as they are derivative-free optimizers.

The first work aimed at characterizing this connection was [36] which demon-
strated this. The authors motivated EKI as a replacement to SGD where they initially
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applied it to supervising learning problems. Given a dataset xj, yj

n oN

j¼1
assumed to be

i.i.d. samples from a particular distribution, then given the Monte Carlo approxima-
tion one has the minimization procedure

argmin
u

Φs u; x, yð Þ,

Φs u; x, yð Þ ¼ 1

N

X

N

i¼1

L G u xj
�

�

�

, yj

� �

þ λ

2
∥u∥2C0

,

� (43)

where L : Y � Y ! 
þ, is some positive-definite function. In other words, one is

trying to learn xj from the labeled data yj. Supervised learning is used for common ML

applications such as image classification and natural language processing. Another
related application is that of semi-supervised learning, which aims to learn xj from
some of the data yj where do not have access to all of it. This modified the least squares

functional given in (43).
Another interesting direction has been the inclusion of EKI for training and learn-

ing neural networks [37]. This builds upon the previous work discussed, but with a
number of modifications. In particular what the authors show is that they are able to
prove convergence of EKI to the minimizer of a strongly convex function. They apply
their modified methodology to a nonlinear regression problem of the form

F θð Þ ¼ Aθ þ ε sin Bθð Þ, (44)

where θ is the parameter of interest and F θð Þ is the objective functional of interest.
This was also extended to the likes of image classification problems, specifically the
well-known MNIST handwritten data set.

A final and more recent direction of EKI and ML, was the work of Guth et al. [38],
which provided a way of solving the forward problem, within EKI.

5.2 Extensions to nonlinear convergence analysis

A major challenge with EKI, and the EnKF in general, is establishing convergence
analysis and properties in the nonlinear setting. As it is well known in the linear and
Gaussian setting, as the the number of particles N ! ∞, the EnKF coincides with the
KBF. However in the nonlinear setting it is has been challenging to derive any such
results rigorously. Some ongoing and recent work has aimed to bridge the connections
between EKI and nonlinear dynamics. The first paper that provided some form of
analysis was the work of Chada et al. [24] which considered a specific form of EKI, in
the discrete-time setting.

Namely the update formula is modified to

mnþ1 ¼ mn þ Cpp
n Cup

n þ h�1
n Γ

� ��1
z�H mnð Þð Þ,

Cnþ1 ¼ Cuu
n � Cup

n Cpp
n þ h�1

n Γ
� ��1

Cpu
n þ α2nΣ,

(45)

where we adopt an ensemble square root filter formulation, which is known to
perform better. As well as this we also include covariance inflation (i.e. inflation factor
of αn), and an adaptive step-size hn motivated from stochastic optimization to allow
an acceleration for the convergence. However the other underlying contribution, as
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eluded to, is that given this update form we are able to prove convergence
towards both local and global minimizers. In other words for the later, we have
the following result

λc∥mN � u ∗ ∥2 ≤ℓ mNð Þ � ℓ u ∗ð Þ≤ D

Nα , (46)

which the above result establishes polynomial convergence. We note from the
above equation, that λc is a convexity constant, ℓ is the associated loss function, D is
some constant, u ∗ is the global minimizer and α is some term, which we refer to [24],
for further details.

As one can notice, this convergence analysis was considered for the discrete-time
setting, so a natural extension from this is to the continuous-time framework. The
work of Blomker et al. [18] provide a first convergence analysis in this direction.
However given both these works, a full understanding in the nonlinear setting has not
been achieved, where considerable work is still required. Thus these papers provide a
first step in doing so, for both settings.

5.3 Engineering applications

As a final direction to discuss in detail, which is very much related to the theme of
this book, are applications in particular engineering applications. The advantage of
these ensemble Kalman methods, is that they can be viewed as a black box-solver,
therefore it is highly applicable. One particular application has been geophysical
sciences, related to recovering quantities of interest which are below the surface, or
subsurface. Examples include the inverse problem of electrical resistivity tomography
(ERT), shown below (Figure 3).

ERT is concerned with recovering, or characterizing sub-surface materials in
terms of their electrical properties, which are recorded through electrodes. It
operates very similarly to electrical impedance tomography (EIT), expect the dif-
ference being that it is subsurface. This has been also considered for learning
permeability of subsurface flow in a range of different settings which can be found
in the following papers [39, 40].

Figure 3.
Image depicting electrical resistivity tomography, where the the electric currents are recorded at the electrodes of the
subsurface material.
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Another interesting direction is related to walls, specifically quantifying uncer-
tainty in thermo-physical properties of walls. This work was conducted by Iglesias
et al. [41, 42]. Specifically the application is the inverse problem of recovering the
thermodynamic property or temperature. Similar work related to the methodology
used here has been used in resin transfer modeling [43], based on problems of moving
boundaries. This is a difficult problem to model, however it provides a first step in
doing so. Aside from these applications other particular applications include mineral
exploration scattering problems, numerical climate models and others [44–46]. It is
worth mentioning that, as of now, there is no official online software package for EKI
in general. This is currently being developed, but we emphasize to the reader that the
methodology presented, with the examples later, are not related to well known soft-
wares that are available in Matlab or Python.

As a side remark, there are more directions beyond what is discussed above.
Some others, without going into details, include developing hierarchical approaches,
incorporating constrained optimization, and connections with data assimilation
strategies [47–51].

6. Numerical experiments

In this section we provide some numerical experiments highlighting the perfor-
mance of ensemble Kalman methods for inverse problems. Specifically we will con-
sider EKI as discussed in Section 2. We will compare EKI with its regularized version
of TEKI. Both these methodologies will be tested on on two motivating inverse prob-
lems arising in geophysical and atmospheric sciences, i.e. a Darcy flow partial differ-
ential equation and the Navier–Stokes Equation.

In order to assess a comparison, we will present three different figures. (i) The first
being a reconstruction at the end of the iterative scheme; (ii) the error between the
approximate solution and the ground truth, and (iii) the data misfit. The equations
associated with each are given as.

• Reconstruction through EKI: 1J
PJ

j¼1u
jð Þ
n .

• Relative error:
∥u†�u∥2

L2

∥u†∥L2
.

• Data misfit: ∥Γ�1=2 y� G u†ð Þ∥2
�

.

6.1 Darcy flow

Our first model problem is an elliptic partial differential equation (PDE), which
has numerous applications. Specifically one of them is subsurface flow in a porous

medium. The forward problem is concerned with solving for the pressure p∈H1
0 Ωð Þ,

given the permeability κ∈L∞ Ωð Þ and source function f ∈L∞ Ωð Þ, where the PDE is
given as

�∇ � κ∇pð Þ ¼ f , ∈Ω, (47)

p ¼ 0, on Ω: (48)

such that we have prescribed Dirichlet boundary conditions, and Ω ¼ 0, 1½ �2 ⊂
d,

for d ¼ 2, is a Lipschitz domain. The inverse problem associated to solving p from (47)
is the recovery of the permeability κ∈L∞ Ωð Þ, from noisy measurements of p, i.e.
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y ¼ G κð Þ þ η, η � N 0, Γð Þ, (49)

where recalling that G κð Þ ¼ p. We consider 64 equidistance observations within
the domain, and on the boundary. To numerically solve (47) we employ a centered-
finite difference method with a mesh size of h ¼ 1=100. For our noisy observations we
consider Γ ¼ γI, where γ ¼ 0:01. We will use and compare EKI and TEKI, with an
ensemble size of J ¼ 50 for both methods. We will run both iterative schemes for n ¼
24 iterations. For our initial ensemble u0f gJj¼1 we consider modeling it as a Gaussian

random field, i.e. u � N 0, Cð Þ, which can be done via the Karhunen-Loève expansion

u ¼
X

k∈ℤ
þ

ffiffiffiffiffi

λk
p

ϕkξk, ξk � N 0, 1ð Þ, (50)

where λk, ϕkð Þ are the associated eigenvalues and eigenvectors of the covariance
operator C. There are numerous choice of covariance functions one can take, however
a popular choice is the Matérn covariance function, which provides much flexibility
for modeling. For full details on various covariance functions, or operators, we refer to
reader to [52]. The true unknown of interest is taken to be also a Gaussian random
field, but one that is smoother than that of that of the initial ensemble.

Our first set of experiments are provided in Figure 4 which shows the truth, the
reconstruction from using EKI, and that of using TEKI. As we can observe, is it clear
that both methodologies work well at learning the true unknown function. However it
is clear that the TEKI induces a smoother reconstruction, which arises from the
regularization. However, what is interesting is that if we analyze Figure 5, we notice

Figure 4.
Reconstruction plots for the Darcy flow PDE example. Left: Truth. Middle: EKI reconstruction. Right: TEKI
reconstruction.

Figure 5.
Relative errors and data misfits for the Darcy flow PDE example. We compare EKI with TEKI.
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that the relative error tends to diverge at the end with EKI, and this is due to the
overfitting of data. A motivation behind TEKI is to alleviate this. This can be seen
vividly as it tends to decrease, and for the data misfit, it remains within the noise level,
which is given as

noise level ¼ ∥ y�G u†
� �� �

∥ ¼ ∥η†∥: (51)

6.2 Navier: stokes equation

Our final test problem is a well-known PDE model arising in numerical weather
prediction which is the Navier–Stokes equation (NSE). We consider a 2D NSE defined

on a torus 2 ¼ 0, 1½ �2 with periodic boundary conditions. The aim to estimate the

velocity v≔ 0, ∞½ Þ � 
2 ! 

2 defined as a vector field from the scalar pressure field

p≔ 0, ∞½ Þ � 
2 ! 

2. The NSE is given as

∂tvþ v � ∇ð Þvþ ∇p� νΔv ¼ f , 0, ∞½ Þ � 
2, (52)

∇ � v ¼ 0, 0, ∞½ Þ � 
2, (53)

v ¼ u, 0f g � 
2, (54)

with initial condition (54) and zero flux (53). From (52) f ∈ 0, ∞½ Þ � 

corresponds to a volume forcing, ν is the associated viscosity of the fluid. For the NSE
equation we consider a spectral Fourier solver for (52). The PDE is more challenging

Figure 6.
Reconstruction plots for the NSE PDE example. Left: Truth. Middle: EKI reconstruction. Right: TEKI
reconstruction.

Figure 7.
Relative errors and data misfits for the NSE PDE example. We compare EKI with TEKI.
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to invert than the previous example, therefore we take 100 point-wise observations.
The setup is largely the same as the previous example, where we take an initial
condition based on a Gaussian random field through the KL expansion (50). We will
aim to recover the true underlying function u† using both EKI and TEKI. The results
are obtained from the experiments are presented in Figures 6 and 7. A similar phe-
nomenon shows, where the reconstructions work well, however there is an additional
smoothness induced through the regularization in TEKI. Similarly, as we see with the
relative errors and data misfit the overfitting of the data in the end for EKI. We note
that this can be avoided depending on the prior form, its hyperparameters, the obser-
vations, and the noise. However we specify particular choices to demonstrate it can
occur.

7. Conclusion

The ensemble Kalman filter (EnKF) is a simplistic, easy-to-implement and power-
ful algorithm. This has been particularly the case in numerous data assimilation
applications for state estimation, which includes the likes of numerical weather pre-
diction, geosciences and more recently machine learning. A major advantage of the
method is that, unlike other filters such as the particle filter, it scales better in high
dimensions, and can be significantly cheaper. In this chapter we consider the EnKF
and its application to parameter estimation. Such a mathematical procedure also has
similar applications to the ones states, where one can exploit such techniques for
inverse problems. We provide a review and overview of some of the major contribu-
tions in this direction, where the resulting methodology is known as ensemble Kalman
inversion (EKI), based largely on the work of Iglesias et al. [13]. We presented various
avenues the field of EKI has taken such as regularization, extensions to sampling, and
other areas. We demonstrated how EKI can perform on two numerical examples PDE
examples.

The EKI methodology is one which builds very naturally from many different
fields, which acts a strong motivation. For example being an optimizer, one can
naturally apply optimization procedures, but also techniques from data assimilation
and uncertainty quantification. As a result, this methodology naturally brings
researchers from different fields working towards parameter estimation, and inverse
problems. This synergy of areas will hopefully ensure new emerging directions within
EKI, from a methodological, theoretical and application perspective.
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