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Chapter

Development of Nucleic Acid
Targeting Molecules: Molecular
Docking Approaches and Recent
Advances

Mohit Umare, Fai A. Alkathiri and Rupesh Chikhale

Abstract

Molecular docking is a widely used and effective structure-based computational
strategy for predicting dynamics between ligands and receptors. Until now the
docking software were developed for the protein-ligand interactions and very few
docking tools were developed exclusively for the docking of small molecules on
the nucleic acid structures like the DNA and RNA. The progress in algorithms
and the need for deeper understanding of ligand-nucleic acid interactions more
focused, and specialized tools are being developed to explore this hindered area
of drug discovery. This chapter is focused on and discus in details about various
tools available for docking with nucleic acids and how the rejuvenation of machine
learning methods is making its impact on the development of these docking
programs.

Keywords: nucleic acids, molecular docking, docking algorithms, machine learning,
non-canonical DNA, RNA

1. Introduction

Computer-Aided Drug Design (CADD) has evolved as a cost-effective method of
producing potential medications for the treatment of a wide range of diseases [1]. The
use of the CADD technique in pharmaceutical research is becoming more common.
Recently, there has been a trend in drug design to strategically create effective thera-
pies with multi-targeting effects, better effectiveness, and tolerability, particularly in
terms of toxic effects [2, 3]. To assist the exploration, a mix of modern computer
approaches, biological research, and synthesizing molecules was developed, and this
combinational methodology increased the scope of discoveries [4, 5].

CADD may be generally defined as encompassing both structure- and ligand-based
drug design (SBDD and LBDD) [6]. SBDD approaches are based on evidence acquired
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from an understanding of a target’s three-dimensional structure, and they allow rating
databases of compounds based on the affinity of ligands to a specific target [7, 8].
LBDD provides a generic technique for understanding links between the structural
and compositional features of molecules and their bioactivities. When three-
dimensional data for a protein of interest is lacking, this strategy is used [9]. The
existing knowledge on molecules and their bioactivity are employed in this approach
to produce new possible therapeutic molecules. In this regard, molecular docking is a
widely used and effective structure-based computational based strategies for
predicting dynamics between ligands and physiological receptors [10, 11].

The molecular docking procedure consists of two main stages: projection of a new
molecular configuration including its pose inside the peptide-binding pocket, and
evaluation of the pose quality using a scoring function. [11, 12]. Around 1975, high-
throughput protein isolation, [13] nuclear magnetic resonance spectroscopy, and X-
ray crystallography [14] have advanced, primarily leading to improved knowledge of
the structural properties of ligand and molecule complex [15].

MD studies, along with many other iz silico technologies, have grown more fre-
quent and simpler to use in drug development; yet it is not wholly reliant on molecular
libraries. Since its inception in the 1980s as among the most mostly utilized proce-
dures, the experimental data collected by MD techniques has developed at an acceler-
ating rate [16]. Nearly annually, programs configured using various methods for MD
analysis are produced, considerably boosting pharmaceutical research. The scoring
function calculates the binding affinities of produced poses, ranks them, and selects
the most advantageous ligand and protein binding modes [17].

The scoring function of an optimum search algorithm should be capable of
assessing the physical and chemical characteristics of compounds and the thermody-
namics of interactions [18]. The earliest algorithms were created to deal with protein
interactions [19]. Over the previous few decades, the progressive development of
efficient and comprehensive algorithms with the inclusion of new variables has mir-
rored computing technical breakthroughs. Kuntz and colleagues at UCSF then utilized
a shape pairing method algorithm to keep looking for alternative combinations based
on the geometric length between the target and the ligand molecule [20].

The molecular docking technique has risen to prominence in the realm of drug
development. Times over the past twenty years, molecular docking has developed as a
vital tool for computational drug development, and it has been proved to be more
systematic than conventional drug development approaches [16]. The enormous
increase in computational capabilities and the rising access of molecule and protein
libraries have considerably aided molecular docking. Several docking methodologies
have been implemented over the last several years that may be used to dock proteins
on peptides with diverse levels of accuracy. Molecular docking was initially intended
to be done between a ligand and a target protein, but there is a significant focus on
docking between proteins, and nucleic acid-protein-ligand docking, nucleic acid-
ligand docking in the recent decade [21].

Methods for addressing the shortcomings of the docking approach are still being
researched [22]. Results can be refined, for example, by employing consensus pro-
cedures, implementing more stringent scoring techniques to a portion of the filtered
library, or employing filters that include interaction fingerprints [23]. Significant
effort has also been undertaken to collect inputs from potential binding waters. Iden-
tified water molecules as critical for molecule recognition can be considered part of
the binding pocket, and prediction can be enhanced by energy contribution by
displacing water molecules [24].
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2. Methods in molecular docking
2.1 Monte Carlo

In molecular docking studies, the Monte Carlo technique is the use in creation of a
randomized conformation of a molecule in a targets active site. The advantage is that
this method uses equilibrium statistical method. Rather than attempting to mimic a
system’s dynamics, it develops states based on the suitable Boltzmann distribution
[25]. It determines the initial configuration value. Further, it generates and evaluates a
new configuration. Through using Metropolis criteria, it assesses whether the new
configuration should be preserved [26]. The Metropolis criteria states that if a new
strategy provides better conformation than the previous one, it is recognized imme-
diately. If the combination is not innovative, a probability assessment based on
Boltzmann’s law is used. If the conclusion passes the likelihood function test, it is
approved, and the other arrangement is discarded [27].

2.2 Ligand fit

Ligand fit denotes to a rapid and accurate approach for docking small molecules into
targets active sites while considering form as a complementarity. The technique of cavity
identification is used in the procedure to discover and produce cavity in the protein as
probable binding site locations [28]. For producing ligand poses that are compatible with
the receptor binding site shape, a shape similarity screening is paired along with a Monte
Carlo parametric analysis. A grid-based technique for analyzing energies between protein
and ligand is used to reduce candidate poses with respect to the active site. A non-linear
interpolation approach drastically reduces errors caused by grid interpolation [27, 28].

2.3 Point complimentary

Here on grounds of the complementarity of the interatomic contacts, a technique
for docking a drug into a binding pocket in an enzyme is disclosed. Docking is
accomplished by increasing a complementarity function that is reliant on the atomic
surface area of contact as well as the elemental composition of the interacting atoms
[29]. Although the target and ligand molecules are viewed as inflexible entities,
mobility of a restricted range of residues bordering the binding site can also be
considered. These techniques of molecular docking are focused on comparing the
shapes and/or chemical properties of different molecules [26].

2.4 Fragment based

Fragment-based drug discovery (FBDD) is a novel strategy that is increasingly
being used to improve hit recognition for previously thought intractable biological
targets. FBDD, in specifically, uncovers small ligands (300 Da) capable of binding to
pharmacologically important macromolecules with micromolar affinity [30].

2.5 Distance geometry

Even though it is primarily known as a tool for predicting the solution conforma-
tion of compounds from NMR data, distance geometry is a basic and effective tool for
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generating approximation models of complicated chemical formations [31]. Distance
geometry is a basic geometrical approach that builds structures directly to fulfill
model requirements; this does not involve an initial conformational or force field
variables. The approach simply handles flexible rings without any extra attention or
adjustment. Distance geometry is also distinct in that it works well together with
qualitative data: a significant number of estimated distance boundaries are more
useful in creating a model than a limited handful of highly exact distances [12, 31].

3. Nucleic acid docking

Nucleic acids (NAs) are biological macromolecules which can be broken down into
phosphoric acid, sugars, and mixture of organic bases like purines and pyrimidines
[32]. These can occur in various forms and constitute the building blocks like the DNA
and RNA. These are essential for various cellular process including cell division and
protein synthesis [33, 34]. Due to their crucial role in cell division, DNA, RNA, and
their alternate structures have become target of choice for drug discovery in case of
cancer drug discovery, infectious diseases, and rare diseases [35-38]. The NA modu-
lators act by interfering with DNA replication process which affect the cell prolifera-
tion, transcription and ultimately inhibition of gene expression [39]. These agents can
modulate the functioning of the RNA resulting in altered transcription and translation
processes [40]. These modulators could be small molecule ligands, peptide or macro-
molecules, these can interact with the NAs by various mechanisms like intercalation,
molecular cross-linking, DNA or RNA strand cleavage, and interference at the site of
NA-protein interactions (Figure 1) [40, 41].

(A)

Duplex DNA, PDB: 2DND Duplex RNA, PDB: 20E5 DNA G-quadruplex (G4), PDB: 1L1H RNA G-quadruplex (G4), PDB: 6E8S

(F) (G) ; (H) § § ;

i-motif DNA, PDB: 1ELN i-motif RNA, PDB: 119K DNA hairpin, PDB: 1LAE RNA hairpin, PDB: 1HS2

Figure 1.

The commonly known NA structures with and without bound ligands; (A) duplex DNA structure with a bound
antitumour drug, distamycin, PDB: 2DND [42]; (B) duplex RNA structure with a bound aminoglycoside
antibiotic, apramycin, PDB: 20E5 [43]; (C) DNA G-quadruplex in complex with the di-substituted amino
alkylamido acridine compound (G4), PDB: 1L1H [44]; (D) RNA G-quadruplex (G4) crystal structures of TO1-
biotin complexes of mango-II1, a structure-guided mutant mango-III (A10U), PDB: 6E8S [45]; (E) i-motif
DNA, a fragment of the vertebrate telomere which folds intramolecularly, PDB: 1ELN [46]; (F) i-motif RNA, a
oligodeoxynucleotides with stretches of cytidine residues associate into a four-stranded structure, PDB: 119K [47];
(G) DNA hairpin, solution structure of the PAG-containing hairpin PDB: 1LAE [48]; (H) RNA hairpin, solution
structure of RNA hairpin loop, PDB: 1HS2 [49].
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Recent advancement in crystallization techniques, oligonucleotide synthesis,
methods for structure determination like the NMR, crystal diffraction and cryo-EM
has allowed for enrichment of structural data for NAs [50, 51]. The protein data bank
(PDB) is an open source repository where these structures are deposited and curated
[52]. There are more than 730 DNA-ligand and 523 RNA-ligand co-crystallized struc-
tures in the PDB and these would keep increasing [53]. Structural data of NAs helps in
the investigation of the possible binding of ligands into the target, a co-crystallized
structure provides with a bound ligand which helps understand the binding or active
site in the given NAs. These co-crystallized molecules offer an excellent opportunity
to perform structure-based and ligand-based drug discovery experiments and apply
various other computational methods for drug discovery of NAs therapeutics. The
most widely used method in computational drug design is molecular docking studies.
The algorithms available for performing molecular docking are basically made for
ligand-protein docking. There are several similarities like the protein and NAs follow
similar physicochemical binding principles. However, these algorithms often fail to
lack of sufficient sampling of the conformation space in case of NA docking to reasons
of non-specific scoring functions [54]. Most of the target protein molecules contain a
hydrophobic binding site whereas, the NAs consist of a rather more solvent-exposed
binding pocket with higher polarity and charge density [55]. These are the major
differences between the proteins and NAs as targets in molecular docking. Most of
these algorithms are focused on the protein target molecules and need to consider
parameters that need to be included in the program for NAs docking. NAs particularly
the RNAs are very flexible owing to their charge, intrinsic atomic arrangements, and
movements due to the presence of ligands. This flexibility is not considered by most of
the programs as they consider NAs as rigid bodies [56]. Some programs like MORDOR
are available that allows for the flexibility of the NAs and the ligands [57]. It applies
molecular mechanics minimisation restraints based on the data from the X-ray and
NMR experimental data [58]. There are several shortfalls to these methods, they are
marred by slow speed, minimisation stages are slow, and time consuming, and large
library screening is not feasible. Other NA specific methods reported were ensemble
docking based on structural information from the X-ray structures or NMR or struc-
tures from the normal-mode analysis of an MD simulation [59-61]. The presence of
water molecules and metal ions add to the complications in NAs docking. The water
molecules and metal ions are essential for the stability and functioning of the NAs, this
makes their presence in any docking protocol imperative. The metal ions in case of
NAs like the i-Motif and G-quadruplex are necessary for the formation and stability of
the structure [62, 63]. Various algorithms that considers these challenges in NAs
docking are discussed in the section scoring function.

4. Recent developments in docking tools for nucleic acid

There are several types of small molecules that interact with the NAs and its
alternate forms. These can be subdivided into double stranded DNA/RNA (ds-DNA
and ds-RNA) binding, G-quadruplex DNA/RNA (G4-DNA and G4-RNA) binding, i-
Motif DNA/RNA (iM-DNA and iM-RNA) binding ligands and ligands interacting
with other DNA structures like hairpins [62, 63]. These ligands can also be classified
based on their mechanism of binding to the DNA, for example covalent binding and
intercalators. Several review articles have discussed these ligands in more details in the
past [64]. The lab-based experiments and further crystallization experiments are
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costly and time consuming and hence to assist with these efforts molecular modeling
and docking tools are used widely to find the most suitable ligand. Most of the
available molecular docking tools have been developed for protein-ligand docking.
These tools have been used for NA-ligand docking irrespective of the fact that these
tools do not consider the NAs as flexible moieties and thus do not consider the most
important feature of NAs. The other type of docking interaction that NA undergo is
with the proteins, Protein-NAs docking [65]. There are several algorithms that are
used to perform NA-protein docking as mentioned in the table number 1. Earlier
reports in NA-ligand docking dealt with finding correct docking conformations based
on RMSD to the native co-crystallized ligand. Autodock and Surflex were used to dock
several ligands like pentamidine, daunorubicin, distamycin and ellipticine in the
minor groove of the ds-DNA. It was observed that Surflex performed better over
Autodock in speed of operation and results with lower reference RMSD [66]. Several
algorithms have been published and are available for NAs-ligand docking like,
GRAMM, FTDock, 3D-DOCK, HEX, Dot and DoT2, HADDOCK, PatchDock,
SymmDock, ParaDock, GOLD, Glide [67], NPDcok and HDOCK (Table 1). The most
recent NA-ligand docking tools are NLDock, LigandRNA and DOCK 6.

The DOCK algorithm developed by the Kuntz lab has been traditionally a protein-
ligand docking program. However, the most recent development of the series is

Algorithms Acronym Principle Reference
Geometric Recognition Algorithm ~ GRAMM Rigid docking uses fast Fourier [68]
to identify Molecular surface transformation, shape-based
complementarity. complementarity.
Fourier Transform rigid-body FTDock Use and implementation of the [69]
Docking biochemical and electrostatic

information of the DNA and host

protein or DNA.
Initial grid-based shape 3D-Dock Featured backbone refinement, side [70]
complementarity search chain optimization and energy

calculations.
Spherical polar Fourier correlations HEX Docking pairs of proteins by using [71]

spherical polar Fourier correlations to
accelerate the search for candidate
low-energy conformations.

Rapid computation of the Dot and Dot2 Automated construction of improved  [72]
electrostatic potential energy (Daughter of  biophysical models based on molecular
between two proteins or other Turnip) coordinates, provides for flexibility

charged molecules. with grid size and allows improved

rescoring method. Uses Poisson-
Boltzmann methods.

High Ambiguity Driven protein- HADDOCK  Uses Ambiguous Interaction Restraints [73]
protein Docking (AIRs), takes up information form the
biophysical, biochemical interactions
found in the NMR or crystal structure.

Geometry-based molecular docking PatchDock Aims at finding good molecular shape [74]
algorithm complementarity.

Geometry-based docking algorithm SymmDock It aims to find symmetric cyclic [75]
for the prediction of a cyclically transformations.

symmetric complex
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Algorithms Acronym Principle Reference
ab initio protein-DNA docking ParaDock Geometric complementarity-based [76]
algorithm docking.

Protein-Nucleic acid docking NPDock It predicts the protein—nucleic acid [77]

structures interactions by clustering
the best-scored models and ranking
the refined solutions.

Hybrid docking HDOCK Template based modeling and free [78]
docking.

Genetic Optimisation for Ligand Gold Explores full range of ligand [79]

Docking conformational flexibility, loosely

bound water molecules in the binding
site or the active site.

RNA — ligand interactions DrugScore®™*

Uses experimental structures as [80]
reference and applies distance-
dependent pair potentials with

reference.

Molecular Recognition with a MORDOR Explores the electrostatic, van der [61]
Driven dynamics Optimize R Waals forces. Takes consideration of
dihedral angle, torsion angle, and bond
lengths. CHARMM or AMBER based
scoring functions and uses implicit
solvent models.

Binding mode predictions AutoDock Uses simulated annealing method for  [81-84]
AutoDock docking, flexible ligand and some
Vina extent of receptor flexibility.

Fully automated flexible docking Surflex Uses surface-based molecular [85]
similarity method to generate suitable
poses for molecular fragments.

RiboDock rDock It uses stochastic and deterministic [86]
search techniques and generates low
energy ligand poses.

Nucleic acid-Protein Docking NPDock Makes use of clustering of best score [77]
models.

Nucleic acid-Ligand Docking NLDock ITScore-NL scoring function used, it [87, 88]
makes the use of stacking and
electrostatic potentials.

RNA-Ligand docking LigandRNA  Makes use of grid-based algorithm and [89]
potentials derived from
experimentally solved RNA-ligand
complexes.

Iterative knowledge-based scoring ~ ITScore-NL  Physics based iterative methods used.  [88]

function for nucleic acid-ligand Makes use of atomic and distance
interactions dependent pair potentials. Uses
stacking interactions and electrostatic
effects.
Ranking-based sampling algorithm DOCK 6 Dominant electrostatics and charges [90]

from waters were considered.

Table 1.
List of NA-ligand docking tools with their names and principle of working and algorithms.
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DOCKS®6 which has the special feature to dock small molecules on the NAs. DOCK6
have significant progress in ligand orientation and conformational sampling which has
led to significant improvement in the accuracy of docking for the large and flexible
molecules over the NAs. It uses a sampling algorithm ‘anchor-and-grow’ which allows
a cluster-based pruning with controlled cut-off of 25 kcal/mol. This flexibility in the
upper limit allows for ranked orientation and improves prediction near the binding
site. DOCK 6 uses the MD parameters like the AMBER GB/SA and PB/SA for
predicting and ranking the poses and the effect of presence of metal ions and the
water molecules in the binding site. The NLDock developed by the Huang lab uses
ITScoreNL which is an iterative knowledge-based scoring function. The ITScoreNL
uses a statistical mechanics based interactive algorithm. It uses the information from a
training set of experimentally determined structures in the protein data bank (PDB).
This scoring function consist of atomic, distance dependent pair potential, stacking
interaction, and electrostatic effects. Results from ITScoreNL significantly improve
the performance in binding and affinity prediction for the NAs-ligand complex.
Recent advances and enrichment of the RNA structures in the PDB let to the devel-
opment of LigandRNA. It uses the 3D information from the available RNA structures.
A potential is obtained using the inverse Boltzmann scheme which considers the
ligand poses that are favorable and exhibit interactions fitting the maxima of the
statistical distribution of RNA-ligand atom contacts derived from the RNA-ligand co-
crystal structures. This method is dedicated to scoring and ranking ligand poses in
their RNA three-dimensional structure with correct intramolecular interactions while
maintaining high accuracy and precision. These recent tools have given larger
momentum to screening of ligands for NAs with better accuracy and speed.

5. Scoring functions

Molecular docking is quickly becoming a valuable technique in drug development
and molecular modeling fields. The precision of the selected scoring function, that can
lead and identify ligand positions when hundreds of potential ligand positions are
created, determines the effectiveness of molecular docking [11, 91, 92]. The scoring
function can also be used to forecast binding affinity and discover possible drug
candidates for a specific protein of interest, as well as to define the binding mode and
location of a molecule [93]. In lead optimization, scoring functions serve three main
purposes: first, they recognize the best location of a ligand’s binding to a protein based
on the scoring function; second, they estimate the absolute binding affinity between
the protein and ligand; and third, they perform virtual screening, which can identify
possible drug leads for a given target protein by finding a sizable molecule database.
[93].

The most recent scoring functions for protein-ligand interactions using a new
categorization that divides the scoring functions into force-field-based, empirical, and
knowledge-based SFs. Ongoing study has drastically enhanced the research for scor-
ing functions, particularly in protein-ligand interactions.

5.1 Physics-based scoring functions

Direct computation of the associations between both the atoms of a protein and a
ligand is possible using physics-based SFs. Owing to the consideration of solvation,
enthalpy, and entropy, physics-based SFs are suited to calculate binding free energy
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among proteins and ligands with significantly improved prediction performance than
other forms of SFs [94]. These are founded on solvation models, force fields, and
quantum mechanics techniques. The van der Waals and electrostatic interactions
between the protein and ligand atom pairs are added up in the conventional force
field-based SF, which considers the energy-contributing role of enthalpy, to estimate
the binding energy [95].

Pairwise atomic interactions between the ligand and protein are the focus of the
fundamental equation in the classical method. R is the distance between atomic centres,
q is the fractional charge on every atom, and e is the dielectric constant. The A and B
parameters are determined for every pair of various atom type combinations [96].

ligand protein
A= 3 3 | hp
bind = 3¢ 5
i1 j—1 Rij Rij eR;

5.2 Empirical scoring functions

Empirical SFs calculate a complex’s binding energy by adding up the essential
energy components for binding affinity, such as hydrophobic effects, hydrogen
bonds, steric conflicts, and so on. There are two study paths in empirical SFs. One
approach is to use a usually high labeled training data to optimize protein complexes;
the other is to pick appropriate energy terms using progressive parameters and
methodical selection of the target molecule [92, 97].

5.3 Knowledge-based scoring functions

Predicated on the reverse Boltzmann statistic concept, knowledge-based SFs com-
pute the appropriate pairwise potential in terms of 3D structures of a wide range of
complexes. The rate of distinct atom pairs at different distances is thought to be
connected to the interactions between two atoms, which translates the rate through
the distance-dependent potential of mean force [18]. When tried to compare to
physics and empirical SFs, knowledge-based SFs have the largest benefit in terms of
processing cost and prediction accuracy. Unfortunately, knowledge-based SFs have a
tough time locating the reference state [98].

5.4 DrugScoreRNA

Interactions of protein with protein, DNA, and ligand have all been studied using
knowledge-based techniques. DrugScoreRNA is the first knowledge-based technique
to scoring RNA-ligand complexes. Because of the small percentage of experimental
measurements of RNA-ligand combinations, it was thought that obtaining statistically
meaningful potentials was improbable [80].

The fact that the binding (free) energy landscape derived by such prospects is more
focused than in the context of all other knowledge-based SFs or AutoDock may be taken
into consideration as one of the factors contributing to DrugScoreRNA’s effectiveness in
docking [18]. This is anticipated to result in a quicker docking converging to a global
solution, or, put another way, a lower probability that the configurational search would
get stale in a local minimum. Reasonable correlation exists between experimental bind-
ing free energies and binding scores estimated by DrugScoreRNA. [99]
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5.5 RiboDock

The growing understanding of the significance of RNA in fundamental biological
processes has lately made them more appealing as prospective therapeutic targets. To
find small compounds that may selectively bind to identified locations in RNA mole-
cules and inhibit or otherwise modify their function, a greater number of scientifically
confirmed RNA three- dimensional structures were available. This allowed for
structure-based searches for these molecules [100]. The access to high resolution
structures of RNA-ligand complexes substantially facilitates the investigation of the
atomic intricacies of RNA-ligand contacts. Furthermore, it is difficult to determine the
physical structure of RNA and its interactions, and it is now unable to do so in a high-
throughput way. This is what inspired the creation of source code for simulating the
configurations of RNA-ligand complexes based on the known structures of RNA
targets. Many of these advancements were motivated by comparable strategies used
earlier for protein-ligand complex modeling [89, 100].

One of the first to develop a scoring function specifically for RNA-ligand com-
plexes was done in 2004 by Morley and Afshar. They added the empirical regression-
based tool RiboDock (or rDock) to their own high-throughput docking tool to handle
RNA-ligand structures [101]. This technique was, unfortunately, parameterized and
tested on a small sample size of just 10 RNA molecules. Ligand intramolecular,
intermolecular, site intramolecular, and external constraint factors are weighted
together to form the rDock master score function. The major terminology of impor-
tance is S, which stands for the RNA-ligand interaction score. According on the
provided ligand configuration, S™™ provides the ligand’s energy transfer. Similar to
S**®, this term denotes the comparative energy of the active site’s variable regions
[100, 101].

5.6 LigandRNA

As discussed in the above section, the importance of RNA in fundamental biolog-
ical processes has grown the scientific community interest in the research area of
Nucleic Acid-Ligand docking. Another Scoring function developed for the similar
function was LigandRNA [89].

The RNA-ligand complexes were computationally solved using the LigandRNA
approach, which uses a grid-based algorithm and a knowledge-based SFs obtained
from ligand-binding domains. LigandRNA requires two files as inputs: an RNA recep-
tor file and a ligand poses file. It produces a list of poses ranked by their score as an
output [100]. The potential is calculated using the inverse Boltzmann method, which
assumes that only ligand poses with interactions that meet the maximum of the
statistical distribution of RNA-ligand atom contacts generated from empirically
established structures of RNA-ligand complexes are advantageous. Thus, according to
their value, the supplied ligand poses are sorted, and this score would be used to assess
the relative effectiveness of binding [89].

5.7 MM/PBSA and MM/GBSA

The molecular mechanics energies combined with the Poisson-Boltzmann or gen-
eralized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) are
the popular techniques for estimating the free energy of the binding of ligand
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molecules to the target protein. In MM/PBSA, the free energy of a state, that is, P, L or
PL in the following equation, is estimated from the following sum [102].

G= Ebnd + Eel + EvdW + Gpol + an - TS.

Epna. Bonded (bond, angle and dihedral) energy.

E: Electrostatic Energy.

E,qw: van der Waals interactions.

Gpor: polar contribution to the solvation free energy.

Gnp: non-polar contribution to the solvation free energy.

To calculate the MM/GBSA free energy, the system of relevance is first modeled
either using Metropolis Monte Carlo or molecular dynamics (MD), with pose is being
obtained at set intervals and for each pose the free energy is calculated by the above
equation. The continuum-solvation technique, the dielectric constant, the charges, the
sample selection, and the entropies have a significant impact on the outcomes. The
approaches frequently exaggerate the differences between different ligand groups
[103]. In actual use, it frequently produces outcomes of middling quality, frequently
outperforming docking, and scoring. However, because of the findings’ substantial
reliance on the continuum solvation used, either the absolute affinities or the meth-
odology is invalid [103, 104].

5.8 Molecular recognition with a driven dynamics optimizer (MORDOR)

The fixed nature of the protein target is drawback in most of the docking tools. To
overcome this and to explore the dynamic nature of the target Molecular Recognition
with a Driven dynamics Optimizer (MORDOR) tool was developed. MORDOR allows
induced-fit type of docking algorithm. A new RNA stabilizing loop can be formed by
the ligand, which could move bases [105].

MORDOR uses a unique conformational field search technique to achieve this goal,
enabling a productive thorough search while docking. Utilizing a driving force to
move the ligand, this method combines molecular minimization technique. By apply-
ing an extra RMSD kind of force, the ligand explores the receptor surface after
beginning from any pose in and around the receptor. It is crucial to research induced
fit with MORDOR when docking proteins, especially RNA. Drugs do not often bind a
conventional form of nucleic acid, according to the architectures of nucleic acid-drug
complexes. Also, more control over the docking process is provided by the allowance
of an infinite number of restraints. Contrarily, it seems from known drug-nucleic acid
binding structures that the small molecule ligands frequently replace bases, leading to
a local restructuring of the nucleic acid. A drug development process will have a far
better chance of being successful if flexible docking for RNA is used [61, 105].

5.9 Dock-RNA

Numerous biological activities, including the production and control of gene
activity, depend on nucleic acid-ligand interactions. As a result, nucleic acid molecules
like RNAs have grown in importance as pharmacological targets and knowing the
structural characteristics of RNA-ligand complexes is essential to deriving treatment
strategies. The nucleic acid-ligand docking method is divided into two stages: The
model chooses a preliminary set of potential poses during the first stage using a
different computer algorithm for the Born radiuses in the electrical charges; with in
second stage, a stringent scoring function is utilized to arrange the poses to identify
the top molecules [106].
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The scoring function of the molecular docking program is dependent on the shift
in free energy caused by RNA-ligand binding. It aggregates comparable ligand poses
into clusters based on geometrical similarity and ranks the grouped poses based on the
binding affinity. Because it separates itself from other models by sampling all potential
interaction site and poses globally, the findings above highlight the relevance poses.
Unfortunately, the RLDOCK approach is difficult to apply to big target and ligand
sets. The time-consuming selection of the complex formation produces prohibitively
small processing effectiveness of the approach in complexes with a big RNA such as
ribosomal RNA or ligands with the more than 12 rotatable bonds [107, 108].

6. Role of machine learning and artificial intelligence

Machine learning (ML) specially the Deep learning methods (DL) and Artificial
intelligence (AI) has rapidly developed and is being used in drug discovery. ML in
drug discovery is used to improve the existing scoring functions or to develop a new
scoring function for virtual screening studies. The existing scoring functions can be
improved by refining their empirical function’s weights. Most of the ML based scoring
function improvements has been seen in the protein-ligand docking and their virtual
screening domain. The ML methods being used are Random Forest methods [109],
Gradient boosting trees method [110], Support vector machine methods [111], Multi-
layer perceptron methods [112], Convolutional neural network methods [113], and
Graph neural network [114]. The scoring functions for NAs-ligand interactions can be
classified into force-field based, empirical, knowledge-based and machine learning
based. The machine learning based scoring functions can capture intrinsic nonlinear-
ities in the training set without imposing a predetermined functional form. The most
important feature that separates the ML methods from others is that ML maps the
ligands to a potential energy landscape, it is inherently flexible, and the mapping
relationship works without the addition of extensive physicochemical knowledge.
However, the use of ML in NAs binding ligands discovery comes with certain chal-
lenges as well. First, the mapping relationships generated by ML are not always
interpretable and the second, ML models for NAs could find difficult to make accurate
predictions for complexes out of the training sets.

For the NA-ligand complex interactions two ML based scoring functions were
recently developed, RNAPoser [115] and AnnapuRNA [116]. The RNAPoser uses a set
of 80 RNA-ligand experimental structures as dataset and investigates the ‘nativeness’
of the RNA-ligands poses. This program uses machine learning methods to train a set
of pose classifiers that would estimate the position of the ligands in the experimental
structures. These poses are defined as fingerprints which are encoded as local RNA
environment surrounding the ligand. This method uses the leave-one-out training and
testing approach where about 80% of the native poses were recovered within 2.5 A.
The classification is done based on ranking of ligands and scoring from machine
learning classifiers, which were able to recover the native like poses. The validation set
for the method returned recovery of native poses for more than 60% of the cases.
These were found to be better than the poses with higher docking scores. Another
recent development in the NA-ligand docking improvement is AnnapuRNA. It is a
machine learning-based statistical scoring function which can evaluate the quality of
RNA-Ligand complex structure predicted by a computational docking program and
thus help in validation of the docking results. It uses the information like the initial
ligand conformation, the docking program and the scoring function used by the
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docking program. The training set is derived from the experimental data available on
the PDB and it uses the kNN (k-Nearest Neighbors) and Deep Learning (multi-layer
feedforward artificial neural network) as ML algorithms. This program supports a
various docking program like the AutoDock, AutoDock Vina, Dock6, rDock, iDock,
LigandRNA, and several other NAs specific programs.

7. Conclusion

In this chapter we have overviewed various important aspects in development of
small molecule inhibitors for NAs and various docking software specific and non-
specific for NAs-ligand docking. We have also reviewed various docking programs,
algorithms and scoring functions, their advantages and lacune and challenges in the
discovery of novel NAs binding ligands. Until recently most of the algorithms were
focused on protein-ligand docking but now slowly programs specific for NAs are
appearing in the molecular docking space. The progress in ML and Al has led to an
advantage for development of NA specific algorithms. However, there is lot of scope
for development of NA-docking specific programs, structural variations of NA also
pose a challenge for the new programs. However, it is possible to convert these
challenges into opportunities as the need for better NA targeting ligands are high in
demand specifically due to the resurgence of viral infections and other infectious
disease.
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