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Chapter

Complex Dynamics of Competitive
First Order Chemical
Self-Replication
Anuj K. Shah and Enrique Peacock-López

Abstract

In most experimental conditions, the initial concentrations of a chemical system
are at stoichiometric proportions, allowing us to eliminate at least one variable from
the mathematical analysis. Under different initial conditions, we need to consider
other manifolds defined by stoichiometry and the principle of conservation of mass.
Therefore, a given set of initial conditions defines a dynamic manifold and the system,
a tall times, has to satisfy a particular relation of its concentrations. To illustrate the
relevance of the initial conditions in a dynamic analysis, we consider a chemical
system consisting of two first-order self-replicating peptides competing for a common
nucleophile in a semi-batch reactor. For the symmetric case, we find different com-
plex oscillations for a given set of parameter values but different initial conditions.

Keywords: chemical self-replication, limiting reagent, coexistence

1. Introduction

Chemical self-replication is how an individual molecule can duplicate itself. In a
first-order process, a product molecule directs in own synthesis by facilitating the
binding of two or more component molecules to form a new product molecule. The
product molecule acts as an auto-catalytic template to position the components for a
ligation reaction. There are two critical steps in chemical self-replication. First, the
product molecules must bind available components to facilitate the ligation and for-
mation of the product molecules. Second, once this ligation is completed, the product-
template complex (duplex) must readily dissociate so that the newly formed product
molecule may join the other product molecules. In an efficient self-replicating system,
as soon as the new product molecule is formed after ligation, it should readily disso-
ciate from the template molecule and begin to act as a template by binding component
molecules. Since product molecules can participate in multiple replication cycles as a
template, the product concentration’s growth rate is directly proportional to its con-
centration. This relationship characterizes autocatalysis, and it yields an exponential
growth rate for the concentration of the product molecule. This process of sustained
exponential growth is known as autocatalytic self-replication.

In reality, however, it is not easy to achieve the delicate balance between a strong
binding of the component molecules to facilitate the formation of a new product
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molecule and an easy dissociation of the duplex, which is required for autocatalytic
self-replication. The most significant challenge is the difficulty of dissociating the
product-template intermediate to yield a new product molecule and the original
template. When product-template molecules remain together, the number of template
molecules is reduced, and thus the growth rate is less than exponential.

Over the past 25 years, the interest in understanding chemical self-replication has
grown. Researchers have developed several experimental systems in aqueous solutions
using peptides [1–10], oligonucleotides [11–15], modified ribozymes [16–18], and
DNA [19–24]. In particular, we have considered Joyce’s [16–18], Ashzkenazy’s [25–
34], and Rebek’s [35–40] experimental systems and have proposed simple model [41]
to analyze their experiments.

In most reported cases, researchers start with an initial set of concentrations and
monitor over time the concentrations of the reactants, product, and, on some occa-
sions, the intermediate. Under these so-called batch conditions, researchers have
found exponential growth and, therefore, self-replication. Using Joyce’s experiments,
we have proposed a minimal Templator Mode [41] and determined parameter values
for our model, and we have extended our analyses to open conditions to characterize
probable dynamic behaviors [41–51].

However, most of our early work has only emphasized auto-catalysis mediated by
a single template, and, lately, we have considered a generalization of the first model to
include the so-called parabolic growth and the association of multiple product/tem-
plate molecules to form an active auto-catalytic template multimer [45, 46]. We have
also considered cross-catalysis, where a system of four component molecules and two
templates can cross-replicate [47]. In other words, one template catalyzes the forma-
tion of the other template and vis versa.

Another critical aspect of chemical self-replication is its implications for under-
standing life’s origins [52–55]. Although chemical self-replication is necessary to
develop models of the origins of life, competition between chemical systems must also
be included in the discussion. To consider competition in our analysis of chemical self-
replication, we study a two-template system competing for one common reagent. In
the next section, we discuss an extension of our previous work to include the three
different reactants and two self-replicating templates. Section 3 presents and discusses
our dynamic analysis in cases where the templates are similar, but one is a better
replicator than the other. Finally, section 4 summarizes the dynamic behavior of a
simple competing system of self-replicating templates.

2. General model

In previous work [41–51], we have considered Rebek’s and Joyce’s self-replicating
systems and modeled ideal self-replication using a self-complementary template mech-
anism. For this experimental design, we used a reasonable chemical model consistent
with the laboratory work on self-replication. In particular, we consider a simple self-
replicating mechanism characterized by a cubic nonlinearity, and in general, chemical
self-replication can be represented schematically by the following mechanistic steps

Aþ B �!
ku1

P, (1)

Aþ Bþ P �!
ktempl

Pþ P, (2)
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where P represents the self-replicating molecule, and A and B are the component
fragments. In the uncatalyzed step, components A and B interact with a relatively low
probability of forming the template, P. The structure of the product P is such that
once it is formed, it preferentially binds A and B in a conformation that facilitates
covalent bonding between the A and B molecules to form another P molecule. The
newly created template and the original template molecules then split apart and
independently catalyze further reactions.

While considering first-order self-replication, we can couple the autocatalytic
process with an enzymatic formation of a regulatory product, Q,

P �!
E

Q (3)

where the rate shows saturation at high concentrations of P.
Following Joyce’s ribozyme systems and Ashkenazy’s peptide systems, where the

components are RNA strands or electrophilic or nucleophilic peptide fragments, we
build a competitive Templator model by first considering the uncatalyzed formation
of the template P from strands A and B. Likewise, we include the uncatalyzed forma-
tion of the template R from strands A and C,

Aþ B �!
ku1

P , (4)

Aþ C �!
ku2

R, (5)

In Eqs. (4) and (5), ku1 and ku2 represent the rate constants of the uncatalyzed
reactions, respectively. These equations imply that strands B and C compete for the
common component A to form their respective templates. The competitive Templator
model also incorporates the catalyzed formation of templates P and R, where the
covalent bonding of strands A, B, and C to either P or R templates is included,

Aþ Bþ P �!
kt1

Pþ P, (6)

Aþ Cþ R �!
kt2

Rþ R, (7)

Here, kt1 and kt2 represent the rate constants for each self-catalyzed reaction, and
we have contracted the bimolecular process to yield Eqs. (6) and (7).

As in most of our previous work, we have considered a simple constant volume
ideal open conditions that assume a continuous inflow of reactants to the system.
Therefore, to prevent the chemical system from reaching equilibrium, we pump A, B,
and C into the system from pools Ao, Bo, and Co at a constant rate, ko:

Ao �!
ko

A, (8)

Bo �!
ko

B, (9)

Co �!
ko

C, (10)

Finally, we must incorporate the removal of each template from the
system through an enzymatic reaction that converts them to another compound,
S1 and S2:
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P ���!
q1,KM1

S1 , (11)

R ���!
q2,KM2

S2, (12)

where q1, q2,KM1, andKM2 are rate constants associatedwith the enzymatic reactions.
Based on Eqs. (4) and (5), we can consider a competitive two-template system

with the following ODEs:

d A

d t
¼ koAo � ku1AB� ku2AC� kt1ABP� kt2ACR, (13)

d B

d t
¼ koBo � ku1AB� kt1ABP, (14)

d C

d t
¼ koCo � ku2AC� kt2ACR, (15)

d P

d t
¼ ku1ABþ kt1ABP�

q1 P

KM1 þ P
, (16)

d R

d t
¼ ku2ACþ kt2ACR�

q2 R

KM2 þ R
, (17)

For details on dimensionless systems, see references [41, 43].
However, before analyzing the dynamic behavior of these five ODEs, we must

understand the behavior of the chemical system in the absence of one of the compet-
ing templates, the role of the external fluxes, and the initial conditions on the dynam-
ics. Therefore, if we ignore the competing template, R, our system reduces from five
to three ordinary differential equations for components A and B, and product P,

d A

d t
¼ koAo � ku1AB� kt1ABP, (18)

d B

d t
¼ koBo � ku1AB� kt1ABP, (19)

d P

d t
¼ ku1ABþ kt1ABP�

q1 P

KM1 þ P
, (20)

Since the overall reaction shows that A and B are in a one-to-one relation, we next
employ the following simple definitions:

X tð Þ ¼
A tð Þ þ B tð Þ

2
, (21)

Y tð Þ ¼
A tð Þ � B tð Þ

2
, (22)

Where X(t) stands for the total concentration of A and B, and Y(t) represents the
difference in concentration between A and B, both at a given time t. From Eqs. (21)
and (22), we determine the new ODEs,

d X

d t
¼ koXo � ku1 X2 � Y2

� �

� kt1 X2 � Y2
� �

P, (23)
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d Y

d t
¼ koYo, (24)

d P

d t
¼ ku1 X2 � Y2

� �

þ kt1 X2 � Y2
� �

P�
q1 P

KM1 þ P
, (25)

where

Xo ¼
Ao þ Bo

2
, (26)

Yo ¼
Ao � Bo

2
, (27)

Notice that in self-replicating chemical systems, the uncatalyzed process occurs
with a very low probability, so ku < < kt, and Yo needs to be zero; otherwise, the
system accumulates one of the reactants, and it blows up. In other words, we need to
pump the reagents accordingly to their stoichiometric proportions; for details, see
references [41, 43].

In previous work, we have analyzed at length the case of no-limiting reagent,
Y tð Þ ¼ Y 0ð Þ ¼ 0, where A tð Þ ¼ B tð Þ [41–51]. But here we relax the no-limiting reagent
condition and notice, since Yo ¼ 0, that the variable Y has a simple solution,
Y tð Þ ¼ Y 0ð Þ. Consequently, the solution Y 0ð Þ appears as a pseudo-parameter in the
other two ODEs associated with X and P. The presence of Y 0ð Þ has a net effect on the
amplitude of the limit cycles because the initial difference between A and B has to be
preserved,

Y tð Þ ¼ Y 0ð Þ ¼
A tð Þ � B tð Þ

2
, (28)

or

A tð Þ ¼ X tð Þ þ Y 0ð Þ, (29)

B tð Þ ¼ X tð Þ � Y 0ð Þ, (30)

In other words, the difference in initial concentrations introduces a mass con-
straint on the dynamic behavior of the concentrations.

Regardless of initial conditions, we find a linear relationship (with a slope m equal
to 1) between the change in concentrations of A and B, A tð Þ ¼ B tð Þ þ 2Y 0ð Þ. However,
each initial difference in concentrations produces a unique basin of attraction defined
by a simple manifold, A 0ð Þ ¼ B 0ð Þ þ Y 0ð Þ. This dependence on Y 0ð Þ implies, in
principle, an infinite number of limit cycles. This infinite number of possible types of
behavior is unusual for chemical systems, but in this case, we impose a chemical
restriction required to achieve a steady state.

In Figure 1, we consider the following dimensionless parameter values: ko ¼ 0:6,
Ao ¼ Bo ¼ 1:0, ku1 ¼ 0:01, kt1 ¼ 1:0, q1 ¼ 1:0, KM1 ¼ 0:05, and different initial con-
centrations. Notice that in the symmetric case, Y 0ð Þ ¼ 0 yields the largest amplitude,
and as the absolute value of Y 0ð Þ increases, the amplitude decreases. But it is impor-
tant to note that once we choose the initial difference in concentration, Y 0ð Þ, the
system is not dependent on specific initial values for the concentrations of A and B, as
long as they belong to the same manifold. For example, if two different initial
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conditions have the same Y 0ð Þ, they belong to the same basin of attraction, and each
reaches the same attractor. Additionally, switching the initial values for the concen-
trations of A and B does not change the characteristics of the attractor. However, two
cases with different values of Y 0ð Þ reach a limit cycle of varying amplitude.

As in the three-variable system, in competitive scenarios, stoichiometric pumping
is necessary for the existence of a steady state. It is straightforward to prove that a
steady state exists if the pumping pools satisfy the stoichiometric condition
Ao ¼ Bo þ Co. Otherwise, accumulation dominates the system, increasing one of the
concentrations without a bound. Under a balanced pumping restriction, we find that
Y tð Þ ¼ A tð Þ � B tð Þ � C tð Þ is a constant equal to Y 0ð Þ � Y i, which determines the basin
of attraction for each attractor characterized by Y i. In other words, for a given set of
parameters, the set of initial concentrations A 0ð Þ ¼ B 0ð Þ þ C 0ð Þ þ Y reaches the same
attractor Y i. Notice that in this case, we can solve for A tð Þ, use the relation
A tð Þ ¼ B tð Þ þ C tð Þ þ Y i, and reduce the system of ODEs to a four variables system, but
with a pseudo-parameter, Y i. We reemphasize that this behavior is a consequence of
the balanced pumping and the limiting reagent constraint. Consequently, since not all
experiments satisfy the no-limiting reagent condition, we pay attention to the initial
conditions of the five species evolving in time and characterize the dynamic behavior
by the limiting reagent constraint.

3. Dynamic characterization of the symmetric case

In this section, we examine the symmetric case in which both templates exhibit the
same replicative efficiency for their catalyzed and uncatalyzed formation. Although
we may think the symmetric case is not that interesting, an initial limiting reagent
condition can give us interesting dynamic behaviors. In Figure 2, we plot the time
Series [56] for R, and P, and its phase plot for a symmetric case, and Y i ¼ 0, and it
serves as a reference for other values of Y i. For simplicity, in our analysis of the full

Figure 1.
For the phase plot above, we consider the following differences in initial concentrations of A and B: Y 0ð Þ ¼ 0
(A ¼ 20, B ¼ 20; blue), Y 0ð Þ ¼ �5 (A ¼ 15, B ¼ 20; red), Y 0ð Þ ¼ �10 (A ¼ 10, B ¼ 20; green), and Y 0ð Þ ¼
�18 (A ¼ 2, B ¼ 20; purple).

6

Chaos Theory - Recent Advances, New Perspectives and Applications



competitive self-replicator model, we set P(0) and R(0) equal to zero for all cases. For
Y ¼ 0 ¼ A 0ð Þ � B 0ð Þ � C 0ð Þ, we observe similar oscillations of period-one, (P1),
which is not surprising. But the oscillations are out of phase, where P and R alternate
maxima. One may expect similar synchronized oscillations since all the parameters for
both templates are the same. In contrast, for Y ¼ 10, we observe synchronized oscil-
lations in Figure 3, and we would only expect these two attractors, but in the syn-
chronized case, notice that the amplitude of the oscillation is smaller than in the out of
phase case. So it makes sense that in the synchronized case, both templates compete
simultaneously, while in the out-of-phase case, only one is actively replicating.

For example, in Figure 4, we hold A(0) at 40 and C(0) at 20 while increasing B(0)
to 45 (Y = �25), and, in this case, we find period two, (P2), out of phase oscillations
with larger amplitude that in Figure 3. At this point, we have changed B 0ð Þ from 20 to
45 and observe a change from P1 to P2. But notice that if we change B 0ð Þ ¼ 46, the
system shows chaotic dynamics, as shown in Figure 5. Furthermore, when we change
B 0ð Þ ¼ 57, we observe complex oscillation, as shown in Figure 6. Notice that in all
cases, both self-replicating templates, P and R, show the same complex oscillation but
are out of phase.

Figure 2.
Symmetric attractor Y = 0: ko ¼ 0:6,Ao ¼ 1:0,Bo ¼ Co ¼ 0:5,ku1 ¼ ku2 ¼ 0:01,q1 ¼ q2 ¼ 1:0,KM1 ¼ KM2 ¼
0:05, kt1 ¼ kt2 ¼ 2,A 0ð Þ ¼ 40,B 0ð Þ ¼ 20,C 0ð Þ ¼ 20. A) Time series for P t½ �, in red, and R t½ � in blue. B) Phase
plot of P(t) vs. R(t).

Figure 3.
Symmetric attractor Y = 10: parameters same as in Figure 2, A 0ð Þ ¼ 50,B 0ð Þ ¼ 20,C 0ð Þ ¼ 20. A) Time series
for P t½ �, in red, and R t½ � in blue. B) Phase plot of P(t) vs. R(t).
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Figure 4.
Symmetric attractor Y = �25: parameters same as in Figure 2, A 0ð Þ ¼ 40,B 0ð Þ ¼ 45,C 0ð Þ ¼ 20. A) Time series
for P t½ �, in red, and R t½ � in blue. B) Phase plot of P(t) vs. R(t).

Figure 5.
Symmetric attractor Y = �26: parameters same as in Figure 2, A 0ð Þ ¼ 40,B 0ð Þ ¼ 46,C 0ð Þ ¼ 20. A) Time series
for P t½ �, in red, and R t½ � in blue. B) Phase plot of P(t) vs. R(t).

Figure 6.
Symmetric attractor Y = �37: parameters same as in Figure 2, A 0ð Þ ¼ 40,B 0ð Þ ¼ 57,C 0ð Þ ¼ 20. A) Time series
for P t½ �, in red, and R t½ � in blue. B) Phase plot of P(t) vs. R(t).
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Upon further increase of the initial concentration of B to 25 while holding A(0) and
C(0) at the same values (Y = �5), the chemical system returns to simple alternating
oscillations, with template R exhibiting greater amplitude (Figure 3). Inspection of
the case in which A(0) = B(0) = C(0) = 20 (Y = �20) indicates that the system
exhibits the same behavior, though the amplitude values of the templates are
approximately the same (Figure 4). We again see this simple oscillatory behavior
when Y = �25 (Figure 5), but when Y = �26, the system transitions to chaotic
behavior (Figure 6). We find another transition in behavior in the competitive model
when Y is equal to �37 at higher values of B(0) as it begins to exhibit complex rather
than chaotic oscillations (Figure 7). At more extreme values of B(0) (Y = �50), we
continue to see complex behavior in this system (Figure 8).

4. Discussion

We can emphasize the synchronized and unsynchronized oscillations in figures for
the symmetric case (2,3). The synchronized oscillations have a smaller amplitude than

Figure 7.
Symmetric attractor Y = �40: parameters same as in Figure 2, A 0ð Þ ¼ 40,B 0ð Þ ¼ 60,C 0ð Þ ¼ 20. A) Time series
for P t½ �, in red, and R t½ � in blue. B) Phase plot of P(t) vs. R(t).

Figure 8.
Symmetric attractor Y = �57: parameters same as in Figure 2, A 0ð Þ ¼ 20,B 0ð Þ ¼ 57,C 0ð Þ ¼ 20. A) Time series
for P t½ �, in red, and R t½ � in blue. B) Phase plot of P(t) vs. R(t).

9

Complex Dynamics of Competitive First Order Chemical Self-Replication
DOI: http://dx.doi.org/10.5772/intechopen.108378



the case of unsynchronized oscillations. But, in general, the oscillations tend to be
unsynchronized, as shown in Figures 4–8, and, in the cases of the plots in phase space
(P, R), where the symmetry is easy to observe. In the previous section, we have shown
simple P1 and P2 oscillations and complex oscillations. The symmetric case serves as a
benchmark as we continue our analysis.

At first glance, we may inquire why the initial conditions influence the observed
attractor. We emphasize that one needs to satisfy the condition Ao ¼ Bo þ Co; other-
wise, one ends with an accumulation of a reagent. In mathematical terms, the con-
centration of one reagent grows to infinity. By pumping the reagents at a
stoichiometric proportion, one avoids such accumulation of a reagent. In other words,
if we define Z tð Þ ¼ A tð Þ � B tð Þ � C tð Þð Þ=2 we get from Eqs. (3)–(17). the following
relation:

dZ

dt
¼ ko Zo (31)

Zo ¼
Ao � Bo � Co

2
, (32)

where Ao, Bo, Co are the concentrations of the external stock solutions, being
pumped with a rate ko. It is clear that Z tð Þ ¼ Z 0ð Þ þ koZot and grows unbound for
Zo 6¼ 0, and Z tð Þ ¼ A tð Þ � B tð Þ � C tð Þ ¼ Z 0ð Þ ¼ A 0ð Þ � B 0ð Þ � C 0ð Þ. Therefore Z 0ð Þ
defines a manifold associated with an attractor.

The restriction due to the mass conservation expressed in the reaction’s stoichiom-
etry is not particular to the assumed system’s conditions. The mass constraint mani-
fests through the initial concentrations for our ideal open system. But in the case of a
continuous stirred tank reactor (CSTR), the mass constraint manifests through the
stock concentrations and in this case Z tð Þ ¼ A tð Þ � B tð Þ � C tð Þ ! Zo ¼ Ao � Bo � Co.
In other words, due to the mass conservation and stoichiometry,
A tð Þ � B tð Þ � C tð Þ ¼ constant, and the constant defines a manifold of concentrations
associated with an attractor. To consider our approach to model biological systems,
one may need to assume that the inflow should be regulated by membrane proteins
translocating the reagents, and the system volume should be kept constant. These
conditions may or may not be easy to satisfy.

In most model reductions, one assumes stoichiometrically balanced inputs and
initial conditions, simplifying the ODEs. But experimentally, it may not be the case,
and one may have a limiting reagent and mathematically have an additional parameter
in the ODEs. In this case, the mass constraint enters as a parameter, as seen in
Eqs. (23)–(25), and all the initial conditions are related by the constraint belonging to
the same manifold. In summary, under experimental conditions, one may need to pay
attention to the stock solutions and the initial concentrations and include them in the
ODEs associated with a particular mechanism.
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