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Chapter

Perspective Chapter: Cyclic
Generation of Box-Behnken Designs
and New Second-Order Designs
Nam-Ky Nguyen, John J. Borkowski and Mai Phuong Vuong

Abstract

Box-Behnken designs (BBDs) are three-level second-order spherical designs with all
points lying on a sphere, introduced by Box and Behnken, for fitting the second-order
response surface models. They are available for 3–12 and 16 factors. Together with the
central composite designs for the second-order model, BBDs are very popular response
surface designs, especially for 3–7 factors. This chapter introduces an algorithm to
produce cyclic generators for BBDs and similar designs, which we call cyclic BBDs
(CBBDs). The new CBBDs offer more flexibility in choosing the designs for a specified
number of factors. Comparisons between some BBDs and the new CBBDs indicate the
superiority of the new CBBDs with respect to multiple design quality measures and
graphical tools assessing prediction variance properties. A catalog of 24 new CBBDs,
which includes orthogonally blocked CBBDs for 11, 13, and 14 factors, will be given.

Keywords: circulant matrices, foldover designs, interchange algorithm, response
surface designs, spherical designs

1. Introduction

Box-Behnken designs (BBDs) are three-level response surface designs (RSDs),
introduced by Box and Behnken [1, 2], to fit a second-order response surface model

y ¼ Xβ þ ε (1)

For m factors in n runs. Here, yn�1 is a response vector; Xn�p the model matrix
having an intercept term, m main effect (ME) terms, m quadratic effect (QE) terms,

and
m

2

� �

2-factor interaction (2FI) terms; vector βp�1 of p ¼ 1þ 2mþ
m

2

� �

parameters; and error vector εn�1 with zero mean and covariance matrix Iσ2. BBDs are
currently available for 3–12 and 16 factors [3]. Except for 11 factors, BBDs can be
constructed by superimposing the two-level factorial design onto treatments in each
block of a balanced incomplete block design (IBD) or partially balanced IBD. BBDs
have the following properties:

i. Each factor has the same number of runs at high (+1) and low (�1) levels;
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ii. All points lie on a sphere of the radius ρ or at the center of the design space;

iii. They are rotatable for 4 and 7 factors. Otherwise, they are near-rotatable;

iv. They can be orthogonally blocked except for 3 and 11 factors;

v. Let design D be a n�m design matrix D with m factors x1,… ,xm. Let the row

u of the model matrix X be written as 1, x2u1,… , x2um,
�

xu1,… , xum, xu1xu2,… ,
xu m�1ð ÞxumÞ, where xui is the element in row u and column i of D. The

information matrix M ¼ X0X (and its inverse) has the following form:

ð2Þ

where M11 is a square matrix of order 1þm, and M22 is a square matrix of
order mþ m

2

� �

. For a BBD, M21 ¼ 0, M12 ¼ 00 and M22 ¼ D, where D is a
diagonal matrix. Matrix M in (2) reduces to:

ð3Þ

As an example, we construct a 6-factor BBD. Consider an IBD of size v, k, rð Þ=
(6, 3, 4) for six varieties, arranged in blocks of size three, each with three replications

per variety. Superimposing a 23 factorial onto the corresponding varieties of this IBD
will result in the following 6-factor BBD without center points:

�1 �1 0 �1 0 0

0 �1 �1 0 �1 0

0 0 �1 �1 0 �1

�1 0 �1 �1 0 0

0 �1 0 0 �1 �1

�1 0 �1 0 0 �1

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

: (4)

In each row, �1� 1� 1ð Þ represents the eight points of a 23 design and 0 is a
column vector of eight 0’s. Czyrski and Sznura [4] applied the 6-factor BBD in the
optimization of HPLC separation of fluoroquinolones.

Next, we examine a foldover design in 48 runs (with no center points) generated
by four cyclic generators: (�1, 0, 0, �1, 1, 0), (0, 1, 0, 0, 1, 1), (0, 0, 1, �1, 0, �1),
and (0, 0, �1, �1, 0, 1). The first generator, for example, cyclically generates six
design points:

�1 0 0 �1 1 0

0 �1 0 0 �1 1

1 0 �1 0 0 �1

�1 1 0 �1 0 0

0 �1 1 0 �1 0

0 0 �1 1 0 �1

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

: (5)
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The four cyclic generators produce 24 runs. The next 24 runs are obtained by folding
over the first 24 runs (i.e., changing the signs of the factor levels). All points lie on a

sphere of radius ρ ¼
ffiffiffi

3
p

. It can be shown that these design points are also points in the
6-factor BBD. In this chapter, we call this type of design a cyclic BBD or CBBD.

Each factor of this BBD has half of its runs at the 0-level and the remaining at �1
levels. Now assume that the researchers are looking for an alternative spherical design
with fewer 0-levels and more �1 levels for each factor. This allows the experimenter
to increase the volume of the spherical design region by increasing the radius associ-
ated with CBBD points. This chapter introduces an algorithm that can generate CBBDs
of varying radii. Designs with the same number of factors and runs but with different
radii are compared with respect to D-criterion values (or d-values), variances of the
parameter estimates, and the correlation among the main (ME), quadratic (QE), and
interaction (2FI) effects. Concepts, such as rotatability, orthogonal blocking, and
spherical designs, are well-described in Box and Behnken [2] and textbooks on
response surface methodology, such as Myers et al. [5] or Box and Draper [6].

2. Calculating the elements of M of a CBBD

The design matrix D of a CBBD has the form C0
1 …C0

r 0
0� �0

where C1,… ,Cr are the

circulant matrices of order m generated by r generating vectors c1,… , cr and 0 is a
matrix containing center points. For the information matrix M to have the form in
(3), the elements D must satisfy the following conditions:

X

n

u¼1

xui ¼ 0 ∀ið Þ (6)

X

n

u¼1

xuixuj ¼ 0 i 6¼ jð Þ (7)

X

n

u¼1

x2uixuj ¼ 0 i 6¼ jð Þ (8)

X

n

u¼1

x2uixujxuk ¼ 0 i 6¼ j 6¼ kð Þ (9)

X

n

u¼1

xuixujxuk ¼ 0 i 6¼ j 6¼ kð Þ (10)

X

n

u¼1

xuixujxukxul ¼ 0 i 6¼ j 6¼ k 6¼ lð Þ (11)

where xui is the level of the factor i for run u (Cf. Appendix A of [2]). The
condition in (4) implies that D is a balanced design; that is, each column of D has the
same number of þ1 and �1. To make D balanced, we just have to restrict the sum of
the elements of the generating vectors c1,… , cr to 0. As D is constructed from the
circulant matrices, conditions (7)–(11) can be written as:

X

r

t¼1

X

m�1

i¼1

ctict iþjð Þmod m ¼ 0 1≤ j<mð Þ (12)

3
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X

r

t¼1

X

m�1

i¼1

c2tict iþjð Þmod m ¼ 0 1≤ j<mð Þ (13)

X

r

t¼1

X

m�1

i¼1

c2tict iþjð Þmod mct iþkð Þmod m ¼ 0 1≤ j< k<mð Þ (14)

X

r

t¼1

X

m�1

i¼1

ctict iþjð Þmod mct iþkð Þmod m ¼ 0 1≤ j< k<mð Þ (15)

X

r

t¼1

X

m�1

i¼1

ctict iþjð Þmod mct iþkð Þmod mct iþlð Þmod m ¼ 0 1≤ j< k< l<mð Þ (16)

where cti is the value of the factor i on the generating vector t. It can be seen that

there are m� 1 summations in (10) and (11), m�1
2

� �

in (12) and (13), and m�1
3

� �

in
(14). This explains why the lengths of the vectors Jq and J in Section 3 are

2 m� 1ð Þ þ 2 m�1
2

� �

þ m�1
3

� �

.

3. The CBBD algorithm

Our CBBD algorithm is the generalization of the algorithm in Nguyen et al. [7] and
Pham et al. [8]. Using the results in Section 2, we present the steps of the algorithm for
generating a CBBD for m factors in n ¼ 2rmþ nc runs (where nc is the number of
center points) with points on a sphere of radius ρ, and 1

3m≤ ρ2 <m
� �

.

1.Form a matrix C of size r�m. Set 1
2 rρ

2 elements of C to 1, 12 rρ
2 to �1, and the

remaining elements to 0. For each row vector cq of C, form a vector Jq with a

length 2 m� 1ð Þ þ 2 m�1
2

� �

þ m�1
3

� �

containing the sums in (10) to (11). Set
J ¼ P

Jq. Calculate f , the sum of the squares of the elements of J.

2.Search for a pair of entries in C such that swapping their positions results in the
biggest reduction in f . If the search is successful, update f and C. This step is
repeated until f ¼ 0, or f cannot be reduced further.

Remarks

1.These two steps make up one trial. Among all trials with f ¼ 0, we select the
CBBD with the highest D-criterion value, which is defined as:

d‐value ¼ 1

n
Mj j1=p (17)

for the information matrix M and the number of parameters p for the second-
order model.

2.There are situations, where there is no CBBD with f ¼ 0 for particular values of

m, ρ2 and r. In this case, we compute two values f 1 and f 2, set f 1 equal to the sum

of squares of the first 2 m� 1ð Þ þ 2 m�1
2

� �

elements of J (or the first 2 m� 1ð Þ þ

4
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m�1
2

� �

elements of J) and f 2 the sum of squares of the remaining elements. A

design is selected if f 1 ¼ 0, f 2 is minimum and the d-value in (15) is maximum.

3.If D is a foldover design, the sums in Eqs. (13) and (15) will be 0, and the length

of the vector Jq and J is shortened to m� 1ð Þ þ m�1
2

� �

þ m�1
3

� �

.

4. BBDs and new CBBDs

Table 1 displays the quality measures of BBDs whose run sizes (excluding the two
center runs) are multiples of the number of factors m and 24 CBBDs. Table 1 does not
include two BBDs for m, ρ2ð Þ = (9, 3) and (16,4) due to their over-abundance of 0-
factor levels. This table includes m (the number of factors), ρ2 (the square of the
radius), n (the run size of each BBD which includes two center points), and the quality
measures of the designs. These measures are the d-value in (15), vQ , vM, and vI (the
maximum scaled variances of the QEs, MEs, and 2FIs, respectively), rQQ , rQI, rMI, and
rII (the maximum of the absolute values of the correlations between two QEs, between
a QE and a 2-FI, between a ME and a 2FI, and between 2FIs, respectively). Note that
rQM (the correlation between a QE and a ME) and rMM (the correlation between two
MEs) for all designs in Table 1 are always zero.

Out of 24 CBBDs in Table 1, there are 15 CBBDs with f ¼ 0 using the foldover
technique with the first half-fraction being balanced with factors having the same
number of �1’s. The first half-fraction of the CBBDs for 3–7 and for 8–14 factors in
this table require four and eight cyclic generators, respectively. Like BBDs, these
CBBDs have rQI ¼ rMI ¼ rII ¼ 0. Also, like BBDs, they can be orthogonally blocked,
with each half-fraction forming a block. The four CBBDs that are identical to BBDs in
terms of quality measures are the ones for 5, 6, 7, and 12 factors. Note that for 3 and 4
factors, the CBBDs have more runs than the corresponding BBDs, and, hence, provide
more error degrees of freedom. Also, the 8-factor BBD requires many more runs
(nearly 200) than the CBBD. The BBD for 11 factors cannot be orthogonally blocked,
and BBDs for 13 and 14 factors are not available. It is necessary to mention that the
designs in Nguyen and Borkowski [9] are not the foldover CBBDs in Table 1, and as
such cannot be blocked in the same way.

There are nine CBBDs for 3–8 factors that are constructed without applying the
foldover technique to the first half-fraction. We denote these CBBDs as CBBD*s. The
CBBD* for three factors requires four cyclic generators, while all others require eight.
CBBD*s for 5–8 factors have f 1 ¼ 0 (see Remark 2 of Section 3). These designs cannot
be blocked in the same way as the CBBDs in Table 1. They can, however, be nearly
orthogonally blocked using suitable software (see [10]).

These CBBDs and CBBD*s offer additional design choices to an experimenter.
Comparisons of CBBDs and CCBD*s to the BBDs for the same number of factors and
runs indicate that they, in general, have higher d-values, smaller variances of the
estimates, and smaller rQQ (the correlation between two different quadratic effects).
Figure 1 displays the color cell plots (CCPs) of BBDs for 5–8 factors, that is, 5a, 6a, 7a,
and 8a, and the corresponding CBBD*s with ρ2 ¼ m� 1, that is, 5c, 6b, 7d, and 8 f.
CCPs, proposed by Jones and Nachtsheim [11], display the magnitude of the correla-
tion between the columns of the model matrixX (in terms of the absolute values). The
color of each cell ranges from white (no or near-zero correlation) to dark (one or near-
one correlation). It can be seen from these CCPs that the information matrices M of
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the mentioned CBBD*s do not have the form in (3), but all QEs are orthogonal to all
MEs and 2FIs. Note that the BBD for 8 factors has 194 runs, while the corresponding
CBBD* has only 66 runs.

Appendices A and B display the cyclic generators of the CBBDs and CBBD*s
respectively, in Table 1.

†Each design run size n includes two center runs. All BBDs can be orthogonally blocked except BBDs for m ¼ 3, 11 factors
(3a and 11a). CBBDs require r ¼ n� 2ð Þ=2m cyclic generators. CBBD*s require r ¼ n� 2ð Þ=m cyclic generators.
‡The two BBDs for m ¼ 8, 9 (8a and 9a) appear in Box and Behnken [1].

Table 1.
Quality measures of BBDs, CBBDs, and CBBD*s,†.

6
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Figure 1.
CCPs for BBDs and CBBD*s with ρ2 ¼ m� 1 (m ¼ 5,6,7,8).
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5. FDS plot and VDG comparisons

When assessing the prediction properties of an RSD, we want a design that will

produce predicted values Ŷ x1, … , xmð Þ with low variance for points x1, … , xmð Þ in the

design space. The prediction variance at x1, … , xmð Þ is var Ŷ x1, … , xmð Þ
� �

¼
σ2x X0Xð Þ�1

x0
, where σ2 is the error variance and x is x1, … , xmð Þ expanded to contain

the m2 second-order model terms. Re-scaling by n=σ2 yields the scaled prediction

variance V x1, … , xmð Þ ¼ nx X0Xð Þ�1
x0.

Although a design efficiency measure (such as the d-value) may provide useful
information regarding the overall quality of prediction, it does not provide informa-
tion regarding the distribution of the prediction variance throughout the design
region. This is addressed by studying a design’s spherical prediction variance (SPV)
properties.

Vρ is defined to be the average of the scaled prediction variance function taken over
Sρ, the sphere of radius ρ. (See [12]) Thus,

Vρ ¼
1

ωρ

ð

Sρ

V x1, … , xmð Þ dx1 … dxm (18)

where ωρ is the surface area of Sρ. Also of interest are the minimum and maximum
scaled prediction variances defined as:

VMINρ ¼ min
x1, … , xmð Þ∈ Sρ

V x1, … , xmð Þ (19)

VMAXρ ¼ min
x1, … , xmð Þ∈ Sρ

V x1, … , xmð Þ (20)

Fraction of design space (FDS) plots and variance dispersion graphs (VDGs) will
be utilized to assess the prediction variance properties of designs in Table 1.
Giovannitti-Jensen and Myers [13] introduced the VDG, which superimposes plots of
VMAXρ, VMINρ, and Vρ against the radius ρwithin a spherical design space. Modified
VDGs that also include the SPV values of V x1, … , xmð Þ for a large set of random
points in the spherical region [9] will be presented. Note that the proportion of the
volume of the design region is small for values of ρ near-zero but increases rapidly
with increase ρ. Thus, a large proportion of the design space is associated with a
relatively small interval ρ near the design space boundary. To address this issue,
Zahran et al. [14] introduced the FDS plot of the quantiles of V x1, … , xmð Þ against the
fraction (or proportion) of the volume of the design region. Unlike single-valued
design efficiency measures, both VDGs and FDS plots allow a more thorough assess-
ment throughout the design region. For a summary of graphical methods for assessing
the prediction variance properties of RSDs, see Borkowski [15].

Before a comparison of designs using these graphical tools can bemade, a critical issue
involving factor scaling needs to be addressed. Amajor difficulty in comparing a BBD to a
CBBDor CBBD*with the same design size n is that the design spaces are not the same. For
example, consider the BBDwith m, ρ2ð Þ ¼ (5 , 2), that is, 5a. Calculation of vQ , vM, and vI
is based on the assumption that the design region includes pointswithin the 5-dimensional

hypersphere of radius
ffiffiffi

2
p

. However, for the CBBD*with m, ρ2ð Þ ¼ (5 , 4), that is, 5c, the

8
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calculation of vQ , vM, and vI are based on the assumption that the design region includes

points within the 5-dimensional hypersphere of radius
ffiffiffi

4
p

.
Consider the following five-factor experiment presented in Myers et al. [5]. The

response to be analyzed is rayon whiteness (RW), which is associated with fabric
quality. The experimenters believed that RW can be affected by process variables,
which include acid bath temperature in °C (temp1), percent acid concentration
(conc1), water temperature in °C (temp2), sulfide concentration (conc2), and amount
of chlorine bleach in lb./min (bleach). The experimental levels and the coded levels
x1, x2, x3, x4, x5 for the five variables are as follows:

Coded Experimental levels

Levels temp1 (°C) conc1 (%) temp2 (°C) conc2 (%) bleach (lb/min)

�1 35 .3 82 .20 .3

0 45 .5 85 .25 .4

1 55 .7 88 .30 .5

Table 2 shows the 42 design points for the BBD with ρ2 ¼ 2, the CBBD with ρ2 ¼ 3,
and the CBBD* with ρ2 ¼ 4 (designs 5a, 5b, and 5c, respectively). If any 0-factor level
is replaced with a value >0 or <0 in any of these designs, then that point is outside
that experiment’s design space. There is an important implicit assumption that the
fitted model will be appropriate when extrapolating outside the design space. This
can be dangerous because it can not only result in predictions with increased bias but
also result in larger prediction variances. Whether or not bias is introduced when
extrapolating, increasing variances will occur and can be seen in the comparison of
VDGs.

Therefore, to make comparisons between designs 5a, 5b, and 5c when choosing a
design, it is reasonable to assume that the coded factor levels of �1, 0, 1 representing
the same levels when uncoded. This will be true for all design comparisons made for
m ¼ 3,… ,11 factors in Table 1.

We begin our comparisons between designs 5a, 5b, and 5c by generating FDS plots
and VDGs over the maximum ρ2, which are seen in Figure 2. Form ¼ 5, that would be

ρ2 ¼ 4. In the VDGs, vertical reference lines are placed at ρ ¼
ffiffiffi

2
p

and ρ ¼
ffiffiffi

3
p

, which
represent the maximum ρ for points in designs 5a and 5b, respectively. The FDS plots
are based on the distribution of the SPV values for 10,000 randomly selected points in

a sphere of radius
ffiffiffi

4
p

. The 10,000 (m ¼ 4, 5, 6, 7) or 20,000 (m ¼ 8) SPV values are
also plotted in the VDGs (as suggested in [9]).

To compare the five-factor designs, the VDGs in Figure 2 should be examined over

three disjoint intervals for the radius: (i) 0,
ffiffiffi

2
p� �

, (ii)
ffiffiffi

2
p

,
ffiffiffi

3
p� �

, and (iii)
ffiffiffi

3
p

,
ffiffiffi

4
p� �

.
For (i), the maximum and average SPV is best for the BBD followed by the CBBD* 5c
and CBBD 5b. This should not be surprising because every BBD design point is within
ffiffiffi

2
p

of the origin. However, for (ii) and (iii), it is clear that the CBBD* is best for

having smaller maximum, average, and minimum SPV values over ρ∈
ffiffiffi

2
p

,
ffiffiffi

4
p� �

.
These plots indicate that the BBD is best only if the experimenter does not plan to

predict the mean response at points with ρ>
ffiffiffi

2
p

(such as at �1, �1, �1,0,0ð Þ or
�1, �1, �1, �1, 0ð Þ). This seems unrealistic. As stated earlier, if any 0-factor level is
changed, then the negative consequences of extrapolation must be acknowledged.

9
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Predictions based on the BBD at such points are extrapolations leading to larger
SPV values. This is reflected in vQ , vM, vI

� �

¼ :198, :063, :250ð Þ for the BBD and
:031, :068, :050ð Þ for the CBBD*. These values indicate that the estimated

The first point (row) in each circulant block of five points generates the other four points cyclically. For the BBD and
CBBD, the first 20 points are folded over to form the second 20 points. Each design has two center points to form these
42-point designs.

Table 2.
Design points for the five-factor BBD, CBBD, and CBBD*.

10
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parameter variances associated with the CBBD* are smaller than those for the

BBD for ρ∈
ffiffiffi

2
p

,
ffiffiffi

4
p� �

. Thus, we would expect better predictions with the CBBD*.
This is supported by the VDGs and the CBBD* having the largest d-value. The CBBD
is the least desirable of the m ¼ 5 factor designs primarily due to the large vQ ¼ :208
value.

Using the comparison approach applied to the five-factor designs, we now
summarize the comparison of equal-sized designs for m ¼ 4,6,7, and 8 factors.

For the four-factor designs with n ¼ 34, the FDS plot and VDG in column 1 of
Figure 3 for the CBBD with ρ2 ¼ 3, that is, 4c, are superior to the BBD with ρ2 ¼ 2,

that is, 4b, especially over the interval
ffiffiffi

2
p

,
ffiffiffi

3
p� �

, where it has the smaller maximum,

average, and minimum SPV values. This is expected because no extrapolation occurs
over this interval for 4c, while it does for 4b. These plots indicate that design 4b is best

Figure 2.
FDS plots and VDGs for designs with 5 factors (n ¼ 42). FDS lines: blue for BBD, green for CBBD, and red for
CBBD*. VDGs include solid black lines for the minimum, average, and maximum SPV. Vertical reference lines
are plotted at

ffiffiffi

2
p

and
ffiffiffi

3
p

.

11
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only if the experimenter does not plan to predict the mean response at points

with ρ>
ffiffiffi

2
p

. This is reflected in the larger d-value and smaller vQ , vM, vI
� �

for

design 4b.
For the six-factor designs with n ¼ 50, the FDS plot and VDG in column 2 of

Figure 3 for the CBBD* with ρ2 ¼ 5 (design 6b) are superior to the BBD/CBBD with
ρ2 ¼ 3 (design 6a) for most of the design space. The only exception is for a small

fraction of the design space, where ρ2 is close to
ffiffiffi

5
p

and maximum SPV values are
larger for design 6b. Despite this small subregion, design 6b has the smaller

average and minimum SPV values over the interval
ffiffiffi

3
p

,
ffiffiffi

5
p� �

, which comprises
most of the spherical volume. Design 6b also has a larger d-value and smaller
vQ , vM, vI
� �

.

For seven factors, there are four designs with n ¼ 58. The FDS plots in Figure 4
indicate that the CBBD* with ρ2 = 4, that is, 7b, is the best design over a spherical

design space of radius
ffiffiffi

6
p

. The VDGs also indicate that this design has the smallest

maximum, average, and minimum SPV values for ρ>
ffiffiffi

3
p

, and based on the concen-
tration of SPV values near the maximum for any ρ, the distribution of SPV values is

highly skewed-left. The experimenter, however, must realize that beyond ρ>
ffiffiffi

4
p

,
extrapolation occurs for 7b and the experimenter is ignoring the possibility that
increased bias may exist with predictions when using the fitted model that results
from the experimental data. The VDG and FDS plot for 7c indicates that the geometry
of the design points in the design space is poor despite having ρ2 ¼ 5. This indicates
that in certain cases, a design with a larger ρ2 value does not necessarily guarantee a
better design. It is important to note, however, that this case is a rare exception. The
BBD/CBBD 7a is rotatable. Therefore, the minimum, maximum, and average SPVs are
all equal for a given radius. This is reflected in the single curve in its VDG. The VDG
for the ρ2 ¼ 5 CBBD* is truncated at SPV = 240 for scale clarity when making VDG
comparisons.

For eight factors, there are three CBBB* designs with n ¼ 66. The FDS plots in
Figure 5 suggest that the CBBD* with ρ2 = 4 (design 8e) is the best design over a

spherical design space of radius
ffiffiffi

7
p

. The VDGs also indicate that this design has

the smallest maximum and average SPV values for ρ>
ffiffiffi

3
p

. It is important to remind

the experimenter that between ρ ¼
ffiffiffi

4
p

and
ffiffiffi

7
p

, extrapolation is occurring for 8e.
Thus, although 8e appears better than 8f, there may be increased bias with any
prediction associated with using a fitted model for 8e in comparison with 8f over this
interval. Note that although the minimum SPV curve for ρ2 ¼ 7 CBBD* (design 8f) is

the lowest for ρ>
ffiffiffi

3
p

, it is associated with only a small fraction of the design space as
evidenced by the sparsity of points near the minimum. The VDG for the ρ2 ¼ 3 CBBD*
is truncated at SPV = 375 for scale clarity when making VDG comparisons.

Based on the comparisons for m ¼ 7and 8 factors, the design with the largest
d-value is not necessarily the best design when using FDS plots and VDGs as criteria.
A larger d-value does not ensure a good distribution of SPV values throughout the
design space. It should be noted that the best design based on the FDS plots and VDGs
always had the smallest vQ value. That is, those designs are associated with the
smallest estimated variances for the quadratic effects (QEs).

What is clear in these comparisons is that there exists a CBBD or a CBBD* that is
superior to every BBD of the same size based on d-values, FDS plots, and VDGs. This
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Figure 3.
FDS plots and VDGs for designs with 4 and 6 factors. FDS lines for m ¼ 4: blue for ρ2 ¼ 2 CBBD and red for
ρ2 ¼ 3 CBBD. FDS lines for m ¼ 6: blue for ρ2 ¼ 3 BBD and red for ρ2 ¼ 5 CBBD*. VDGs include solid black
lines for the minimum, average, and maximum SPV. A vertical reference line is plotted at

ffiffiffi

2
p

for m ¼ 6 and at
ffiffiffi

3
p

for m ¼ 6.
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Figure 4.
FDS plots and VDGs for designs with 7 factors (n ¼ 58). FDS lines: blue for BBD/CBBD, green, magenta, and red
for CBBD*s with ρ2 ¼ 3,4,5,6, respectively. VDGs include solid black lines for the minimum, average, and
maximum SPV. Vertical reference lines are plotted at

ffiffiffi

3
p

,
ffiffiffi

4
p

and
ffiffiffi

5
p

.
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is most likely due to the over-abundance of 0-factor levels in BBDs leading to poor
prediction for larger radii.

6. Conclusions

This chapter offers the cyclic-generating approach to create new designs (CBBDs
and CBBD*s) as alternatives to existing BBDs. Our new designs offer a compromise
between the definitive screening designs [11] (where each factor has just three 0’s)
and BBDs (where the number of 0’s for each factor is more than the number of �1’s).
In addition to quality measures, FDS plots and VDGs were generated to assess the
prediction variance properties in m� 1ð Þ-dimensional spherical regions. These were
used to compare designs of equal size but with varying ρ2. The comparisons indicate
that for each number of design factors m, there exists a CBBD or CBBD* that is

Figure 5.
FDS plots and VDGs for designs with 8 factors (n ¼ 66). FDS lines: blue, green, and red for CBBD*s with
ρ2 ¼ 3,4,7, respectively. VDGs include solid black lines for the minimum, average, and maximum SPV. Vertical
reference lines are plotted at

ffiffiffi

3
p

and
ffiffiffi

4
p

.
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superior to a BBD based on these quality measures and graphical methods. Because of
extrapolation concerns related to points extending beyond the maximum value of ρ
associated with a design, it is stressed that comparisons of BBDs to CBBDs or CBBD*s
should take into account for the differences in the spherical design regions based on
differing ρ2 values. Once implemented, experimental data resulting from a CBBD or
CBBD* can be analyzed analogously to a data analysis for a BBD using currently
available statistical software. A catalog of the RSDs in Table 1, which includes 15
CBBDs and nine CBBD*s is given at the link https://designcomputing.net/cbbd/.

Appendix A. Cyclic generators for the first half-fractions of 15 CBBDs in
Table 1
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Appendix B. Cyclic generators for 9 CBBD*s in Table 1
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