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Chapter

Cascaded-Resonator-Based
Recursive Harmonic Analysis
Miodrag D. Kušljević

Abstract

It is well known that recursive algorithms for harmonic analysis have better
characteristics in terms of monitoring the change of the spectrum in comparison to
methods based on the processing of blocks of consecutive samples, such as, for exam-
ple, discrete Fourier transform (DFT). This property is particularly important when
applying spectral estimation in real-time systems. One of the recursive algorithms is
the resonator-based one. The approach of the parallel cascades of multiple resonators
(MR) with the common feedback has been generalized as the cascaded-resonator
(CR)-based structure for recursive harmonic analysis. The resulting filters of the CR
structure can be finite impulse response (FIR) type or the infinite impulse response
(IIR) ones as a computationally more efficient solution, optimizing the frequency
responses of all harmonics simultaneously. In the case of the IIR filter, the unit
characteristic polynomial present in the FIR filter is replaced with an optimized
characteristic polynomial of the transfer function. Such a change does not lead to an
increase in computing requirements and changes only the resonator gain values. By
using a conveniently linearized iterative algorithm for stability control purpose, based
on the Rouche’s theorem, the iterative linear-programming-based or the constrained
linear least-squares (CLLS) optimization techniques can be used.

Keywords: cascaded-resonator (CR)-based filter, constrained linear least squares
(CLLS), discrete Fourier transformation (DFT), Taylor-Fourier transformation
(TFT), harmonic analysis, IIR filter, linear programming (LP), multiple-resonator
(MR)-based filter

1. Introduction

In recent years, a lot of various algorithms for harmonic analysis have been pro-
posed in the literature. Good surveys of some techniques are presented in Refs. [1, 2].
The discrete Fourier transform (DFT)-based method, as a mainstream approach, is
widely used for harmonic analysis, thanks to its low computational burden, especially
with the fast Fourier transform (FFT). However, errors arise when the power system
is operating at off-nominal frequency, especially under dynamic conditions.
Harmonic estimates under oscillating conditions were recently proposed in several
studies. A huge volume of papers has been written on harmonics tracking in power
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systems. The focus of recent literature has been on preprocessing and postprocessing
methods for fixed-sample-rate algorithms surrounding a core DFT (or similar) analy-
sis with a fixed number of samples [3, 4].

Idea of considering a dynamic model to better estimate the fundamental and
harmonic phasors has been emerging in Refs. [4–9], and its importance has been
pointed out in Ref. [10]. In Ref. [9], the discrete Taylor-Fourier transform (TFT)
was proposed as an extension of the full DFT. The TFT by using a dynamic model
of the signal extends and improves estimations obtained by DFT [9, 11]. This trans-
formation corresponds to an FIR filter bank with a maximally flat frequency response.
Each filter in the bank has maximum flat gain around the harmonic frequency and
near-ideal attenuation around the other harmonics. This results in less distortion of
the signal and less influence of disturbances present in the signal. In this way, the
periodicity restriction assumed by the Fourier analysis is mitigated. As result, so
obtained reconstruction is more accurate than the reconstruction obtained through
DFT. When harmonics are narrow-band pass signals with spectral density confined
into the flat-gain harmonic intervals, the coefficients of the TFT provide good
estimates of the first derivatives of their complex envelopes. The digital TFT
formulation in a matrix form that facilitates its implementation with the FFT to
reduce the computational complexity of its straightforward implementation has
been given in [11].

The multiple-resonator (MR)-based recursive estimators have been introduced in
Ref. [12]. In Ref. [13], the MR-based observer structure is proposed for the imple-
mentation of TFT. Their good properties are provided by their parallel form, a recur-
sive implementation, and good sensitivity properties assured by the infinite loop gain
at the resonator frequencies [14]. Multiple zeros also provide reinforcing of the
required attenuations and zero-gain flatness at the harmonic components with a high
overall attenuation in the stopbands. For the known frequency of the periodic signal,
the estimator based on resonators with common feedback enables the estimation of
Fourier components even in cases when the sampling rate is not synchronized with
the signal frequency. Also, this harmonic analyzer shows robustness in real
conditions where there is noise and nonlinearity of the analog part of the equipment.
MR-based harmonic analysis provides better performances of the spectral estimation
than the single-resonator-based observer that corresponds to the classical DFT
estimator.

This approach has been generalized as the cascaded-resonator (CR)-based struc-
ture for harmonic analysis. In Ref. [15], the cascaded-dispersed-resonator-based
(CDR-based) structure for harmonic analysis is proposed. Although the design objec-
tives in Refs. [15, 16] are different, the design technique is the same in both cases. In
Ref. [16], the task is to replace multiple resonators with a cascade of single resonators.
In this way, for the design purpose, it is possible to use the classic Lagrange interpo-
lation technique instead of the more complex Hermitian interpolation. The condition
that the poles are distributed in a narrow band around the resonant frequencies, as
close as possible to each other, which is however limited by numerical accuracy. In
Ref. [15], the task is to arrange the poles in the cascade in such a way as to enable
optimal attenuation in the entire range around the harmonic frequencies. Practically,
the only difference is in the arrangement of the resonator poles around the harmonic
frequencies. The frequency deviation issue can be resolved by adaptive estimators
based on the actual frequency feedback. This approach has drawbacks as a stability
issue, due to an internal delay. Instead of that, usage of the external module for the
fundamental frequency estimation is proposed in Ref. [17].
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2. Cascaded-resonator-based structure harmonic analysis

Figure 1 shows the block diagram of the K-type CR-based harmonic
analyzer. The structure includes K þ 1ð Þ 2Mþ 2ð Þ resonators with poles
zm,k,m ¼ �M, … , 0, … ,Mþ 1, k ¼ 0, 2, …Kf g, placed in the 2Mþ 2 cascades each of

them having K þ 1 cascaded complex poles on the unit circle around related harmonic
frequency [13, 15, 16]. Each resonator has its belonging complex gains gm,k. A com-

plete set of resonator cascades is connected in parallel in a common feedback loop.
The gains of the transfer functions at the resonator frequencies are equal to unity due
to the infinite loop gain at these frequencies. The number of cascades (for the coher-
ent sampling) is 2Mþ 2 (M is a number of harmonics) and depends on ω1, because the
condition Mω1 < π has to be satisfied. The ω1 ¼ 2π f 1= f S, f 1 and f S are the nominal
fundamental frequency and sampling rate. The overall system order is
K þ 1ð Þ 2Mþ 2ð Þ.

We have in every mth channel of the structure, as an internal transfer function

Hm zð Þ ¼
VF

m zð Þ

E zð Þ
¼ z�1

X

K

k¼0

g0m,k
Qk�1

i¼0 1� zm,iz�1ð Þ
, g0m,k ¼

Y

K

i¼k

gm,i (1)

where m ¼ �M, … , 0, … , Mþ 1, k ¼ 0, 1, … ,K, and
Qk�1

i¼0 1� zm,iz
�1ð Þ ¼ 1 for

k ¼ 0. VF
m zð Þ is the total feedback signal corresponding to mth channel, composed as

the linear combination of the output of each resonator, i.e., each channel contributes

to the filter output with K þ 1 complex weights gm,k, k ¼ 0, 1, … ,K
n o

.

Figure 1.
Block diagram of the K-type CR-based harmonic analyzer.
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The closed transfer function for every channel m has the form of [15, 16].

Tm,0 zð Þ ¼
Vm,0 zð Þ

V1 zð Þ
¼ g0m,0

z�1Pm zð Þ

A zð Þ
, Pm zð Þ ¼

Y

Mþ1

n ¼ �M

n 6¼ m

Y

K

i¼0

1� zn,iz
�1

� �

, (2)

Tm,k zð Þ ¼
Vm,k zð Þ

V1 zð Þ
¼ g0m,k

z�1Pm zð Þ
Qk�1

i¼0 1� zm,iz
�1ð Þ

A zð Þ
(3)

A zð Þ ¼
Y

Mþ1

n¼�M

Y

K

i¼0

1� zn,iz
�1

� �

þ z�1
X

Mþ1

n¼�M

Pn zð Þ
X

K

k¼0

g0n,k
Y

k�1

i¼0

1� zn,iz
�1

� �

 !" #

(4)

It can be seen that all poles of the resonators are mapped to the zeros of the transfer
function Tm,0 zð Þ due to the common feedback, with the exception of the poles
belonging to the cascade of the harmonic m, which are automatically canceled by the
poles that generated them. In differentiators transfer functions Tm,k zð Þ, k ¼ 1, … ,Kf g,
k 6¼ 0ð Þ, zeros zm,i, i ¼ 0, … , k� 1f g, originated from poles in mth channel, exist
providing zero gain.

From Eq. (2), it is obvious that the filter corresponding to mth-channel provides
the maximally flatness property in the stop band around the remaining harmonic
frequencies. For small pole displacements, ∆f frequency response reshaping is negli-
gible in comparison to the multiple-resonator case [16]. It is important to mention that
the lower border of ∆f is limited by the computational accuracy. On the other hand,
avoiding of the multiple poles allows design by the direct usage of the classical
Lagrange interpolation formula rather than the Hermite one.

Although the characteristic polynomial of the transfer functions can be chosen in
different ways, under some conditions it is possible to choose one so that the error is
driven to zero in exactly K þ 1ð Þ 2Mþ 2ð Þ samples. This is provided by what is called a
dead-beat observer, for which the coefficients are calculated from the condition that
the observer has deadbeat settling, i.e., it finds the unknown state within at most
K þ 1ð Þ 2Mþ 2ð Þ steps. That leads to FIR filters (with A zð Þ ¼ 1) in each channel. This
way, although the structure is realized by resonators, which are IIR filters, the
resulting filters in each channel are FIR type. Figure 2 shows frequency responses of
T1,0 zð Þ ¼ g01,0z

�1P1 zð Þ (corresponding to the fundamental component) of the dead-

beat observer for the first up to the sixth order of resonator multiplicity
(K ¼ 0, 1, … , 5). It is observed that (quasi) MR structures with a higher order multi-
plicity of poles provide smaller sidelobes and thus ensure a lower sensitivity to noise
and to harmonic and interharmonic disturbances. The negative effect is the increase in
the order of the filter, which increases the group delay and response time of the filter,
as well as the numerical complexity. Due to this feature, large values of the resonator
multiplicity could be inconvenient in the control application. The case K ¼ 0 corre-
sponds to a classic DFT estimator, while the cases K >0 correspond to the TFT.

Frequency responses of zeroth-, first-, and second-order differentiator discrete
FIR filters corresponding to the transfer functions Tm,k zð Þ related to the fundamental
component (m ¼ 1, k ¼ 0, 1, 2), for K ¼ 2 and K ¼ 3 (the third- and forth-order
resonator structure) are given in Figure 3.

In order to obtain wider flatness intervals in the pass band, the feedback signals

VF
m zð Þ could be used for harmonic estimation instead of Vm,0 zð Þ [13]. The global
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transfer function of the feedback loop is a sum of the transfer functions of all K þ 1

differentiators TF
m zð Þ ¼ VF

m zð Þ=V zð Þ ¼
PK

k¼0Tm,k zð Þ. The frequency responses of the
estimation of the fundamental component obtained by Vm,0 zð Þ and estimation

obtained by VF
m zð Þ are given together in Figure 4a. The good properties of the filters

corresponding to the transfer functions TF
m zð Þ are related to the phase responses.

Frequency responses have a zero phase response in the frequency bands around the
harmonic frequencies, which means that in those frequencies the group delay is equal
to zero. Bad properties are high resonant gains at the edges of bandwidths and high
sidelobes. The zero flat gains in the stop band are preserved, although their intervals
are narrowed. It should be mentioned that the peaks of the interharmonic gains and
the side lobes increase by the multiplicity of the resonators, Figure 4b.

Figure 2.
Frequency responses for T1,0 zð Þ (the zeroth differentiator of the first harmonic) for K ¼ 0, 1, … , 5 (the first- to
sixth-order resonator structure).

Figure 3.
Frequency response of the zeroth-, first-, and second-order discrete FIR filters corresponding to Tm,k zð Þ, (m ¼ 1
and k ¼ 0, 1, 2), related to the fundamental component, for f s ¼ 800Hz and f 1 ¼ 50Hz, for (a) K ¼ 2
estimator (the third-order resonator structure) and (b) K ¼ 3 estimator (the fourth-order resonator structure).
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2.1 Optimization problem statement

In order to adapt the achieved digital differentiators to their ideal frequency
responses around the harmonic frequencies, it is possible to modify the filters
transfer functions. An optimization technique is utilized to reshape frequency
responses of the filters transfer functions, avoiding resonant frequency peaks and
reducing a group delay simultaneously, that can be rather important in control
applications. The optimization task can also be different, e.g., maximization of the
selectivity.

The transfer function of the extended structure, including the compensation FIR
filter B zð Þ, for the mth component channel is as follows:

TAB
m,0 zð Þ ¼

Vm,0 zð Þ

V1 zð Þ
¼ B zð ÞTm,0 zð Þ ¼ g0m,0z

�1Pm zð Þ
h i B zð Þ

A zð Þ
¼ g0m,0z

�1Pm zð Þ
h i qBxB

1þ qAxA

(5)

where

B zð Þ ¼ b0 þ b1z
�1 þ⋯þ bNB�1z

� NB�1ð Þ þ bNB
z�NB ,

A zð Þ ¼ 1þ a1z
�1 þ⋯þ aNA�1z

� NA�1ð Þ þ aNA
z�NA ,

xB ¼ b0 b1 ⋯ bNB�1 bNB½ �T; xA ¼ a1 a2 ⋯ aNA�1 aNA½ �T; x ¼ xB
T xA

T
� �T

;

qB ¼ 1 z�1 z�2 ⋯ z� NB�1ð Þ z�NB
� �

; qA ¼ z�1 z�2 ⋯ z� NA�1ð Þ z�NA
� �

:

The polynomial A zð Þ does not cause any additional computation and only the poly-
nomial B zð Þ represents an additional numerical burden. Even more, in some cases, it is
possible to choose B zð Þ ¼ b0 which causes only one additional multiplication. Never-
theless, for the purposes of design, we will consider the IIR filter B zð Þ=A zð Þ as a
common compensation for the total set of FIR filters Pm zð Þ, m ¼ �M, … , 0, … , Mþ 1.

With a given weighting function W ωð Þ, the weighted Chebyshev error between
the desired and actual frequency responses is defined as follows:

Figure 4.
Frequency responses of (a) T1,0 zð Þ and TF

1 zð Þ for K ¼ 2 estimator (the third-order cascade) and (b) TF
1 zð Þ for

K ¼ 1, K ¼ 2 and K ¼ 3, related to the fundamental component, for f s ¼ 800Hz and f 1 ¼ 50Hz.
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J1 xð Þ ¼ max
ω∈Ω

W ωð Þ TAB ejω
� �

�Hd ejω
� ��

�

�

� (6)

where Hd ejω
� �

is the desired frequency response in angular frequency ω specified
in the frequency region Ω (or a union of several compact frequency bands) of the
interests and 0 ≤ ω ≤ π.

The sum of squares of absolute values of errors in NF angular frequencies as follows:

J2 xð Þ ¼
X

NF

i¼1

W zið Þ TAB zið Þ �Hd zið Þ
� �

(7)

where zi ¼ e jωi .

In order to minimize the error J1 xð Þ defined in Eq. (6), a new variable δ can be
introduced and the problem reformulated as follows:

minimize δ

subject to E ωið Þj j≤ δ, ωi ∈Ω, i ¼ 1, 2,⋯,NF
(8)

where E zið Þ ¼ W zið Þ TAB zið Þ �Hd zið Þ
� �

, zi ¼ exp jωið Þ, for the total number NF of

points defined in Ω.
Further, it is:

W zið Þ

A zið Þj j
T zið ÞB zið Þ � A zið ÞHd zið Þ
�

�

�

�≤ δ (9)

In Ref. [18], a suitable method has been described to linearize the error function

J1 xð Þ such that the design problem can be solved by the linear programming (LP)
method. However, this method neglects the denominator part A zið Þj j. In Ref. [19], the
performance of the LP method was improved by eliminating the above drawback by
using the following iterative constraints scheme:

W zið Þ

A k�1ð Þ zið Þ
�

�

�

�

T zið ÞB zið Þ � A kð Þ zið ÞHd zið Þ
�

�

�

�≤ δ (10)

For the sake of notational simplicity, we denote

W zið Þ

A k�1ð Þ zið Þ
�

�

�

�

T zið ÞqB
�

�

z¼zi
, �Hd zið ÞqA

�

�

z¼zi

h i

x�Hd zið Þ
�

�

�

�

�

�≤ δ (11)

The vector of unknown coefficients x is expanded with an additional variable δ, so
that the expanded vector of unknowns is obtained:

xδ ¼ x δ½ �T : (12)

The constraints defined by inequality (11) refer to the frequency ranges in which
the error optimization is performed. In addition, sometimes it is necessary to keep the

7

Cascaded-Resonator-Based Recursive Harmonic Analysis
DOI: http://dx.doi.org/10.5772/intechopen.108402



error within predefined limits, such as for example the gains in the stopbands and/or
the transition bands:

1

A k�1ð Þ zið Þ
�

�

�

�

T zið ÞqB
�

�

z¼zi
, �Hd zið ÞqA

�

�

z¼zi

h i

x�Hd zið Þ
�

�

�

�

�

�≤ li (13)

zi ¼ exp jωið Þ, i ¼ 1, 2,⋯,NG

li , i ¼ 1, 2,⋯, NG, are fixed borders of the absolute values of the set of complex
error E zð Þ along assemblies zi ¼ exp jωið Þ, i ¼ 1, 2,⋯, NG.

If one wants to ensure unity gain in harmonic frequencies, the following condition
must be met:

B zð Þ

A zð Þ

�

�

�

�

z¼zm

¼ 1, i:e: B zmð Þ ¼ A zmð Þ: (14)

where m ¼ �M, … , 0, … ,Mþ 1:
In a matrix form, it can be written as follows:

qmx ¼ 1: (15)

where q ¼ qB �qA
� �

, qm ¼ q
�

�

z¼zm
.

Complex equality constraints (15) can be written as follows

Re qm
� �

Im qm
� �

" #

x ¼
1

0

	 


, m ¼ �M, … , 0, … ,Mþ 1: (16)

2.2 Linearization of constraints

The inequalities (11) and (13) are nonlinear. The convex semi-infinite program-
ming can be applied [20], thanks to the quadratic property of the functions. Further-
more, a convenient approximation of these inequalities by the system of the linear
ones [21–25] allows us to solve this constrained optimization problem through the LP
or the constrained linear least-squares (CLLS) optimization technique.

It is valid:

E zið Þj j ¼ E zið Þj j cos 2αiþsin 2αi
� �

¼ Re E zið Þf gcos αi þ Im E zið Þf gsin αi (17)

where αi ¼ arg E zið Þf g.
Since αi is not known a priory, the nonlinear constraints in Eq. (8) can be approx-

imated by the system of linear constraints:

Re E zið Þf gcos αi,j þ Im E zið Þf gsin αi,j ≤ δ (18)

where i ¼ 1, 2,⋯, NF. If we choose L equidistantly distributed angles then it is
αi,j ¼ αi,0 þ j� 1ð Þ2π=L, where j ¼ 1, 2,⋯, L. Figure 5 shows that approximations by
square and octagon (L ¼ 4 and L ¼ 8, respectively) allow only rough approximations.
A higher accuracy is obtained by increasing L. Herein, L ¼ 32 is used.

Let us define as following for frequency point i:
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WA zið Þ ¼
W zið Þ

A k�1ð Þ zið Þ
�

�

�

�

; gi ¼ T zið ÞqB
�

�

z¼zi
, �Hd zið ÞqA

�

�

z¼zi

h i

: (19)

Hence, Eq. (13) can be linearized and written in a matrix form

WA zið ÞA0
ix≤WA zið Þb0i þ li1L�1, i ¼ 1, 2,⋯,NG (20)

where matrix A0
i and vector b0i are given by

A0
i ¼

Re gi
� �

cos αi1 þ Im gi
� �

sin αi1

Re gi
� �

cos αi2 þ Im gi
� �

sin αi2

⋮

Re gi
� �

cos αiL þ Im gi
� �

sin αiL

2

6

6

6

4

3

7

7

7

5

, b0i ¼

Re Hd zið Þ
� �

cos αi1 þ Im Hd zið Þ
� �

sin αi1

Re Hd zið Þ
� �

cos αi2 þ Im Hd zið Þ
� �

sin αi2

⋮

Re Hd zið Þ
� �

cos αiL þ Im Hd zið Þ
� �

sin αiL

2

6

6

6

6

4

3

7

7

7

7

5

:

and li is a constraint limit of the error in the point zi.
Using matrix notation, and collecting inequality linearization systems in all settled

frequency points, (20) becomes the following linear form:

A0x≤ b0 or A0 0 NGLð Þ�1

� �

xδ ≤ b0 (21)

where matrix A0 and vector b0 are given by

A0 ¼

WA z1ð ÞA0
1

WA z2ð ÞA0
2

⋮

WA zNG
ð ÞA0

NG

2

6

6

6

6

4

3

7

7

7

7

5

, b0 ¼

WA z1ð Þb01 þ l11L�1

WA z2ð Þb02 þ l21L�1

⋮

WA zNG
ð Þb0NG

þ lNG
1L�1

2

6

6

6

6

4

3

7

7

7

7

5

:

In case of the (11), we have:

WA zið ÞA0
i �1L�1

� �

xδ ≤WA zið Þb0i, i ¼ 1, 2,⋯,NF (22)

or in a matrix notation

A0 �1 NFLð Þ�1

� �

xδ ≤ b0 (23)

Figure 5.
Approximation of a cycle with a square and an octagon.
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where

A0 ¼

WA z1ð ÞA0
1

WA z2ð ÞA0
2

⋮

WA zNF
ð ÞA0

NF

2

6

6

6

6

4

3

7

7

7

7

5

, b0 ¼

WA z1ð Þb01
WA z2ð Þb02

⋮

WA zNF
ð Þb0NF

2

6

6

6

6

4

3

7

7

7

7

5

:

2.3 Design (optimization) approach 1: CLLS minimization

An objective is to find a minimum of the sum of squares of absolute values of hx�
d in the assembly of the NF selected frequencies subject to the vector x

min
x

X

NF

i¼1

hix� dij j2 (24)

where hi ¼ W zið Þgi= A k�1ð Þ zið Þ
�

�

�

� and di ¼ W zið ÞHd zið Þ= A k�1ð Þ zið Þ
�

�

�

�.

If we apply the following equality

hix� dij j2 ¼ Re 2 hix� dif g þ Im2 hix� dif g ¼ Cix� dik k22 (25)

where Ci ¼
Re hif g

Im hif g

	 


, di ¼
Re dif g

Im dif g

	 


, (24) can be written in a matrix form:

min
x

Cx� dk k22: (26)

where C and d include Ci and di, respectively, i ¼ 1, 2,⋯,NF.
The constrained linear least squares (CLLS) is an optimization problem that deals

with the maximization or minimization of a linear function called the objective func-
tion subject to linear constraints. Summarizing (16), (21), and (26), the CLLS problem
is formalized as follows:

min
x

1

2
Cx� dk k22 subject to Ax≤ b and

Re qm
� �

Im qm
� �

" #

x ¼
1

0

" # !

,

m ¼ �M, … , 0, …Mþ 1ð Þ

(27)

where A and b include A0 and b0, respectively, defined in (21), for all frequency
points in which the constraints are defined.

2.4 Design (optimization) approach 2: minimax optimization

The LP optimization problem can be formalized in the following way:

minimize c xδ subject to Axδ ≤ b and
Re qm
� �

0

Im qm
� �

0

" #

xδ ¼
1

0

" # !

,

m ¼ �M, … , 0, …Mþ 1ð Þ

(28)
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where c ¼ 01� NAþNBþ1ð Þ 1
� �

, and A and b include A0 and b0, respectively, for all

frequency points in which the constraints or objective functions are defined in (21)
and (23), respectively.

3. IIR cascaded-resonator-based harmonic analysis

In accordance with the prevailing trends in works dealing with this issue, in the
initial works [13, 16, 22, 23, 25, 26] the resulting filters of CR structures were of the
FIR type. Later, in [27], IIR filters were used, which represent a computationally more
efficient solution [28, 29]. The unit characteristic polynomial of the transfer function
is replaced by the optimized one. Such a change does not lead to an increase in the
volume of numerical calculations and only requires a change in the gain values asso-
ciated with the resonators. Since the optimization of frequency characteristics for all
harmonics is carried out at the same time, it is possible to obtain frequency responses
of the same shape. By using a linearized iterative scheme [30] based on Rouche’s
theorem with the aim of stability control, it is possible to use iterative optimization
techniques based on LP or CLLS.

3.1 Problem statement

The task of optimization is to design a filter B zð Þ=A zð Þwhere the order of the charac-
teristic polynomialA zð Þ isNA ¼ K þ 1ð Þ 2Mþ 2ð Þ and the polynomialB zð Þ is of orderNB.

We seek to find a causal stable rational function TAB
m,0 zð Þ ¼ g0m,0z

�1Pm zð Þ
h i

B zð Þ=A zð Þ for

m ¼ �M, … , 0, … , Mþ 1 that best approximatesHd
m ejω
� �

.

In order to make the notation as simple and short as possible, let us form a virtual
transfer function so that in each bandwidth centered in mf 1 with width of f 1, i.e., for

f ∈ mf 1 � f 1=2
�

,mf 1 þ f 1=2
�

, it corresponds to the transfer function belonging to the
harmonic m. It follows:

TA zð Þ ¼
T zð Þ

A zð Þ
, T zð Þ ¼ g0m,0z

�1Pm zð Þ (29)

for f ∈ mf 1 � f 1=2
�

,mf 1 þ f 1=2
�

,m ¼ �M, … , 0, … ,Mþ 1.

In addition, we define a unique transfer function

TAB zð Þ ¼ B zð ÞTA zð Þ ¼ B zð Þ
T zð Þ

A zð Þ
(30)

Similarly, a virtual unique desired transfer function in an angular frequency ω has
the following form [27]:

Hd ejω
� �

¼
e�j2πτ f�m f 1ð Þ= f S , for f ∈ mf 1 � f PB

�

,mf 1 þ f PB
�

0, for f ∈ mf 1 � f 1=2
�

,mf 1 � f SB
�

⋃ mf 1 þ f SB
�

,mf 1 þ f 1=2
�

(

(31)

where pass and stop bands are defined by f PB and f SB, respectively. A desired
group delay in the passband is denoted as τ.
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3.2 Stability constraint

To obtain a stable IIR filter T zð Þ, stability constraint must be imposed on the
coefficient vector xA. In [30], the more convenient stability condition which is based
on Rouche’s theorem was proposed.

Rouche’s Theorem. If f zð Þ and g zð Þ are analytic inside and on a closed contour C, and
g zð Þj j< f zð Þj j on C, then f zð Þ and g zð Þ þ f zð Þ have the same number of zeros inside C.

Let

f zð Þ ¼ zNAA zð Þ ¼ zNA þ a1z
NA�1 þ⋯þ aNA�1zþ aNA

, (32)

g zð Þ ¼ zNA∆ zð Þ ¼ δ0z
NA þ δ1z

NA�1 þ⋯þ δNA�1zþ δNA
, (33)

where ∆ zð Þ is the update of the characteristic polynomial A zð Þ of the transfer
function at each iteration step. Since the functions f zð Þ and g zð Þ are analytic, except at
z =∞, and have the same zeros as A zð Þ and ∆ zð Þ, according to Rouche’s theorem, if the

polynomial A k�1ð Þ zð Þ in the iteration step, k� 1 has all its zeros inside a circle of radius
ρ 0< ρ< 1ð Þ with the center at the origin of the complex plane, then also the polyno-
mial in the iteration step k given by [30]

A kð Þ zð Þ ¼ A k�1ð Þ zð Þ þ α∆ kð Þ zð Þ, 0< α< 1 (34)

will retain the zeros within this circle provided that in step k the following condi-
tion satisfied

∆
kð Þ zð Þ

�

�

�

�≤ A k�1ð Þ zð Þ
�

�

�

�, zj j ¼ ρ: (35)

If (34) is included in (35), we get

�A
kð Þ

zð Þ � �A
k�1ð Þ

zð Þ
�

�

�

�

�

�≤ α A k�1ð Þ zð Þ
�

�

�

� (36)

where �A
kð Þ

zð Þ ¼ A kð Þ zð Þ � 1, �A
k�1ð Þ

zð Þ ¼ A k�1ð Þ zð Þ � 1, or in a matrix notation:

01� NBþ1ð Þ, qA
�

�

z¼zi

h i

x� �A
k�1ð Þ

zið Þ
�

�

�

�

�

�≤ α A k�1ð Þ zið Þ
�

�

�

� (37)

As for the initial value of the vector x, it is simplest to take x 0ð Þ ¼ 0, when all the

roots of the polynomial A 0ð Þ zð Þ lie within the circle of radius ρ (0< ρ <1).
If constraint (37) is applied to a sufficiently dense set of points lying on a circle of

radius ρ zj j ¼ ρð Þ, of total length NS, we get

ASx≤ bS (38)

where matrix AS
i and vector bSi are given by

AS
i ¼

01� NBþ1ð Þ;Re qA
�

�

z¼zi

n o

cos αi1 þ Im qA
�

�

z¼zi

n o

sin αi1

01� NBþ1ð Þ;Re qA
�

�

z¼zi

n o

cos αi2 þ Im qA
�

�

z¼zi

n o

sin αi2

⋮

01� NBþ1ð Þ;Re qA
�

�

z¼zi

n o

cos αiL þ Im qA
�

�

z¼zi

n o

sin αiL

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,
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bSi ¼

Re �A
k�1ð Þ

zið Þ
n o

cos αi1 þ Im �A
k�1ð Þ

zið Þ
n o

sin αi1 þ α A k�1ð Þ zið Þ
�

�

�

�

Re �A
k�1ð Þ

zið Þ
n o

cos αi2 þ Im �A
k�1ð Þ

zið Þ
n o

sin αi2 þ α A k�1ð Þ zið Þ
�

�

�

�

⋮

Re �A
k�1ð Þ

zið Þ
n o

cos αiL þ Im �A
k�1ð Þ

zið Þ
n o

sin αiL þ α A k�1ð Þ zið Þ
�

�

�

�

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

Thus, the set of constraints (38) is added to the set of the above constraint condi-
tions. In this way, the iterative methods mentioned above solve the LP or CLLS
problem by taking into account constraints (38) in each iteration step. A fixed step
size α can be used, while a gradual decrease (e.g., exponential) can help the conver-
gence of the solution.

3.3 Resonators’ gains calculation

After the polynomial A zð Þ having been determined, the direct usage of the
Lagrange interpolation formula provides the closed-form formulas [26]. It should be
taken into account that these formulas are valid only in the case of single resonators. If
a quasi-MR-based analyzer is designed, the resonator poles connected to the same
harmonic should be arranged close enough to each other with a minimum distance
that is limited by numerical precision. Its lower border depends on the resonator
multiplicity and the sampling rate. A chosen displacement of 0:1 Hz allows a fair
approximation for sampling frequencies up to 6.4 kHz (M ¼ 63 for f 1 ¼ 50 Hz) and
K ¼ 5 [16].

A generalized closed-form formula for gains calculation for any K for previously
chosen polynomial A zð Þ is given as follows:

g0m,k ¼
A zð Þ � z�1Pm zð Þ

Pk�1
j¼0 g0m,j

Q j�1
i¼0 1� zm,iz

�1ð Þ
h i

z�1Pm zð Þ
Q

k�1

i¼0
1� zm,iz�1ð Þ

�

�

�

�

�

�

�

�

�

z¼zm,k

(39)

As a final result, the designed resonator gains are as follows:

gm,k ¼ g0m,k=g
0
m,kþ1; g0m,Kþ1 ¼ 1

� �

; m ¼ �M, … , 0, … , Mþ 1; k ¼ 0, 1, … ,K:

It should be mentioned that polynomial B zð Þ can be conveniently implemented by
adding its roots as poles in additional parallel channels to the basic structure (see
Figure 1). In this case, the existing formulas for gains calculation are valid only for the
identical structure of the extension cascades (they have to consist K þ 1 resonators).
Otherwise, the formulas are not valid and need a completely new derivation.

3.4 Design example

In the next section, three demonstration examples, with frequency responses and
pole-zeros maps, of the designed K ¼ 2 type CR-based harmonic analyzer are shown,
for f S ¼ 800 Hz and f 1 ¼ 50 Hz. For a clear readability, lower values of f S ¼ 800 Hz
andM ¼ 7 are selected. The following parameters are prescribed in all three examples:
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f SB ¼ 17 Hz, lTB ¼ 1:005, W zð Þ ¼ 1, α0 ¼ 0:5, ρ ¼ 0:95, NA ¼ K þ 1ð Þ 2Mþ 2ð Þ.

x 0ð Þ ¼ 0: Other parameters were variated, depending on the chosen optimization
criteria. It should mention that a large variety of optimization scenarios is possible,
allowing design spectrum analyzers for a wide scope of different applications.

3.4.1 Example 1: flat-top passbands

The filters with a wider flatness in the pass band allow better signal tracking in the
dynamic conditions. Since it is difficult task to provide the tracking of the parameters
changes together with good attenuation in the stopband, a relatively high order of
NB ¼ K þ 1ð Þ 2Mþ 2ð Þ is settled. The desired group delay (in samples) in the passband

is τ=0.9 K þ 1ð Þ 2Mþ 2ð Þ: f PB ¼ 1:7 Hz: lPB ¼ 0:01. Obtained frequency responses
(Figure 6) show that the passband flatness is not derogated, while the selectivity and
attenuation in the stopbands are increased thanks to the zeros of the polynomial B zð Þ
which are located between the existing multiple zeros of the resonator structure that
had been obtained through the common feedback. A cost is an increased total group
delay which causes higher latency.

3.4.2 Example 2: narrow selective passbands

In this example, the requests for passband and transition bands are omitted, which
decrease a numerical burden. To obtain high selectivity, NB ¼ K þ 1ð Þ 2Mþ 2ð Þ is
kept. The obtained frequency responses (see Figure 7) show that selectivity and
attenuation in the stopbands are increased. This is achieved thanks to the poles of the
transfer function located on a circle of radius 0:95 ( zj j ¼ 0:95) very close to the zeros
located in the harmonic frequencies, as well as the additional zeros of the polynomial
B zð Þ. Such high selectivity caused a large increase in a group delay.

Figure 6.
(a) Frequency responses of g03,0z

�1P3 zð Þ, B zð Þ=A zð Þ and TAB
3,0 zð Þand (b) Pole-zero map of T3,0 zð Þ and B zð Þ (for

the third harmonic), for NA ¼ K þ 1ð Þ 2Mþ 2ð Þ, NB ¼ K þ 1ð Þ 2Mþ 2ð Þ, and ρ ¼ 0:95, f PB ¼ 1:7 Hz and
τ=0.9 K þ 1ð Þ 2Mþ 2ð Þ:
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3.4.3 Example 3: numerically cost-effective solution

This example is very similar to the previous one with different that now is NB ¼ 0,
which means that there is no extension to the existing resonator structure with common
feedback. Obtained frequency responses (see Figure 8) show that selectivity and atten-
uation in the stopbands are smaller than in the previous case, however, with a smaller
group delay too.

Figure 7.
(a) Frequency responses of g03,0z

�1P3 zð Þ, B zð Þ=A zð Þ and TAB
3,0 zð Þand (b) Pole-zero map of T3,0 zð Þ and B zð Þ (for

the third harmonic), for NA ¼ K þ 1ð Þ 2Mþ 2ð Þ, NB ¼ K þ 1ð Þ 2Mþ 2ð Þ, and ρ ¼ 0:95, f PB ¼ 0 Hz.

Figure 8.
(a) Frequency responses of g03,0z

�1P3 zð Þ, B zð Þ=A zð Þ and TAB
3,0 zð Þand (b) Pole-zero map of T3,0 zð Þ and B zð Þ (for

the third harmonic), for NA ¼ K þ 1ð Þ 2Mþ 2ð Þ, NB ¼ 0, and ρ ¼ 0:95, f PB ¼ 0 Hz.
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4. FIR cascaded-resonator-based harmonic phasor estimation

Instead of the common simultaneous compensation of the frequency responses for
all harmonics through the compensating filter B zð Þ placed in the front of the parallel
resonator structure, a more flexible solution is shown in Figure 9 with postprocessing
by the set of compensators Qm zð Þ designed particularly for each harmonic m. In this
case, A zð Þ ¼ 1 is chosen to allow the use of linear optimization techniques such as LP
and CLLS.

In order to obtain an algorithm that can be utilized in a wide range of signal
dynamics in a unified way and improve the frequency response, a linear combination
of the differentiators’ outputs in the cascade can be used [22, 25, 26]. The goal of this
compromised solution was to propose a tracking-mode harmonic estimation tech-
nique. In Ref. [31], it is shown that this estimation technique exhibiting maximally flat
frequency responses can be efficiently used for implementation of P-Class Compliant
PMU in accordance with IEC/IEEE Standard 60255-118-1:2018 for harmonic phasors
estimation. In this approach, the order of the resulted compensation filter was low and
equals to the pole multiplicity. In Refs. [21, 23, 24], the proposed approach was
generalized to any necessary order through the postprocessing compensation FIR
filters applied to the output signals obtained by the CR structure. The drawback of this
approach is that we have to use as many postprocessing FIR filters as there are
harmonic phasors that we need to estimate (one estimator per one harmonic phasor).
On the other hand, the advantage is that it is possible to obtain a filter bank, sur-
rounding the core CR structure, with a set of different compensation filters
corresponding to different signal dynamics.

The transfer function for every mth channel has the form of

TQ
m,0 zð Þ ¼

VQ
m,0 zð Þ

V zð Þ
¼ Tm,0 zð ÞQm zð Þ ¼ g0m,0z

�1Pm zð Þ
h i

qQxQ : (40)

Figure 9.
Block diagram of the K-type CR-based harmonic analyzer with postprocessing.
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where Qm zð Þ ¼ qm,0 þ qm,1z
�1 þ⋯þ qm,NQ�1z

� NQ�1ð Þ þ bm,NQ
z�NQ .

qQ ¼ 1 z�1 z�2 ⋯ z� NQ�1ð Þ z�NQ

h i

, xQ ¼ q0 q1 ⋯ qNQ�1 qNQ

� �T
.

Eq (40) has the same form as Eq. (5) with the following constraints: A zð Þ ¼ 1,
NA ¼ 0, xA ¼ ½�, qA ¼ ½�, x ¼ xQ , q ¼ qQ . qB is replaced by qQ , and xB by xQ : Since

NA ¼ 0, the stability constraints are not present. The desired frequency response is
related only to the actual harmonic m and does not consider the frequency responses
of the other ones.

4.1 Total vector gradient (TVG) calculation

The response time and delay of the estimator are directly correlated with the group
delay (GD) of the filter. Due to the more complex calculation of GD, it is possible to

use the gradient of the transfer function dTQ
m,0 zð Þ=dz, which is called the total vector

gradient (TVG) here. In a flat range with small amplitude changes, TVG and GD are
proportional, and optimization of one leads to optimization of the other. The first

derivative of the transfer function TQ
m,0 zð Þ is as follows:

dTQ
m,0 zð Þ=dz ¼ g0m,0 �z�2Qm zð ÞPm zð Þ þ z�1Pm zð ÞdQm zð Þ=dzþ z�1Qm zð ÞdPm zð Þ=dz

� �

¼ g0m,0z
�1 Pm zð ÞdQm zð Þ=dzþ Ψm zð ÞQm zð Þ½ �

(41)

where

dQm zð Þ

dz
¼ �qm,1z

�2 � 2qm,2z
�3 �⋯�NQqm,NQ

z� NQþ1ð Þ

Ψm zð Þ ¼ �z�1Pm zð Þ þ dPm zð Þ=dz

dPm zð Þ

dz
¼ Pm zð Þ

X

Mþ1

i¼�M
i 6¼m

X

K

k¼0

zi,kz
�2

1� zi,kz�1
:

Eq. (41) can be written in a matrix form as follows:

dTQ
m,0 zð Þ=dz ¼ ψmxQ ,m: (42)

where

ψm ¼ ψm,0 zð Þ ψm,1 zð Þ ⋯ ψm,NQ�1 zð Þ ψm,NQ
zð Þ

� �

,

ψm,n zð Þ ¼ g0m,0z
� nþ1ð Þ Ψm z�1

� �

� nz�1Pm z�1
� �� �

, n ¼ 0, 1, … ,NQ :

4.2 Optimization criteria

Selections of the object and functions and constraints can be very different
depending on the optimization criteria scenario. Herein will be considered three
criteria summarized in Table 1 [21, 24]. In the first Criterion 1, the cost function in

which absolute values are minimized is the transfer function TQ
m,0 zð Þ in the stop bands.
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Weighting functionWm ωð Þ is settled to 1. The function which absolute values are kept

under settled limits is an error in the passband Em zið Þ ¼ TQ
m,0 zð Þ

�

�

�

z¼zi
� Td

m zið Þ where

Td
m zið Þ ¼ exp �jτ ωi � ωmð Þð Þ: In addition to this, a control of overshoots in the transi-

tion bands is performed.
Criterion 2 is similar with Criterion 1 with the difference that the absolute value of

the TVG in the harmonic frequency is limited, that is dTQ
m,0 zð Þ=dz

�

�

�

�

�

�

z¼zm
≤ TVGj jmax,

where TVGj jmax is a maximally allowed absolute total vector gradient. Like in Crite-
rion 1, the limitation of overshoots in the transition bands is necessary.

Criterion 3 minimizes the absolute value of the TVG in the harmonic frequency
subject to the limitation of the gain in the stopband. Similarly with the previous cases,
the limitation of overshoots in the transition bands is necessary.

Criteria Object

function

Desired

values

Frequency

range

Constrained

functions

Reference values Frequency

range

Criterion 1 TQ
m,0 zð Þ 0 Stopbands TQ

m,0 zð Þ Td
m zð Þ ¼ e�jτ ω�ωmð Þ Passband

TQ
m,0 zð Þ 0 Transition

band

Criterion 2 TQ
m,0 zð Þ 0 Stopbands dTQ

m,0 zð Þ=dz 0 Harmonic

frequency

TQ
m,0 zð Þ 0 Transition

band

Criterion 3 dTQ
m,0 zð Þ=dz 0 Harmonic

frequency
TQ
m,0 zð Þ 0 Stopband

TQ
m,0 zð Þ 0 Transition

band

Table 1.
Considered design criteria.

Figure 10.
Frequency responses for the basic (T3,0 zð Þ) and reshaped (TQ

3,0 zð Þ) transfer function for K ¼ 2, for f s ¼ 1:6 kHz,

NQ ¼ 16 and (a) lSB3 ∈ 0:1, 0:01, 0:001f g and (b) TVGj jmax ∈ 24, 32, 48f g.
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4.3 Design example

In order to illustrate the described algorithms, examples overtaken from [21] are
shown for Criteria 2 and 3 defined in Table 1. Figures 10 and 11 show the frequency

responses of the transfer function of the third harmonic TQ
3,0 zð Þ in the case of K ¼ 2.

For Criterion 3, the maximum allowed gains in the stopband was selected as

lSBm ∈ 0:1, 0:01, 0:001f g, which corresponds to attenuations of 20, 40, 60f g dB. For
Criterion 2, the maximum value of TVGj j in the harmonic frequencies zm,
TVGj jmax ∈ 24, 32, 48f g was selected. Zoomed amplitude and TVGj j characteristics
around the harmonic frequency are shown in the inset figures at the bottom of the
figures. It can be seen that the higher value of NQ gives a smaller value of TVGj j and
wider bandwidth. It is also visible that for smaller values TVGj j sidelobes are larger,

Figure 11.
Frequency responses for the basic (T3,0 zð Þ) and reshaped (TQ

3,0 zð Þ) transfer function for K ¼ 2, for f s ¼ 1, 6 kHz,

NQ ¼ 32 and (a) lSB3 ∈ 0:1, 0:01, 0:001f g and (b) TVGj jmax ∈ 24, 32, 48f g.

Figure 12.
Frequency responses for the basic (T3,0 zð Þ) and reshaped (TQ

3,0 zð Þ) transfer function for K ¼ 1, for f s ¼ 1, 6 kHz,

NQ ¼ 16 and (a) lSB3 ∈ 0:1, 0:01, 0:001f g and (b) TVGj jmax ∈ 16, 24, 32f g.

19

Cascaded-Resonator-Based Recursive Harmonic Analysis
DOI: http://dx.doi.org/10.5772/intechopen.108402



which reduces robustness to interharmonics and noise. In addition, the bandwidth
increases for smaller values of TVGj j.

Figure 12 shows the frequency responses of the transmission functions T3,0 zð Þ and

TQ
3,0 zð Þ for different values of given parameters (a) lSBm and (b) TVGj jmax, in the case of

K ¼ 1. In this case, the total TVGj j is smaller than in the case of K ¼ 2. The order of
the compensation filter NQ ¼ 16 is smaller, so the bandwidth is narrower. In the case

of lSB3 ¼ 0:001, the optimization problem has no solution.

5. Conclusions

CR-based algorithms for harmonic analysis and estimation of harmonic phasors are
described in this chapter. The resulting filters for extracting harmonic signals can be
of the FIR or IIR type. Algorithms for the optimization of frequency responses are
presented and corresponding examples of synthesis are given. Linearized mathemati-
cal models were used, which enabled the use of linear optimization methods such as
LP and CLLS. When designing the IIR analyzers, a linearized iteration scheme based
on the Rouche’s theorem was used to control the stability of the system. As for the
optimization algorithms, they can potentially be improved by various modifications
such as, for example, by nesting optimization loops related to different constraint
conditions and/or objectives, and adaptation of iteration steps. It is notable that
approximating result could be obtained heuristically thanks to the characteristic posi-
tion of the pole and zeros. In addition, it seems that closed-form calculation expres-
sions derivation could be possible. On the other hand, the FIR-type algorithm
particularly optimizes frequency responses through the postprocessing compensation
FIR filters applied to the output signals obtained by the CR structure. This approach
allows the usage of a set of compensation filters corresponding to different signal
dynamics.
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