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Chapter

Role of Non-Coding RNAs in Plant 
Nutrition Through Mycorrhizal 
Interactions
Nidhi Verma, Yeshveer Singh, Anupam Patra and Tanvi Singh

Abstract

In nature, many plants rely on symbiotic interaction with mycorrhizae for their 
nutrition and survival. For instance, nitrogen-fixing nodules and mycorrhizae are 
well established mutualistic biotic interactions between plants and bacterial/fungal 
partners under nitrogen limiting environment. Many small regulatory components of 
RNA like micro-RNAs play a critical role in establishment of these symbioses. These 
regulatory components are also crucial for balancing hormone levels, and synchroni-
zation of plant defenses and development pathways. However, functions of various 
sRNAs are still need to be addressed. This chapter will detailed out various important 
parts these regulatory components (sRNA, miRNA and siRNA) are playing during 
mycorrhizal interactions for plant growth, development and nutrition.
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1. Introduction

During course of co-evolution since millions of years, plants have established 
symbiotic associations with the fungi and bacteria. Established mycorrhizal and 
rhizobia symbiosis with the plants are the best illustrated examples of such interac-
tions. These symbiotic associations are entrenched by the molecular cross-talk 
including correct recognition and specific activation/repression of signaling path-
ways. Legume-rhizobia interactions are specific in terms of molecular cross talk, as 
the host plant secretes flavonoids which are perceived by compatible rhizobia for the 
induction, expression and activation of Nod genes in the bacteria, necessary for the 
nodule formation in the host plant. The secreted Nod factors once recognized by host 
specific intra-cellular kinase and extra-cellular LysM domain containing receptors, 
a cascade of cytoplasmic events starts within root epidermal cells. Depolarization 
of the membrane, alteration in calcium levels and induction of calmodulin based 
kinase signaling makes favorable environment for rhizobia infection thread forma-
tion and successive penetration of plant host cell through branching. Subsequently, 
‘Bacteroids’ formation and nitrogen fixation initiates in host cell cytoplasm. In 
contrast, mycorrhizal interactions are not specific in terms of host range as they 
can colonize almost all terrestrial plants [1]. Although the signaling pathway for 
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mycorrhizal symbiosis activation shares some attributes of rhizobial symbiosis 
events, induction and reprogramming of the host cells starts after the recognition 
of myc-LCO (mycorrhizal lipo-chito-oligosaccharide), which leads to altered meta-
bolic cascade in host and hyphae as well [2]. This molecular cross-talk establishes 
nutrients and mineral transport through specialized and branched structures called 
‘Arbuscules’ from Arbuscular mycorrhizal (AM) partner and photo-synthetically 
fixed carbon sources mobilization from host plant in exchange. To bear an invasion 
of microorganisms, plants must have some specialized mechanisms to distinguish 
beneficial microbes from harmful ones. Since last few decades, we are learning about 
regulators of fine tuning among symbiotic associations and plant immunity [3, 4]. 
Contributions of non-coding RNAs (ncRNAs) in this regulation of host defenses to 
establish symbiosis are indispensible according to recent studies [5].

In this chapter, we have summarized the genesis of various important classes 
of non-coding RNAs and their role in nutrient uptake, transport, assimilation and 
homeostasis in plants via mycorrhizal symbiosis, and discuss the recent discoveries of 
cross-kingdom RNA interference (RNAi) during plant-fungus interactions. We also 
provide the insights and future perspectives for improved understanding of mycor-
rhizal associations, which would aid in the development of innovative strategies for 
enhancing the crop yield.

2. Genesis of non-coding RNAs and classification

Currently, a large number of endogenously formed ncRNAs involved in different 
regulatory functions have been discovered and functionally characterized in vari-
ous plant species [6, 7]. On account of their average size, the regulatory ncRNAs can 
be classified into sRNAs (small RNAs of typically 18–30 nt in size), medium-sized 
ncRNAs (broad range of 31–200 nt), and more than 200 nt sized Long-non-coding 
RNAs (lncRNAs). Furthermore, depending on their morphology, theycan be clas-
sified as linear or circular (circRNA). Recently, small regulatory RNAs (sRNAs), 
miRNAs and small interfering (si)RNAs, have been well characterized with respect 
to plant immunity and symbiosis. Although thought to be small, they play vital 
functions in response to the biotic, abiotic stress and environmental fluctuations by 
regulation/modulation of target genes expression [8–11]. Similarly, lncRNAs were 
considered transcriptional noises, but later attracted attention for the heterogeneous 
groups of ncRNAs and long range [12]. Remarkably, unlike other linearly regulated 
ncRNAs, the newly discovered circRNAs belong to a novel class, which lacks free 5′ 
and 3′ end [13]. In addition, many small ncRNAs, which are derivatives of tRNAs, 
which are identified and characterized in plants typically comprised of 15–42 nt, 
termed as tsRNAs [14–16]. The tsRNAs are also classified as regulatory ncRNAs for 
multiple functions. Generally, the functions of certain ncRNA are similar, but some 
differ and overlap in silencing signaling pathways [17].

As reviewed by Chao et al. [18], the biogenesis of miRNAs is a multi-step proce-
dure which involves transcription, processing, alterations, and then RNA-induced 
silencing (RISC) complex assembly. First, a pri-miRNA (primary miRNA) is tran-
scribed from RNA Polymerase II containing a hairpin RNA secondary structure. 
Next, the base pri-miRNA hairpin is then cleaved by a DICER Like RNase-III family 
enzyme (usually DCL1). To release miRNA-miRNA* duplex, these hairpins are 
cleaved again and subsequently methylated (at 2′O- position) by HUA Enhancer 
1 (HEN1) nuclear protein for the stability. Finally, in nucleus the mature miRNA 
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strand enters into AGO1 to form miRNA-AGO1 complex, which are then transported 
to cytoplasm leaving behind cleaved miRNA* fragment for the induction of post-
transcriptional gene silencing.

Depending on their mechanism of action, siRNAs can further be classified 
into three major sub-categories: (1) native antisense siRNAs (nat-siRNAs), (2) 
heterochromatin siRNAs (hc-siRNAs), and (3) trans-acting siRNAs (ta-siRNAs). 
ta-siRNA is generated from the TAS gene which is transcribed from RNA Pol II into 
single-stranded RNA and loses its cap and poly-A tail during miRNA-AGO1 complex-
controlled cleavage [8, 19]. Later, the 5′ or 3′ cleaved fragments are end protected 
by the suppressor of gene silencing 3 (SGS3) protein and transformed into double-
stranded RNA (dsRNA) via RDRP-VI [20]. Finally, by HEN1 and DCL activities they 
are methylated and processed to form ta-siRNAs (21–24 nt). To participate in post-
transcriptional modulation/silencing of target genes by pairing with its complemen-
tary mRNAs, these 21–24 nt sized strands are integrated with AGO1/AGO7 present 
in the cytoplasm, whereas a few ta-siRNAs are loaded onto AGO4/6 for assisting 
methylation of TAS genes via RNA Pol V.

tsRNAs, with a wide size range (15–42 nt), represent a unique ncRNA class  
that can be sub-categorized based on their cleavage sites: (1) tRF-1 s, (2) tRF-2 s,  
(3) tRF-3 s, (4) tRF-5 s, and (5) tiRNAs. However, plant research is still in its infancy 
and many questions remain unanswered in reference to its existence. For instance, the 
biosynthetic pathway for tsRNAs and their regulatory or physiological roles in plants 
are still very limited [21].

CircRNAs are known as RNA biomolecules which are circular, covalently closed 
and single-stranded [22]. They were first identified and characterized from plant 
viruses by Sanger and colleagues in 1976. The organization of circRNAs can be 
divided into three groups [23]. (1) The Exon circRNAs are generated by the circular-
ization of lariat-derived and intron pairing, (2) the intronic circRNAs are formed by 
the partial intron degradation after lasso structure formation; and (3) exo-syntronic 
circRNAs are composed of exons as well as introns, and circularized during the 
splicing process.

lncRNAs biogenesis can be categorized into five major types in accordance to the 
sites being transcribed via RNA-Pol II. (1) The antisense lncRNA is transcribed over 
the complementary strand of the exon; whereas (2) sense lncRNA is transcribed on 
the same strand as the exon. As name indicates, (3) Intron lncRNA is transcribed 
into an intron. (4) The Inter-genic lncRNAs are situated between two different genes 
and (5) the enhancer lncRNA mostly arises from the enhancer region of the protein-
encoding gene [24]. They can control target regulation in a variety of ways, including 
chromatin re-modeling, transcriptional repression, splicing of RNA and its transcrip-
tional enhancers. Additionally, lncRNAs can code for certain small peptides required 
for various cellular processes [25]. Notably, several lncRNAs are regulated under 
abiotic/biotic stresses in the plants.

3. Role of sRNAs in plant nutrition

Induction of miRNAs regulates the expression of an array of genes and promotes 
plant nutritional homeostasis. Owing high-throughput RNASeq techniques and target 
prediction tools the role of ncRNAs in nutrition and stress signaling has been investi-
gated in recent past. Majorly the role of ncRNAs in nitrogen (N), phosphate (Pi) and 
sulfur (S) homeostasis has been discussed below:
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3.1 Nitrogen

Evidence for miRNAs controlling nitrogen responses in plants has been illustrated 
[26, 27]. Up-regulation of pri-miRNA156, pri-miRNA447c and down-regulation 
of pri-miRNA169 and pri-miR398a has been characterized in Arabidopsis under 
nitrogen-deficient conditions [28]. Expression of nitrogen responsive miRNA, like 
miRNA160, miRNA167, miRNA168 in the maize roots and miRNA164, miRNA171 
in shoots whereas, miRNA169 in both are reported under nitrogen-limiting condi-
tions [27]. Similarly, several nitrogen-responsive miRNAs have been investigated 
in legumes, for instance, a total of altered expressions of 168 miRNAs are reported 
in limiting-nitrogen-tolerant and limiting-nitrogen-sensitive genotype of soybean 
using RNASeq [26]. A down-regulation of miRNA2606a/b-3p and up-regulation 
of miRNA1512a-5p was found in limiting-nitrogen-tolerant and limiting-nitrogen-
sensitive genotype respectively. Moreover, mRNA transcripts encoding Cathepsin 
and E3-Ubiquitin ligase protein were found to be targeted and degraded by 
miRNA396b/g-5p and miRNA156b/6f-5p respectively under nitrogen stress.

3.2 Phosphate

Phosphate-responsive sRNA involved in Pi-uptake, transport, assimilation 
and homeostasis through targeting mRNA transcripts are extensively studied and 
identified in plant including rice, maize, tomato, soybean and Arabidopsis [29–33]. 
Among these plant species, common set of plant miRNA families are character-
ized modulating signaling networks, including miRNA156, miRNA159, miRNA166, 
miRNA319, miRNA395, miRNA398, miRNA399, miRNA447, and miRNA827 are 
demonstrated in response to Pi-limiting environment [34, 35]. An elevated level 
of miRNA156, miRNA399, miRNA778, miRNA827, miRNA2111 and suppressed 
miRNA169, miRNA395 and miRNA398 levels are observed under Pi stress [28]. Role 
of miRNA2111 has been illustrated under N and Pi limiting conditions [36]. The 
expression of phosphate-responsive PHO2 transporter was altered by miRNA827 and 
miRNA399 [37]. Moreover, miRNA827 targets the Major Facility Superfamily (MFS)-
XPS proteins which are involved in Pi sensing and transport [38]. Common response 
against nutrient starvation includes anthocyanin accumulation in plants. MYB TF 
regulated anthocyanin biosynthesis pathway genes are targeted by siRNAs produced 
by ta-siRNA4 under the regulation of Pi-responsive miRNA828, post-transcription-
ally [39]. The major regulatory role in maintenance of mineral homeostasis in host 
plant under N, Pi and C limiting environments is performed by miRNA398a [40]. 
Among all the characterized Pi-responsive miRNAs, altered levels of different alleles 
of miRNA399 were found conserved and pre-dominant under Pi-limiting conditions 
[41]. miRNAs and siRNAs induction was reported upon Candidatus liberibacter infec-
tion in citrus plants and interestingly, miRNA399 level was found elevated in infected 
plants than healthy host under Pi-limiting conditions [33]. These facts demonstrate 
the critical role of sRNAs in post-transcription regulation of Pi-responsive transcripts 
enabling host adaption under nutrition stress.

3.3 Sulfate

Sulfate transporters located on root epidermal and cortical cell membrane are the 
key components in sulfur uptake and transport to the plants in SO42− form. Based 
on their substrate affinity, sequence similarity and their location of expression, they 
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are categorized into five major groups. Group 1, group 2 and group 3 are character-
ized as high affinity, low affinity, and moderate affinity transporters for sulfur 
substrate, respectively [42–44]. Group 4 and 5 transporters are characterized as 
efflux transporter on tonoplast and molybdenum transporters (for being actively 
involved in molybdenum transport across the plant) respectively [45, 46]. S uptake 
from soil to the root is carried out by group1 and 2 transporters, while root to shoot 
transport of S is done by group 4 transporters. Under S-limiting conditions plethora 
of miRNAs induced including miRNA66, miRNA67 and miRNA395 while suppres-
sion of miRNA14, miRNA20 and miRNA43 is associated with regulation of post-
transcription modification of S signaling. miRNA395 is a S-specific ncRNA signal 
and has been characterized to function as a key regulator of the sulfate depletion 
pathway. Under S-deprivation, miRNA395 positively regulates the expression of the 
low-affinity transporter AtSul2;1 [47], supporting sulfate uptake and transport of 
cells to shoots and leaves in Arabidopsis thaliana. The initial step of S assimilation into 
cysteine is catalyzed by ATP dependent sulphurylases (APSs), which are the target for 
miRNA395 in plastids [35].

4. Nutrient uptake/exchange during mutualistic plant-fungus interactions

One of the characteristics of the beneficial mycorrhizal interactions is the bidi-
rectional nutrient exchange between both the partners and to support the growth 
of plant host [48, 49]. In these relationships, the fungus provides nitrogen, phos-
phate and sulfate nutrients to the host, whereas, in return, the host plant transfers 
photosynthetically fixed carbon (4–20%) to the mycorrhizal fungus [50]. In AM 
roots, the fungus proliferates into the root cortex intercellularly as well as intracel-
lularly, whereas in case of ECM roots, it only covers intercellular regions, indicating 
the differences in the mechanism of colonization and nutrient uptake/exchange. 
The uptake of nutrients by plants from soil is limited by the repressed mobility of 
nutrients. Importantly, during AM symbiosis, the plant phosphate (P) transporters 
are down-regulated [51, 52]. Under these conditions, the nutrient such as P uptake 
is predominantly achieved through mycorrhizal pathway [1, 53, 54]. It has been 
observed that contribution of the mycorrhizal pathway in nutrient uptake varies 
with the plant and fungal partners that are involved in the interaction and also on the 
nutrient type [48, 52, 55–57]. To facilitate the nutrient uptake via mycorrhizal inter-
face, the peri-arbuscular membrane (PAM) harbors high affinity transporters that are 
specifically induced in mycorrhizal roots. For instance, Pt4 and AMT2 are the high 
affinity transporters for P and ammonium (NH4+) that mediate transfer of respective 
nutrients from fungus to plant host [58–60]. Moreover, a few mycorrhiza-inducible 
sulfate transporters have also been reported in AM roots [61, 62]. Recently, a sulfate 
transporter (SiSulT) and iron transporter (PiFtr) from Serendipita indica (previously 
known as Piriformospora indica) has been characterized, which transfers sulfur to the 
maize and iron to the rice plants, respectively and improves its growth [63, 64]. These 
studies highlight the importance of sulfur transport via mycorrhizal associations.

On the other hand, the plant transfers photosynthates as sucrose from source 
to ECM roots that serve as a carbon sink, which is then converted to simpler sugars 
such as glucose or fructose by invertase enzyme of host. The glucose and fructose 
are taken up by fungal counterparts through mycorrhizal interface. For instance, 
an arbuscular membrane localized monosaccharide transporter (MST2) is involved 
in the uptake of glucose and xylose molecules by AM fungi [65]. Intriguingly, host 
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carbon supply has been found to trigger the fungal gene expression, and P and N 
uptake during AM and ECM symbiosis [66–68]. This also leads to increased hydro-
lysis of polyP (an important source of P and N) and release of Pi and Arg in the 
fungal cytoplasm. The Arg is further broken down to NH4+ and is transferred to host 
plant via mycorrhizal interface. Importantly, these transport processes, from host to 
fungus and from fungus to the host, involve diverse molecular players that mediate 
membrane transport for the nutrition exchange between mycorrhizal plants and 
fungus at the interaction interface. The membrane transporters and channels that 
mediate the transport of molecules such as P, N, S, K, sugar and water are collectively 
referred as the ‘transportome’ [69].

Moreover, several robust and tightly regulated signaling processes are involved 
in establishing the successful mycorrhizal colonization for the efficient exchange of 
nutrients between plant and fungus. Although, the regulatory processes of plant and 
fungus both are important during symbiosis, the major proportion of studies has 
focused on the regulation from plant’s perspective. These regulators include a variety 
of non-coding RNAs, phytohormones, peptide signals, transcription factors such as 
CYCLOPS and NODULATION SIGNALING PATHWAY (NSP1 and NSP2) [70–72]. 
The CYCLOPS, NSP1 and NSP2 are conserved members of rhizobial and mycorrhizal 
symbiosis phenomenon. The detailed overview of transcriptional regulation of AM 
development has been provided by Pimprikar and Gutjahr [73]. The non-coding RNA 
mediated-regulation of mycorrhizal symbiosis is now gaining the scientist’s attention 
and emerging as new area of research.

5. Plant’s ncRNAs modulating interconnection networks with fungi

5.1 miRNA

In recent past decades, the focus has pushed beyond the traditional defense path-
way’s transcriptional control in establishing pathogenic or beneficial plant-microbe 
interactions to attempts to understand novel transcriptional regulators. In particular, 
many groups have started investigating the function of microRNAs (miRNAs) in 
regulating signaling processes accompanying the symbiotic interactions. Many plant 
miRNAs have been reported to be involved in modulating the plant-pathogenic 
microbe interactions. The majority of miRNAs investigated and characterized to date 
complements the alterations described well in the transcriptome. For example, one of 
the defenses against necrotrophic pathogens involves improving the physical tolerance 
of plant cells. Arabidopsis miRNA408 and miRNA160a induce physical cell reinforce-
ment by positive regulation of lignification and callose deposition [74, 75]. In Medicago 
and Oriza, various miRNA targets the ET (Ethylene), JA (Jasmonic Acid), and SA 
(Salicylic Acid) biogenesis during pathogenesis at very early stages [76, 77]. During 
attack by biotrophic pathogens, many miRNAs also suppress routine cellular detoxi-
fication. One example is miRNA398, which enhances ROS generation in Magnaporthe 
oryzae-infected tissues [78]. On the other hand, in case of tomato, the necrotrophic 
association between plant and Alternaria solani, miRNAs target gene transcripts are 
reported to be actively involved in toxin detoxification [79]. This suggests that miR-
NAs have potential to modify plant cells into the toxic ecosystems, poisoning invading 
microbes before they spread further to strengthen host immunity.

In mutual bio-trophic interactions, a few recent investigations have shown that 
the a major proportion of miRNAs synthesized all through interaction establishment 
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modulate hormone response pathways, protein methylation, and functions of innate 
immunity components [78, 80]. A well-studied example includes the miRNA (anno-
tated as E4D3Z3Y01BW0TQ ) which is reported to be induced during AM symbiosis 
progression and interferes with GA signaling. GA signaling pathway is known to 
inhibit symbiotic-association [81–83]. On the other hand, miRNA172c promotes nod-
ule formation in many plants by repressing the translation of APETALA2 TF [84, 85]. 
In AM-colonized roots, miRNA171b hampers with GRAS TF-responsive transcripts 
targeting through miRNA171, which are necessary for both nodulation and symbiosis.

5.2 siRNA

Microorganisms can have a significant impact on how plants react to colonization; 
they are not just background actors in the process. Since past few decades, effector 
proteins and siRNAs have been the two main areas of research. A variety of plant 
signaling pathways are altered by microbial effector proteins, which are generally tiny 
secreted proteins that are substantially stimulated during the colonization process. 
Similar to effector proteins, siRNAs target essential plant transcripts, disrupt tran-
scripts via the ARGONAUTE (AGO) pathway, or act in a manner resembling that of 
miRNAs by inhibiting tRNA binding and localization. The microorganism-secreted 
siRNAs are taken up by the host plant, and disrupt the key transcripts of host.

Botrytis cinerea, a fungal pathogen, has been demonstrated to alter plant physiol-
ogy during colonization by secreting siRNAs [86]. B. cinerea siRNAs initially pen-
etrate host plant cells during the pathogenesis of tomato and Arabidopsis, where they 
diminish the host’s RNAi apparatus. These relatively tiny molecules can therefore 
be thought of as variants of conventional effector proteins. In case of A. thaliana, 
Bc-siRNA3.1, Bc-siRNA3.2, and Bc-siRNA5 collectively silenced the stress-related 
genes, such as PRXIIF, WAK, MPK1 and MPK2 to eliminate the plant defense [87]. 
However, Bc-siRNA37 AtPMR6, AtFEI2 and AtWRKY7 are selectively silenced by 
Bc-siRNA37 [88]. While this is the only example so far in which siRNAs have been 
formed and released by microbes and reached to the host plant cells, there can be 
another common means based on genomic analysis by which microbes can modulate 
host responses during colonization.

5.3 lncRNA

The role of lncRNAs has been well-investigated in the context of plant defense 
against fungal, bacterial and viral pathogens [89–94]. Furthermore, the functions of 
a number of plant lncRNAs intricated in plant defenses are experimentally validated. 
For instance, it has been observed that the lncRNA-ACOD1 is dispensable for viral 
entrance but not for viral replication in the host [95]. Moreover, when turnip crinkle 
virus infection occurs in Arabidopsis, the expression of the long intergenic ncRNA 
LINC-AP2 gene is negatively regulated [89]. LncRNA33732 has been characterized to 
function as a positive regulator in tomatoes, enhancing the expression of the respira-
tory burst oxidase gene and raising H2O2 build-up, thereby increasing tomato resis-
tance to Phytophthora infestans [96]. Also, lncRNA23468 in tomato can compete with 
endogenous RNA to regulate the NBS-LRR gene by feeding on miRNA482b, thereby 
controling tomato resistance to P. infestans pathogenesis [90]. Numerous lncRNAs 
have been identified as being modulated in drought, nitrogen-stress and phosphate 
depletion in maize [97–99]. The maize inbred line B73 tissues were subjected more 
than 700 high-fidelity RNA-Seq studies, which identified nearly 18,165 maize 
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lncRNAs [100]. Although lncRNAs are involved in the regulation of plant-microbe 
interactions, there are no available reports characterizing lncRNA responses to AM 
fungi, so far as the experimental evidence is considered.

6. miRNA in symbiosis: regulation through repression

Emphasis on existence and importance of small ncRNA, especially miRNA 
started with the discovery of its association with regulation of gene expression in 
Petunia [101, 102]. Owing genome wide studies and high-throughput sequencing 
efforts, till date thousands of miRNAs have been characterized throughout the 
kingdom of life. Most of the characterized miRNA associated with symbiosis are 
either involved in nutrient signaling, exchange and homeostasis or development of 
nodule/arbuscules or both [103, 104] are illustrated in Figure 1. Based on morpho-
logical analysis of host, AM Symbiosis (AMS) can be sub-categorized into four major 
stages: (1) pre-contact signaling, (2) contact establishment between plant root and 
fungal hyphae, 3) intra-radical proliferation, and 4) arbuscule formation [105]. A 
non-canonical form of miRNA171, which is found repressed under phosphate starva-
tion, regulates an important transcription factor (TF) involved in common symbiotic 
signaling pathway, NSP1/2 (NODULE SIGNALING PATHWAY 1/2) during mycor-
rhizal symbiosis.

Figure 1. 
Illustration of cross-talk between myc-LCO (mycorrhizal lipo-chito-oligosaccharide) factor induced common 
pathway signaling, miRNAs and regulatory hormones during AM symbiosis. Solid and dotted lines represents 
direct and indirect interconnections respectively.
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The interaction of NSP2 with the mycorrhizal-specific GRAS TF, RAM1 (Required 
for Arbuscular Mycorrhization 1) regulates RAM2, and DWARF27 that are part of 
cutin and strigo-lactone biosynthetic pathway, respectively, as these two pathways 
facilitate AM inoculation. miRNA393, also identified as a N- and Pi-responsive 
miRNA, is involved in the homeostasis of auxin signaling and thus inhibits the 
auxin receptor TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX 
PROTEIN (TIR1/ABF), also mediates the repression of root growth regulatory factors 
(GRFs) to affect fungal colonization and arbuscule development. miRNA396b also 
investigated to perform a significant role in root colonization and development during 
mycorrhizal symbiosis by targeting six GRFs and a TF in Medicago truncaluta [106].

For initiating rhizobia symbiosis, interactions between miRNAs, Nod factor 
signaling, and hormone regulation through NSP2 is controlled by a nodule-specific 
miRNA171. The NUCLEAR FACTOR (NF)-YA gene, a TF necessary for the nodule 
initiation and maintenance of meristem, is negatively regulated by miRNA169 [107]. 
The combination of cytokinin-responsive miRNA172 genes, Nod factor, and various 

Figure 2. 
Illustration of cross-talk between Nod factor induced common pathway signaling, miRNAs and regulatory 
hormones during rhizobial symbiosis. Solid and dotted lines represents direct and indirect interconnections 
respectively.
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AP2 (APETALA2) targets has been implicated in rhizobia infection, stimulation of 
nodule organogenesis, N2 fixation, and delaying senescence in nodule cells.

The auto-regulation of the nodulation (AON) pathway, which governs the number 
of nodules that are formed in host plants, is one mechanism by which miRNA172 can 
work. In this pathway, leucine-rich repeat receptor-like kinase (LRR-LRK) receptors 
recognize NF- or nitrate-induced Clavata3/Embryo Surrounding Region-Related-
peptides, resulting in an inhibitory signal (including CK) to cells, for establishing 
new nodules. By suppressing certain squamosa promoter-binding protein-like (SPL) 
TFs that stimulate miRNA172 production, miRNA156 antagonizes the action of 
miRNA172 [108].

Through the repression of nodulin gene (specifically ENOD93), miRNA393j-3p 
restricts nodules [109] whereas, miRNA1512 and miRNA1515 over-expression was 
discovered to be linked to increased nodule formation [75]. Finally, miRNA160 and 
miRNA167 cleave the transcripts of multiple auxin response factors (ARFs) that 
play key roles in the auxin response and pre-requisite for nodule initiation [110]. 
The detailed regulation mechanism is shown in Figure 2. miRNA390encourages the 
formation of a transacting small interfering (tasi)RNA, that represses ARF3 and 
ARF4during rhizobia colonization and nodule growth [78], it is known to combine 
auxin and ethylene signals. While, ARF10, ARF16, ARF17 and ARF6, ARF8 are 
directly regulated/targeted by miRNA160 and miRNA167, respectively [111] for 
auxin-responsive root development in both cases.

7.  Mycorrhiza-derived non-coding RNAs and cross-kingdom signaling 
during symbiosis

Recent investigations have established non-coding RNAs as one of the central 
mediators of cross-kingdom communication between the plant and microbes [86, 
88, 112–119]. These non-coding RNAs can move from donor organism to recipient 
organism, and target the specific host mRNAs for degradation. Sometimes sRNAs 
also trigger the production of secondary sRNA and thereby modulate the host defense 
and metabolic pathways [87, 120, 121]. Most of the studies focus on the plant-parasite 
or plant-pathogen (fungi and oomycetes) interactions [86, 88, 112, 120], however, 
such processes have been rarely explored in case of plant-mycorrhiza associations. 
Emerging body of evidences suggest that many plant miRNAs show differential 
expression patterns during AM symbiosis, nevertheless, their functions and cross-
kingdom mobility remains unclear [80, 83, 111, 122, 123]. Mewalal et al. [124] identi-
fied several sRNAs from Polpulus spp. which were responsive to mutualistic/symbiotic 
interaction with mycorrhizal fungi like Laccaria bicolor and Rhyzophagus irregularis. 
Interestingly, they did not find any Populus RNAs interacting with R. irregularis, how-
ever, some of the miRNAs could interact with L. bicolor. Further the study revealed 
that these miRNAs can potentially target multiple host mRNAs encoding for vesicular 
transport and transcription regulatory proteins along with several uncharacterized 
proteins.

On the other hand, at present, very little information is available regarding the 
non-coding RNA biogenesis machinery and their functions in the development of 
arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi or while interact-
ing with the host plants. However, the successful application of host-induced gene 
silencing (HIGS) and virus-induced gene silencing (VIGS) approaches [65, 125–128] 
indicates that AMF, like pathogenic fungi, also possess functional RNAi machinery. 
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An in silico study identified putative RNAi machinery including a Dicer-like (DCL) 
gene, Argonaute-like (AGO-like) and RNA-dependent RNA polymerase (RdRp) gene 
families in R. irregularis, and validated their transcript-level expression [129]. An 
unsual expansion of AGO-like (5 members) and RdRp (21 members) gene families 
was observed in R. irregularis. Authors postulated that 15 out of 21RdRp genes, 
could be the product of a recent gene expansion event. The study also characterized 
the fungal sRNA and microRNA-like sequences, and predicted 237 transcripts of 
Medicago truncatula as their potential targets including a few known mRNAs that 
are modulated during AMF colonization. For instance, some of the M. truncatula 
mRNAs that are potentially targeted by Rir-sRNAs encode for the nuclear-binding 
leucine-rich repeat (NBS-LRR) type disease resistance gene, Non-specific phospho-
lipase C4 (NPC4), MtVapyrin (Ankyrin repeat RF-like protein) and DREPP plasma 
membrane protein (MtDREPP) [129]. The homologs of NBS-LRR and NCP4 proteins 
from rice and arabidopsis, respectively, are involved in the plant immunity [130, 131], 
thus repression of these genes may allow AM colonization without triggering the 
robust host defense responses. MtVapyrin plays crucial role in arbuscule formation 
[132–134]. The down-regulation of MtDREPP has been reported in mycorrizal roots 
[135]. Though, further experimental validation is required, these findings indicate the 
possible existence of non-coding RNA-mediated post-transcriptional regulation and 
cross-kingdom gene silencing by AMF.

Another study by Silvestri et al. [136] identified the small RNA population from 
AMF Gigaspora margarita and showed their origin from different genetic sources 
such as endobacteria, RNA viruses and non-integrated DNA sequences from mito-
viruses. Intriguingly, the extracellular vesicles (EVs), that are deployed in delivering 
the sRNA molecules to the other interacting partner [112, 120, 137], have also been 
observed in the peri-arbuscular interface of R. irregularis during the whole lifespan 
of arbuscules. This indicates the crucial role of EVs in cross-kingdom communication 
and nutrient exchange during AMF symbiosis [138]. More recently, a breakthrough 
discovery demonstrated that an ECM fungus Pisolithus microcarpus encodes 11 
miRNAs, six of them were found induced during host colonization process. Notably, 
the miRNA (Pmic_miR-8) enters the plant cell and partakes in cross-kingdom gene 
silencing at some stage in symbiotic interaction with host plant Eucalyptus grandis 
[139]. The inhibition of Pmic_miR-8 resulted in less developed Hartig nets, whereas, 
supplementation showed increased Hartig net depth in host tissue. Further the study 
showed that Pmic_miR-8 may target the host NB-ARC (nucleotide-binding adaptor 
shared by APAF-1, R proteins, and CED-4) domain containing transcripts, indicating 
its potential role in modulating host signaling to stabilize the mutualistic association. 
As the CC (coiled-coil) nucleotide binding and leucine-rich repeat domain immune 
receptors (CC-NLR) are the largest category of NLRs, thus Pmic_miR-8 may target 
several plant genes belonging to this class. Importantly, this is the first study which 
established the cross-kingdom gene silencing by mycorrhizal fungi and its role in 
beneficial interactions with host.

8. Conclusion and future prospects

In the last decade, the non-coding RNAs have emerged as one of the key regula-
tors of diverse plant process including their development, response to abiotic/biotic 
stress, and nutrient uptake. A significant advancement has been made to understand 
the crucial roles of non-coding RNAs in plant-microbe interactions, particularly 



Mycorrhiza - New Insights

12

Author details

Nidhi Verma*, Yeshveer Singh, Anupam Patra and Tanvi Singh
International Centre for Genetic Engineering and Biotechnology, New Delhi, India

*Address all correspondence to: vermanidhi5@gmail.com

pathogenic interactions. Nutrient uptake via mycorrizal association is an important 
aspect of plants lifestyle and the studies suggest the extensive involvement of non-
coding RNAs in regulating the plant nutrient status via affecting symbiosis. Notably, 
the sRNA-mediated regulatory mechanisms during mycorrhizal symbiosis have 
mainly focused on plant’s perspective. These studies have provided crucial insights 
on understanding how the mycorrizal colonization proceeds and how the host plants 
fine-tune the extent of fungal colonization so that it does not turns pathogenic. On 
the contrary, the sRNA-mediated regulation of symbiosis from the fungal perspec-
tive remains infancy. Moreover, an integrated view of both the organisms (plant and 
fungus) will be required to appropriately comprehend the beneficial relationships. 
To understand ncRNA-molecular interaction networks occurring at plant host-AM 
symbiosis interface, experimental evidences and rewriting of dynamics of interac-
tion, sensing, uptake, transport, assimilation and homeostasis of nutrients regulation 
are required. Extensive investigations for ncRNAs mediated regulation of cross-
talk between AM and host plant are also needed for teeming knowledge voids. We 
anticipate that the recent discovery of cross-kingdom gene silencing by ECM fungus 
Pisolithus microcarpus and AM-like model EM fungus Serendipita indica would pave 
the way for future investigations of non-coding RNA-mediated regulatory networks 
in mycorriza growth and development as well as during host interactions, and would 
trigger novel research ideas among plant scientists. The better understanding of these 
regulatory circuits would aid in improving the nutritional status of plants in order to 
combat the elevating global quality-food demand.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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