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Abstract

Today, we are living in a polymeric era where thousands of daily used products are
manufactured from some polymeric materials with different tasks and under a wide
range of ambient conditions, including time duration of loading and working condition
temperature. This leads to focusing light spot on behavior of such specific materials and
investigating the strain associated with the applied stress to understand both of creep and
stress relaxation behavior of the loaded polymeric components. Hence, this chapter deals
with the estimation of induced strain allied with the applied force on a polymeric material
via establishing the so-called mechanical equivalent models starting from the simple
elastic element (spring with amodulus of elasticity E), simple viscous element (damper or
dashpot with fluid viscosity η), Maxwell model, Voigt model, modified Maxwell model,
modified Voigt model, and Maxwell-Voigt model. The theoretical analysis was built on
derivation of the prompted deformation, as a function of time in each of the employed
models, as a result of the applied external load (force) and then by depending on Hook’s
law transforming the gained expressions into stress (σ) and strain (ε) notation, followed
by comparing the obtained equation with the general formula of the Hook’s law to find
exact values of the constant and as coefficients of the stress and strain. Final theoretical
analysis showed that Maxwell’s modified model was the best describing behavior of a
loaded polymeric material to some extent followed by the other models.

Keywords: polymers, mechanical equivalent models, Maxwell model, Voigt model,
creep, stress relaxation

1. Introduction

Rheology is a branch of physical sciences concerned in the wide sense with the
deformation and flow of materials. Whereas, theoretical rheology aims to establish the
general laws of rising and development in time of deformation and investigate the
general properties of processes on a strictly mathematical basis. Applied rheology
establishes a bridge between the theoretical results and practical applications by
introducing certain additional simplifying assumptions. The rheological properties of
real materials are determined qualitatively and quantitatively by experimental
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rheology, which supplies the theory with new ideas and constitutes an ultimate basis
of its verification [1]. Observation of the physical facts and their superficial descrip-
tion, without looking for deeper causes of observed phenomena, is essential to for-
mulate a phenomenal approach in rheology. However, the final of rheology, as a
science, is to establish the relation of physical causes given conditions of deformation
and flow, to the known properties of the constituent particles of materials aspects of
rheology based on the nature of inter-atomic forces and the structure of the matter.
The concerns of rheology, with problems of flow and deformation of materials, its
ranges of interest are conventional, thus any kind of physical effect, which form their
definition is instantaneous (time-dependent) are considered from a rheological point
of view as particular or limiting cases. Especially, this is concerned with elastic and
plastic types of deformation. The classical theory of elasticity is founded on a linear
dependence between stress and strain and its time independence. Thus, when a loaded
elastic body exhibits an instantaneous response to the applied stress and if the physical
causes are removed, then the strain is fully recoverable. The assumption about the
smaller elastic strain allows us to apply the superposition principle for both mechan-
ical variables, the stress and the strain [2]. However, in investigating the mechanical
behavior of different conditions, behave themselves in accordance with the assump-
tions stated for elastic body. For example, when applying constant stress for an
extended time intervals, the resulting strain increases in time. On the other hand,
constant strain find a time-dependent decrease in stress. Thus, it is found that
mechanical properties of certain groups of materials are variable with time [3]. More-
over, it states that there is no one-to-one correspondence between stress and strain as
for an elastic body and at an arbitrary time-instant. The mechanical variables depend
on the past history of straining and stressing, respectively.

2. Creep and stress relaxation

In particular, the viscoelastic materials have the ability to increase their deforma-
tion in time by constant stress is called creep process, and the property of stress drop-
in time by a constant strain is the stress relaxation process, see Figure 1.

Figure 1.
(a) Creep and (b) stress relaxation mechanical behavior.
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Both of the above definitions are used in a narrower sense rather to specify a two-
time dependent physical function that describes the characteristic features of visco-
elastic behavior relaxation and creep. In general, both phenomena occur at any vari-
able stress and strain even simultaneously. In describing the rheological phenomena
by means of mathematical formulation, we usually follow some general principles
which are in accordance with our physical experience, on the other hand for particular
materials we make some constitutive assumptions on an experimental basis [4]. What
are restrictive conditions on the possible rheological processes? The physical relations
obtained in such a way are so-called constitutive equations or equations of state in
more or less general way stress and strain as the physical causes and the physical effort
respectively. The aim of deriving the constitutive equations is to characterize and
classify as adequately as possible the real material properties known from the experi-
mental data. The constitutive equation must be in general in agreement with the two
fundamental principles which secure its invariance. The first one is the principle of
objectively material properties. It simply states that the material properties are objec-
tive and cannot be dependent on the observer and lies point of view, no matter how
lies position is. Thus, according to the principle, if it is found that certain rheological
processes are described by a constitutive equation, then every process equivalent to it
is compatible with the same constitutive equation two equivalence of processes are
stated on the basis of the transformation relation of space and time [5].

In order to determine the relation of stress to a rheological process, we state in
agreement with physical experience the local character of stress. Thus, the stress at a
material particle depends on what happens only in an arbitrary small vicinity of the
particle. The distant parts of the body do not have a direct influence on the value of
stress at the particle considered. Further, we can use causality principle. It expresses
the fact that any physical process, at an arbitrary time-instant, may depend on what
occurred in all past instants, that is, on the past history of happenings only. These two
principles give rise to the concept of determinism for stress. According to this princi-
ple, the stress at a material particle in an arbitrary time is determined by the past
history of the rheological process in an arbitrary small vicinity of the particle. In
certain cases, we also assume some restrictive conditions on the possible motion
during a rheological process. These conditions are constitutive restraints connected
with the general features of geometry of the possible motion, for example the
assumption of in compressibility of a media.

The condition of incompressibility implies that every possible motion is
isochoric, that is, the deformational motion of rheology of a body occurs with a
constancy of volume. Thus, the density of the body does not change during the
process considered. Constitutive equations are presented in different mathematical
formulation for instance in the form of differential and integral equations and as
functional.

In general, the differential form of constitutive equation contains strain, strain
rate, stress, stress rate, and higher derivatives of both strain stress with respect to
time. It is also containing some explicit functions of time [3]. In the last case, the
physical properties of the material are variable with time independently of existing
stress state and must be given in advance. If there are some temperature changes, the
influence of which should be taken into account in the constitutive equation may
appear explicitly, temperature as a new variable [6]. Thus, in general, the differential
form of a constitutive equation contains may be written in form

f ε, _ε, €ε,… … ,σ, _σ,€σ,… … t timeð Þ,T temp:ð Þð Þ ¼ 0 (1)
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If the temperature T does not appear in the equation, the rheological process is said
to be isothermal; on the other hand, if the time-variable t disappears explicitly in the
equation, then the differential equation with constant coefficients.

3. Polymers

Polymers exist in nature in such forms as wood, rubber, jute, hemp, cotton, silk,
wool, hair, horn, and flesh. In addition, there are countless man-made polymeric prod-
ucts, such as synthetic fibers, engineering plastics, and artificial rubber. In certain
aspects, the deformation of polymeric solids bears a strong resemblance to that of metals
and ceramics. Polymers become increasingly deformable with increasing temperature,
as witnessed by the onset of additional flowmechanisms [7]. Also, the extent of polymer
deformation is found to vary with time, temperature, tress, and microstructure, consti-
tuting parallel deformations for fully crystalline solids. Furthermore, time–temperature
equivalence for polymeric deformation is indicated, which is strongly reminiscent of the
time–temperature parametric relations that will be discussed the basic features of the
polymeric structure that dominate flow and fracture properties will be also discussed.

4. Viscoelastic response of polymers

The deformation process of manymaterials depends to a varying degree on both time-
dependent and time-independent processes. It is known that when the test temperature is
sufficiently high, a test bar would creep with time under a given load. Likewise, were the
same bar to have been stretched to a certain length and then held firmly, the necessary
stress to maintain the stretch would gradually relax such response is said to be viscoelas-
tic. Since the glass and melting temperatures and most of the polymeric materials are not
much above ambient (and in fact may be lower as in the case of natural rubber) these
materials exhibit viscoelastic creep and stress relaxation phenomena at room temperature
(25°C). When the elastic strain and viscous flow rate are small (approximately 1 up to 2%
and 0.1, respectively) the viscoelastic strain may be approximately by:

ε ¼ σ f tð Þ Linear Viscoelasticity (2)

That is, (stress/strain) ratio is a function of time only. This response is called linear
viscoelasticity and involves a simple addition of linear elastic and linear viscous
(Newtonian) flow components [8].

When the stress–strain ratio of a material varies with time and stress, then:

ε ¼ g σ, tð Þ Nonlinear Viscoelasticity (3)

Stress–strain ratio is a function of time only = Linear viscoelasticity.
Stress–strain ratio is a function of time and stress = Nonlinear viscoelasticity.
The viscoelastic response is nonlinear. A comparison of creep behavior between

metals and polymers is clearly shown in Table 1.
On the basis of a simple creep test, it is possible to define a creep modulus as in the

next equation:

Ec tð Þ ¼
σo

ε tð Þ
Creep modulus (4)
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where:
Ec tð Þ: Creep modulus as a function of time.
σo: Constant applied stress.
ε tð Þ: Time-dependent strain.
Now, a relaxation modulus Er tð Þ is defined as:

Er tð Þ ¼
σ tð Þ

εo
Relaxation modulus (5)

where:
Er tð Þ: Relaxation modulus as a function of time.
σ tð Þ: Time-dependent stress.
εo: Constant induced strain.
Both Ec tð Þ and Er tð Þ moduli are varying with time as a time-dependent deforma-

tion; thus, the designer of a plastic component must look beyond the basis tensile test
data when coupling the deformation response of a polymeric material. For example,
for εcritical there is a linear relationship σ ¼ Eεcritical but this material will creep, that is,
the level εcritical will increase with time, so to account for this additional deformation,
the designer makes use of isochrounus stress–strain curves derived from creep data.

5. Mechanical models analogy

There is a strong similarity between behavior of some specific mechanical compo-
nents, including (spring—elastic element and damper—viscous element) and the so-
called viscoelastic materials, including polymerics, so it is better to define the basic
two elements:

Spring as an elastic element, with stiffness K as indicated in Figure 2.
Damper is representing a viscous element with damping constant C exactly as

illustrated in Figure 3 below.

Creep behavior Metals Polymers

Linear elastic No Sometimes

Recoverable No Partially

Temperature range High temperature above 0:2 Th All temperatures above 200°C

Table 1.
Metals and polymers creep behavior comparison.

Figure 2.
Elastic element (linear spring) with stiffness constant K.
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Based on alternative layout and assembly of the above two mentioned elements,
there will be many equivalent models but the most popular equivalent mechanical
models are listed below [9]:

1.Maxwell model

2.Voigt model

3.Modified Maxwell model

4.Modified Voigt model

5.Maxwell-Voigt model

6. Deformation process in polymeric solids

The following mathematical relationships are describing the mutual dependence of
the main governing parameters, including the applied stress, the associated strain, and
Young’s modulus, in both cases of time-dependent and independent.

Tensile test Shear test

Case (a) ε ¼ σ
E γ ¼ τ

G Time-independent behavior (6)

Case (b) ε ¼ σ
η

γ ¼ τ
η

Time-dependent behavior (7).

Where:
ε and γ: Tensile and shear strain rates.
σ and γ: Applied tensile and shear stresses.
η: Fluid viscosity in terms of stress-time.
It is better to use viscosity η instead of the damping coefficient C in the coming

analysis. And the viscosity η is directly proportional to the ambient temperature T,
(η∝T) according to the Arrhenius-type relation as in the following equation:

η ¼ AeΔHRT Arrhenius equation (6)

Where:
ΔH: Viscous flow activation energy at a particular temperature.
T: Absolute temperature.
R: Universal gas constant.

Figure 3.
Viscous element (damper) with damping coefficient C.
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A: Pre-exponential factor.
The viscosity depends on time, that is, at t = 0, the viscosity is extremely high,

while at t goes to infinity, is small. In other words, deformation is purely viscous upon
loading (t = 0) and is rigid to the dashpot consequently there is no strain associated
with the same with time the viscous character of the dashpot element becomes evident
as strain developed that is directly proportional to time. When the stress is removed,
this strain remains. Now when the spring and dashpot are in series, as shown in
Figure 4 below, called Maxwell model, the mechanical response of the material
possesses both elastic and viscous components [10], so the model is shown in the
figure. Note that all the strains are recovered but the viscous strains arising from creep
of the dashpot remain, since the elements are in series, the stress on each is the same
and the total strain or strain rate is determined from the sum of the two components.
Hence,

dε

dt
¼

σ

η
þ

1

E

dσ

dt
(7)

For stress relaxation conditions

ε ¼ εo and
dε

dt
¼ 0, (8)

σ

η
þ

1

E

dσ

dt
¼ 0 (9)

1

E

dσ

dt
¼ �

σ

η
(10)

and by using the separation of variables procedure:

dσ

σ
¼ �

E

η
dt (11)

ðσ

σo

dσ

σ

dσ

σ
¼ �

ðt

0

E

η
dt (12)

Figure 4.
Maxwell mechanical model (spring and dashpot in series).
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ln σjσσo ¼ �
E t

η
(13)

ln
σ

σo
¼ �

E t

η
(14)

σ tð Þ ¼ σo e
�Et

η (15)

σ tð Þ ¼ σo e
�t

t (16)

εTotal ¼ εS ¼ εD (17)

σTotal ¼ σS þ σD (18)

σTotal tð Þ ¼ Eεþ η
dε

dt
(19)

Where t is the relaxation time defined by η

E.
The extent of stress relaxation for a given material will depend on the relationship

between and, so when >>, the material behaves elastically such that, in other words,
when the spring and dashpot elements are combined in parallel as shown in Figure 5.
(Voigt mechanical model), this unit predicts a different time-dependent deformation
response. First, the strains in the two elements are equal and the total stress on the pair
is given by the sum of the two components.

For creep test σTotal tð Þ ¼ σo and after intefration, yields:

ε tð Þ ¼
σo

E
1� e�ttð Þ (20)

The strain experienced by the Voigt model is shown in Figure 6. The absence of
any instantaneous strain is predicted from this equation ε tð Þ ¼ σo

E 1� e�ttð Þ and is
related in physical sense to the infinite stiffness of the dashpot at t = 0. The creep
strain seems to rise quickly thereafter but reaches a limiting value of σo

E associated with
the full extension of the spring under that stress. Upon unloading, the spring remains
extended but now exerts negative stress on the dashpot. In other manner, the viscous
strains are reversed, and in the limit when both spring and dashpot are unstressed, all
the strains have been reversed. Consequently, the Voigt and the Maxwell models
describe different types of viscoelastic responses [8].

Figure 5.
Voigt mechanical model (spring and dashpot in parallel).
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A some more realistic description of polymer behavior is obtained with a four
elements model consisting of Maxwell and Voigt models in series precisely as shown
in Figure 6.

By combining the above three last equations, it can be seen that the total strain
experienced by this model may be given by:

ε tð Þ ¼
σ

E1
þ

σ

E2
1� e�ttð Þ þ

σ

η
t, (21)

which takes account of elastic, viscoelastic, and viscous strain components,
respectively.

The temperature dependence of the mechanical response can be modeled by
appropriate adjustment in dashpot and spring values, that is, [11], lower spring stiff-
ness and dashpot viscosity levels for higher temperature and vice versa for lower
temperature conditions. Figure 7 illustrates in detail the induced strain as a function
of the applied stress and loading time duration for the four models [11].

7. Equivalent mechanical models analysis

Simply, each mechanical component under direct stress, such as tensile or com-
pressive stresses, will exhibit either elastic (temporary), Plastic (permanent), or
recoverable (viscoelastic) deformation, so the following paragraphs will shed spotlight
on the analogy (similarity) between behavior of the five equivalent mechanical
models and an actual case of a polymeric (viscoelastic) component under direct load
as illustrated below, so let us start with first one:

7.1 Maxwell model

Figure 8 shows a schematic representation for Maxwell model which contains two
elements spring (E and Young’s modulus) and dashpot (fluid viscosity in terms of
stress- time) in series under effect of external force F, applied in two inline opposite
ends, and for analysis, there are three identifying points A, B, and C.

Figure 6.
Maxwell-Voigt mechanical model.
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Figure 7.
Stress-strain time diagram for mechanical analogs.

Figure 8.
Simple Maxwell model.
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Hence, the required parameter is the total deformation or extension δ that occurs
in the whole length of this model, so

δ ¼ δAB þ δBC (22)

Where:
F: Applied force to a linear spring and a dashpot in series to form a Maxwell model.
E: Modulus of the spring K ¼ ELð Þ:
η: Dynamic viscosity of the dashpot
δ: Extension.
Now, by differentiating the above equation with respect to time, using D-operator

method yields:

Dδ ¼ DδAB þDδBC (23)

For springs, Hooks law applies as follows:

F ¼ KδAB (24)

F ¼ ELδAB (25)

DF ¼ EL DδAB (26)

DδAB ¼
DF

EL
(27)

For viscous element or dashpot, Newton’s law of viscosity applies as follows:

F ¼ η L DδBC (28)

By employing D-operator method, yields:

Dδ ¼
DF

EL
þ

F

ηL
(29)

If (A) denotes some characteristic cross-sectional dimension, where the force F is
applied and Lo is the original length of the Maxwell unit, then:

σ ¼
F

A
(30)

σ ¼
F

L2 (31)

and

ε ¼
δ

Lo

(32)

ε≃
δ

L
(33)

σ þ
η

E

� �

σ ¼ ηε (34)
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εL ¼
σ L2

EL
þ
σL2

ηL

� �

∗
η

L
(35)

F ¼ σ L2 ) DF ¼ σL2 (36)

δ ¼ ε L ) Dδ ¼ εL (37)

ηε ¼
η

E
σ þ σ (38)

Here, the dot () notation has been used in place of the D-operator. A comparison of
the above first and last equations shows that the latter expression for Hook’s law.

Where:
ao ¼ 1, a1 ¼

η

E, bo ¼ 0, b1 ¼ η

and the remaining constants are zeros, so

ao þ a1
∂

∂t
þ … …

� �

σ ¼ bo þ b1
∂

∂t
þ …

� �

ε (39)

aoσ þ a1
∂σ

∂t
þ … … ¼ boεþ b1

∂ε

∂t
þ … (40)

aoσ þ a1σ þ … … ¼ boεþ b1εþ … (41)

1σ þ
η

E
σ þ … … ¼ 0εþ ηεþ … (42)

now by comparing the above two equations, yields:

ao ¼ 1,a1 ¼
η

E
,bo ¼ 0,b1 ¼ η

and the remaining constants are zeros.

7.1.1 Maxwell boundary conditions

It is noted that, for modulus of elasticity approaches infinity (E ) ∞), the general
equation for Maxwell model will be reduced to a simple dashpot only as indicated in
the following set of equations:

Dδ ¼
DF

EL
þ

F

ηL
(43)

Dδ ¼
F

ηL
for a dashpot only (44)

Whereas, for fluid viscosity approaches infinity (η ) ∞), in the general equation
of Maxwell model [12], this specific equation will be reduced to a simple spring only
exactly as illustrated in the following mathematical equations:

Dδ ¼
DF

EL
þ

F

ηL
(45)

Dδ ¼
DF

EL
(46)
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δ ¼
F

EL
for a spring only (47)

7.2 Voigt model

This model has two elements, elastic element (spring) and viscous element (dash-
pot), connected in parallel, as shown in Figure 9.

Spring (E) and dashpot (η) in parallel, so

F ¼ FS þ FD (48)

FS ¼ ELδ (49)

FD ¼ ηLDδ (50)

where δ = total extension of either element of Voigt model, thus the above equation
of the applied force will be in the following form:

F ¼ ELδþ ηLDδ (51)

This equation is representing the characteristic equation of the Voigt model, and
now, by analogy, it may be rewritten as follows:

F ¼ ELδþ ηLDδ (52)

σ ¼ Eεþ ηε (53)

σ ¼
F

L2 , δ ¼ ε L and Dδ ¼ εL (54)

F

L2 ¼
EL

L2 ∗ ε Lþ
ηL

L2 εL (55)

σ ¼ Eεþ ηε (56)

Now, by comparing the obtained equation with the standard formula, yields:

aoσ þ a1σ þ … … ¼ boεþ b1εþ … (57)

1 σ þ 0σ þ … … ¼ Eεþ ηεþ … (58)

Figure 9.
Simple Voigt model.
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ao ¼ 1,a1 ¼ 0,bo ¼ E,b1 ¼ η

and the remaining constants are zeros.

7.2.1 Voigt boundary conditions

Similarly, in Voigt model, as the modulus of elasticity approaches zero (E ) 0),
the governing equation will be in the following form:

F ¼ ELδþ ηLDδ (59)

F ¼ ηLDδ for a dashpot only (60)

and on the other side if the fluid viscosity is zero (η ) 0), then the resulting
equation is:

F ¼ ELδþ ηLDδ (61)

F ¼ ELδ for a spring only (62)

In these cases, the Maxwell and Voigt models are degenerating into the simplest
elements. Thus, it is required to establish a nondegenerate model which is a little more
complex than the two previous models considered. The coming sections will deal with
a modified model for both Maxwell and Voigt.

7.3 Modified Maxwell model

This modified model is shown in Figure 10 below and it consists of three elements;
they are:

• Elastic element (spring with modulus of elasticity)

• Elastic element (spring with modulus of elasticity)

• Viscous element (dashpot with fluid viscosity)

Figure 10.
Modified Maxwell model.
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The applied force on the outer terminals of this model is F, but this overall force
will be divided into two sub-forces f 1 and f 2.

F ¼ f 1 þ f 2 (63)

f 1 ¼ E1Lδ and Df2 ¼ E1LDδ (64)

and in return to the general governing equation for Maxwell model, which is exactly
similar to the right-hand side of the Maxwell modified model, as shown in Figure 11.

Dδ ¼
DF2

E2L
þ

F2

ηL
(65)

Now, it is better to eliminate both of f 1 and f 2 in order to get an analysis of the
induced stresses and the associated strains as follows:

f 1 ¼ E1Lδ (66)

Df1 ¼ E1LDδ (67)

Df2 ¼ E2LDδ�
E2

η

� �

f 2 (68)

F ¼ f 1 þ f 2 (69)

DF ¼ Df1 þDf2 (70)

DF ¼ E1LDδþ E2LDδ�
E2

η

� �

f 2 (71)

DF ¼ E1LDδþ E2LDδ�
E2

η

� �

F � E1Lδð Þ (72)

DF ¼ E1 þ E2ð ÞLDδ�
E2

η

� �

F þ
E1E2L

η
δ (73)

DFþ
E2

η

� �

F ¼ E1 þ E2ð ÞLDδþ
E1E2L

η
δ (74)

Figure 11.
Modified Voigt model.
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DFþ
E2

η

� �

F ¼ E1 þ E2ð ÞL2εþ
E1E2L

2

η
ε

� �

η

L2E2

(75)

σ ¼
F

L2 ) σ ¼
DF

L2 (76)

ε ¼
δ

L
) δ ¼ ε L ) Dδ ¼ ε L (77)

f 2 ¼ F � f 1 (78)

f 2 ¼ F � E1Lδ (79)

η

E2

� �

σ þ σ ¼
E1 þ E2

E2

� �

ηεþ E1ε (80)

σ þ
η

E2

� �

σ ¼ E1εþ
E1 þ E2

E2

� �

ηε (81)

aoσ þ a1σ þ … … ¼ boεþ b1εþ … (82)

1 σ þ
η

E2

� �

σ ¼ E1εþ
E1 þ E2

E2

� �

ηε (83)

By comparing the last two main equations, yields:

ao ¼ 1,a1 ¼
η

E2

� �

,bo ¼ E1,b1 ¼
E1 þ E2

E2

� �

η (84)

and the other constants and terms with higher orders are zeros.
The modified Maxwell model has the advantage over time period and is avoided in

the separate spring element E1, whereas it is permitted to occur in the left-hand branch
of the sketch in Figure 10. Such limited relaxation behavior is typical of polymers and
elastomers subjected to a long-duration stress environment, so that the modified Max-
well model (although still highly simplistic in terms of actual material performance)
depicts the nature of viscoelastic behavior in a much more realistic manner [13].

7.4 Modified Voigt model

The full detail sketch for the modified Voigt model is shown in Figure 11. Where
this model is consisting of the following elements:

• Elastic element (spring with modulus of elasticity E1)

• Elastic element (spring with modulus of elasticity E2)

• Viscous element (dashpot with fluid viscosity η).

And the external applied force is denoted by F.
Based on the given layout, the total deformation along the external terminals is δ

and may be expressed in terms of the sub-deformation components as shown in the
coming mathematical equation:

δ ¼ δ1 þ δ2 (85)
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also, for the spring element E1, there is:

F ¼ E1Lδ1 (86)

and for simple Voigt model:

F ¼ E2Lδ2 þ ηLDδ2 (87)

Now, by eliminating δ1 and δ2 from the above equation, yields:

δ ¼ δ1 þ δ2 (88)

Dδ ¼ Dδ1 þDδ2 (89)

δ2 ¼ δþ δ2 (90)

δ2 ¼ δþ
F

E1L
(91)

F ¼ E1Lδ1 ) DF ¼ E1LDδ1 ) Dδ1 ¼
DF

E1L
(92)

F ¼ E2Lδ2 þ η LDδ2 (93)

η LDδ2 ¼ F � E2Lδ2 ) Dδ2 ¼
F

ηL
�
E2

η
δ2 (94)

Dδ ¼
DF

E1L
þ

F

η L
�
E2

η
δ2 (95)

Dδ ¼
DF

E1L
þ

F

η L
�
E2

η
δ�

F

E1L

� �

(96)

Dδ ¼
DF

E1L
þ

F

η L
�
E2

η
δþ

E2

E1ηL
F

� �

∗E1L (97)

E1LDδ ¼ DFþ
E1

η
F �

E1E2L

η
δþ

E2

η
F (98)

E1LDδ ¼ DFþ
E1 þ E2

η

� �

F �
E1E2L

η

� �

δ (99)

Now, by using separation of variables, yields:

DFþ
E1 þ E2

η

� �

F ¼ E1LDδþ
E1E2L

η

� �

δ (100)

δ ¼ ε L ) Dδ ¼ ε L (101)

DFþ
E1 þ E2

η

� �

F ¼ E1L
2εþ

E1E2L
2

η

� �

ε (102)

DFþ
E1 þ E2

η

� �

F ¼ E1L
2εþ

E1E2L
2

η

� �

ε

� �

∗
η

E1 þ E2ð ÞL2 (103)

F

L2 þ
η

E1 þ E2

� �

DF

L2 ¼
E1E2

E1 þ E2

� �

εþ
E1η

E1 þ E2

� �

ε (104)
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σ þ
η

E1 þ E2

� �

σ ¼
E1E2

E1 þ E2

� �

εþ
E1η

E1 þ E2

� �

ε (105)

aoσ þ a1σ þ … … ¼ boεþ b1εþ … (106)

Now, by comparing the last two equations, yields:

ao ¼ 1,a1 ¼
η

E1 þ E2

� �

,bo ¼
E1E2

E1 þ E2

� �

,b1 ¼
E1 η

E1 þ E2

� �

(107)

And the other higher order terms are zeros.
In return to these two equations,
The first one is from the modified Maxwell model analysis:

DFþ
E2

η

� �

F ¼ E1 þ E2ð ÞLDδþ
E1E2L

η
δ (108)

and the second one is from the modified Voigt model analysis:

DFþ
E1 þ E2

η

� �

F ¼ E1LDδþ
E1E2L

η

� �

δ (109)

These two last equations are having essentially the same form, although the con-
stants vary depending on which model is finally selected, so the general form of these
equations is:

DFþ PoF ¼ q1 Dδþ qoδ (110)

These representations of viscoelastic behavior by either the modified Maxwell or
modified Voigt model are identical. Both modified models are having two springs and
one viscous element. Alternatively, it is possible to use one spring and two viscous
elements, which would yield the following form of force deflection equation as shown
in the following equation:

DFþ PoF ¼ q2 D
2δþ q1Dδ (111)

7.5 Maxwell-Voigt model

This specific model consists of Maxwell model connected in series with Voigt
model as illustrated in Figure 12. Where the main components are:

Elastic element (spring with modulus of elasticity E1)

• Elastic element (spring with modulus of elasticity E2)

• Viscous element (dashpot with fluid viscosity η1)

• Viscous element (dashpot with fluid viscosity η2)

Let δ1 and δ2 represent the induced deformation in the Maxwell and Voigt ele-
ments, respectively, as a result of applying the external force F to both ends of the
compound model [14], Figure 12, then:
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δ ¼ δ1 þ δ2 (112)

where the δ is the total elongation with length dimension. It is required to analyze
this compound model by considering each model alone, as indicated in Figure 13.

Figure 12.
Maxwell-Voigt model.

Figure 13.
Maxwell model in series with Voigt model.
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Now, for Maxwell element, it is already stated that:

Dδ1 ¼
DF

E1L
þ

F

η1L
(113)

and for Voigt model:

F ¼ FS þ FD (114)

which also may be written as:

F ¼ E2Lδ2 þ η2LDδ2 (115)

It is possible to eliminate δ1 and δ2 that the final result will be in the following form:

D2F þ
E1

η1
þ
E1

η2
þ
E2

η2

� �

DFþ
E1E2

η1η2

� �

F ¼ E1LD
2δþ

E1E2L

η2

� �

Dδ (116)

This essential equation may be rewritten in terms of stress and strain as follows:

σ þ
E1

η1
þ
E1

η2
þ
E2

η2

� �

η1η2

E1E2

� �

σ þ
η1η2

E1E2

� �

σ

_¼η1εþ
η1η2
E2

� �

_ε

(117)

and according to the general formula in the following equation:

aoσ þ a1σ þ a2 σ
_… …¼boεþb1εþb2 ε

_þ…

(118)

ao ¼ 1,a1 ¼
E1

η1
þ
E1

η2
þ
E2

η2

� �

η1η2

E1E2

� �

,a2 ¼
η1η2

E1E2

� �

(119)

bo ¼ 0,b1 ¼ η1,b2 ¼
η1η2

E2

� �

(120)

The relationships derived in the previous mechanical models are specific forms of
the generalized Hook’s law relating stress to strain, in accordance with the following
equation [15]:

ao þ a1
∂

∂t
þ a2

∂
2

∂t2
þ … ::

� �

σ ¼ bo þ b1
∂

∂t
þ b2

∂
2

∂t2
þ … ::

� �

ε (121)

However, there has been no limitation on the time history of the applied force F or
the induced deformation δ in other words these equations are representing the main
basis of behavior of a viscoelastic material suffering from creep and stress relaxation.
So to analyze any viscoelastic materials, means studying the relationship between the
applied know force and the associated viscoelastic strain, it is so essential to know the
numerical values of the included mechanical components (elastic element, spring and
viscous element, and dashpot), so Table 2 summarize these constants in detail based
on the type of the proposed equivalent model.

By applying a constant force to previously unloaded models, the extension when
measured as a function of time over a long period, is called creep motion or creep [16].
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b2 b1 bo a2 a1 ao Schematic Model

0 0 0 0 η

E 1 Maxwell

0 η E 0 0 1 Voigt

0 E1þE2

E2

� �

η E1 0 η

E2
1 Modified Maxwell

0 E1

E1þE2

� �

η E1E2

E1þE2

� �

0 η

E1þE2
1 Modified Voigt
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Conversely, the application of a constant extension to previously unloaded models
require a time-dependent force that can be measured. This force decreases in time
accordingly, as a relaxation effect occurs within the model.

7.6 Creep response

Given a force, F, according to the relationship:

F ¼ CH tð Þ (122)

where C is an arbitrary constant, and H tð Þ is the Heaviside function of time and
has the following values:

H tð Þ ¼ 0 for t≤0

H tð Þ ¼ 1 for t≥ 1

The time derivative of the functionH tð Þ is the well-knownDirac function Δð Þ, thus:

Δ tð Þ ¼ DH tð Þ (123)

Both H tð Þ and Δ tð Þ are shown as a function of time, see Figure 14.
So, it is required to find the resulting extension δ tð Þ for the entire model, for a

simple spring element with spring modulus E:

δ tð Þ ¼
F

EL
¼

C

EL
H tð Þ (124)

And for the viscous element with viscosity η:

Dδ tð Þ ¼
C

ηL
H tð Þ (125)

b2 b1 bo a2 a1 ao Schematic Model

η1η2
E2

η1 0 η1η2
E1E2

� �

E1

η1
þ E1

η2
þ E2

η2

� �

η1η2
E1E2

� �

1 Maxwell Voigt

Table 2.
Values of the constants in the generalized Hook’s law for the proposed mechanical models.
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This differential equation can be integrated to give:

δ tð Þ ¼
C

η L
t H tð Þ (126)

The constant of integration in the last equation is zero since δ tð Þ ¼ 0 at t ¼ 0. For
Maxwell element, the application of the above last equations gives:

Dδ tð Þ ¼
DF

EL
þ

F

η L
(127)

Dδ tð Þ ¼
C

EL
Δ tð Þ þ

C

η L
H tð Þ (128)

which after integration shows the following time-dependent response:

δ tð Þ ¼
C

EL
H tð Þ þ

C t

η L
H tð Þ (129)

δ tð Þ ¼
C

L

1

E
þ

t

η

� �

H tð Þ (130)

This last equation is representing the overall extension (deformation) for Maxwell
model.

For Voigt model the governing equation is as follows:

F ¼ ELδþ ηLDδ (131)

CH tð Þ ¼ ELδ tð Þ þ ηLDδ tð Þ (132)

In order to solve the above differential equation, it is so essential to multiply each
side of this specific equation by an integrating factor:

Integrating Factor ¼ e
E
ηð Þt, so that:

Ce
E
ηð ÞtH tð Þ ¼ ELδ tð Þe

E
ηð Þt þ ηLDδ tð Þe

E
ηð Þt (133)

Ce
E
ηð ÞtH tð Þ ¼ ηLD δ tð Þe

E
ηð Þt

h i

(134)

Figure 14.
Heaviside and Dirac unit functions. The Heaviside unit function. The Dirac unit function.
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after integration yields:

δ tð Þ ¼
C

EL
1� e�

E
ηð Þt

h i

H tð Þ (135)

This equation is representing the induced response of Voigt model. The extension
response (creep behavior) of mechanical models, including the Maxwell-Voigt,
modified Maxwell, modified Voigt, and simple elements models [17], is shown in
Figure 15.

It is to be noted that the Maxwell element has a response equal to sum of the
responses for the viscous and elastic elements, because it consists of these elements in
series. Also, the Maxwell Voigt model consists of Maxwell and Voigt models in series,
so that its response is given the following equation:

δ tð Þ ¼ C
1

E1L
þ

t

ηL

� �

H tð Þ þ
C

E2L
1� e�

E
ηð Þt

h i

H tð Þ (136)

8. Discussion

In most cases of nominating a material for manufacturing an industrial compo-
nent, and sustaining the applied load, usually either tensile, compressive, or shear
stress, it is so essential to seek the best mechanical properties, including Young’s
modulus (modulus of elasticity) and the associated strain(s). So, this theoretical
analysis via creating a mechanical model for describing a polymeric material under
stress and how such specific material will behave or exhibit a resistance during loading
phase and what is the expected result—deformation style as a function of both loading
time duration and the ambient temperature, so the first assumption was depending on
a simple linear spring (elastic element) but after removing the applied load the spring
will utterly return to its original dimensions that if the applied load within the elastic
limit of this spring. Hence, this spring will not well cover the actual behavior of the
loaded polymeric component, so the next proposal was considering only viscous

Figure 15.
Extension response (creep behavior) of the proposed mechanical models.
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element —dashpot but unfortunately this element also was not able to describe the
gained behavior, these two results shed light on the combined models, so the next
models was Maxwell, Voigt, modified Maxwell, modified Voigt, and Maxwell-Voigt
models, the above theoretical equations supported by the finding shown in Figure 15
gives a graduate interpretation of the expected behavior of the polymeric material
under direct load and under constant room temperature, but it is very accurate to say
that Maxwell-Voigt model is well telling or drawing the gained path of the residual
strain in the polymeric material, so this is invitation to extend ideas for more models
and more analysis for reaching the best behavior analogy between the mechanical
models and polymeric materials as well.

9. Conclusions

As a result of this theoretical study, it is essential to conclude that all of the
analyzed models are giving an interpretation of the behavior of some loaded poly-
meric materials but with different approximation but it looks like that each model is
complementing the other models, or in other words, starting from simple spring alone
or viscous dashpot alone is giving high error rate and this error starts decreases via
adding another element either in series or in parallel to form Maxwell and Voigt
models to reach optimum verification, respectively, so the modified Maxwell model is
giving relatively the best fit with the actual behavior of the polymeric component
under direct longitudinal load, but that is not meaning neglecting the other models
results, especially both of Voigt and Maxwell-Voigt models. It is preferable to include
a conclusion(s) section, which will summarize the content of the book chapter.

Acknowledgements

We wish to acknowledge the help provided by the technical and support staff in
the Mechanical Power Engineering Department, Mussaib Technical College, Al Furat
Al Awsat Technical University. We would also like to show our deep appreciation to
Prof. Dr. Muhsin J. Jweeg who helped us finalize our book chapter.

Nomenclature

σ Stress
σo initial applied stress
σ tð Þ stress as a function of time (t)
σ first derivative of stress with respect to time
_σ second derivative of stress with respect to time
ε Strain
εo induced strain
ε tð Þ strain as a function of time (t)
ε first derivative of strain with respect to time
_ε second derivative of strain with respect to time
εcritical critical strain
γ shear strain
γ shear-strain rate
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δ deformation (longitudinal extension)
δ tð Þ deformation as a function of time
η fluid viscosity of the employed dashpot
E Young’s modulus (modulus of elasticity)
G shear modulus
Ec tð Þ creep modulus as a function of time
Er tð Þ relaxation modulus as a function of time
F applied external force
t time
t relaxation time
T Temperature
K spring stiffness
C damping constant
ΔH viscous flow activation energy at a particular temperature
R universal gas constant
A pre-exponent factor
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