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Abstract

Tumors have complex properties that depend on interactions between epithelial 
cancer cells and the surrounding stromal compartment within the tumor micro-
environment. In particular, immune infiltration plays a role in controlling tumor 
development and is now considered one of the hallmarks of cancer. The last few years 
has seen an explosion in immunotherapy as a targeted strategy to fight cancer without 
damaging healthy cells. In this way, long-lasting results are elicited by activation of 
an antitumor immune response, utilizing the body’s own surveillance mechanisms to 
reprogram the tumour microenvironment. The next challenge is to ensure targeted 
delivery of these therapies for increased efficacy and reduction in immune-related 
adverse events. Liposomes are an attractive drug delivery system providing versatility 
in their formulation including material type, charge, size and importantly surface 
chemical modifications that confer their tumour specificity. These tunable properties 
make them an attractive platform for the treatment of cancer. In this chapter, we will 
discuss clinically approved immunotherapies and those undergoing clinical trials 
together with, recent liposomal approaches for enhanced specificity and efficacy.

Keywords: immunotherapy, liposomes, nanocarriers, systemic delivery, cancer

1. Introduction

Cancer cannot be considered a mass of isolated tumor cells, but instead, it relies 
on several interactions with the surrounding microenvironment. Indeed, in response 
to evolving environmental conditions and oncogenic signals from growing tumors, 
the tumor microenvironment (TME) continually changes during cancer progres-
sion, highlighting the need to consider its influence on metastasis as a dynamic 
process, and to understand how tumor cells drive the construction of their own niche 
[1, 2]. The TME stromal compartment comprises both nonmalignant cells such as 
fibroblasts, myofibroblasts, endothelial cells and immune cells as well as signaling 
molecules including growth factors, chemokines, cytokines, extracellular matrices 



Liposomes - Recent Advances, New Perspectives and Applications

2

(ECMs) and matrix-degrading enzymes that act together to promote cancer pro-
gression and metastasis. Indeed, they all become educated by the tumor to acquire 
pro-tumorigenic functions [3]. Based on these considerations, in the last few years, 
several strategies to fight cancer have been developed to alter the TME and effectively 
reprogram it [4]. These include chemotherapy, targeted therapy, immunotherapy and 
combinations of these therapies. Chemotherapy elicits anti-cancer effects by acting 
on cancer cell survival and proliferation, but it can also affect the TME for instance 
by increasing anti-tumor immune cells. However, patients have poor tolerance and 
can develop strong drug resistance. Therefore, there is a need to reduce side effects 
to chemotherapy [4]. Targeted therapies for specific TME components or signaling 
pathways have become the key to suppressing cancer proliferation and invasion. For 
example, Lee et al. found that bortezomib (BTZ) and phenobarbital (PST) reduced 
the survival rate of cancer-associated fibroblasts (CAFs) by inducing caspase-3-me-
diated apoptosis, thereby inhibiting the proliferation of cancer cells in a breast cancer 
mouse transplantation model [5]. Another promising strategy is immunotherapy, 
therapeutics that utilize the body’s immune system to reprogram or activate anti-
tumor immunity to kill tumor cells, without damaging normal cells. For instance, it 
has been demonstrated that molecules usually expressed on activated T cells, such as 
the immune checkpoint proteins CTLA-4 and PD-1 play a crucial role in the immuno-
suppression observed in the TME [6]. For this reason, several monoclonal antibodies 
(mAbs) targeting CTLA-4, PD-1 or PD-L1 have been developed and tested in clinical 
trials for the treatment of several types of cancers [7–10].

However, the promise of providing long-lasting results where other therapies 
have failed has not yet been realized as they are faced with a number of challenges 
including immune-related adverse events due to low specificity in tumor cell target-
ing. The use of smart drug delivery systems such as liposomes could help overcome 
these challenges. This chapter will give an overview of the current immunotherapy 
landscape and the use of liposomes to directly deliver anticancer immune therapies to 
tumor sites.

2. Immunotherapies

Cancer immunotherapy focuses on modulation and use of the patient’s own 
immune system or agents that activate or enhance the immune system’s recognition 
and killing of tumor cells [3–5]. Modulating the immune system to target cancer is a 
successful treatment for some solid malignancies. However, some cancers are immu-
nogenically cold [11]. This nomenclature is given to tumours that have fewer immune 
cells and decreased cancer antigen expression leading to an intrinsic resistance to 
immunotherapies. In these ‘cold’ malignancies, the TME acts as a cloak to mask cancer 
cells from host’s immune system, even in the presence of novel immunotherapies 
(Figure 1). Several approaches including cell-based therapies, cytokines, oncolytic 
viruses and immune checkpoint inhibitors have been approved for clinical use by the 
Food and Drug Administration (FDA) or in clinical trials (Table 1).

Cell-based immunotherapies manipulate or stimulate autologous immune cells 
that specifically target abnormal antigens expressed on the surface of tumor cells 
[52]. These include lymphocytes, macrophages, dendritic cells, natural killer cells and 
cytotoxic T lymphocytes (Table 1). However, induction of nutrient depletion and acti-
vation of negative immune regulatory pathways by cancer cells contribute to an immu-
nosuppressive TME that compromises anti-tumor immune pathways and therefore 
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the therapeutic effect of cell-based immunotherapy. This is seen in the stimulation 
of immunosuppressive Tregs and MDSCs [53] and patterns of expression of immune 
checkpoint inhibitors by activated T cells [8, 54]. Playing a crucial role in the immuno-
suppression observed in the TME, PD-1 and CTLA-4, through interaction with their 
ligands (PD-L1/PD-L2 and CD80/CD86 respectively), transmit inhibitory signals to T 
cells [55], thus suppressing effector T cell activation and function. Crucially, upregula-
tion of PD-L1 and CTLA-4 on the surface of tumor cells has been detected in recent 
years [56] resulting in the development of mAbs targeting PD-1, PD-L1, PD-L2 and 
CTLA-4 for blockage of these immunosuppressive pathways [7, 8, 53–56]. Classified as 
immune checkpoint inhibitors, these mAbs have undergone a number of clinical trials 
for the treatment of several types of cancers [7–10, 12].

Manipulation of the TME by cancer cells is facilitated by cytokines and growth 
factors and it is well known that deregulated cytokine production and aberrant 
cytokine signaling can lead to altered cell growth, differentiation and apoptosis as 
well as the secretion of factors that foster cancer progression and immune evasion 
[57, 58]. Thus, cytokine therapy has been explored in the treatment of cancer to 
enhance anti-tumoral immunity [40, 59]. Currently three cytokines have been 
approved by the FDA for use in cancer patients: recombinant interleukin IL-2 
(Proleukin; Chiron) and two variants of recombinant interferon alpha 2 called 
IFNα2a (Roferon-A; Roche) and IFNα2b (Intron-A; Merk & Co) (Table 1).

Oncolytic viruses (OVs), as a new therapeutic agent, offer a two-pronged attack 
mechanism. Their direct tumour killing is afforded in the first place by specific viral 

Figure 1. 
Inflaming the cold tumour microenvironment using immunotherapies. ‘Cold’ tumors demonstrate an 
immunosuppressive environment with the exclusion of immune cells including Tregs, CD8+ T cells and natural 
killer cells from the TME resulting in poor prognosis and response to immunotherapy. ‘Hot’ tumor types 
demonstrate high immune cell infiltration and expression of pro-inflammatory markers. Immunotherapies 
inhibit tumor cells from deactivating T cells via PD-1, PD-L1 and CTLA-4 blockade and augment immune cell 
recruitment and activation via cytokine therapy to enhance tumor lysis. Created using Biorender.
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Immunotherapy 

type

Drug name Mechanism Phase Tumour type References

DCs-based 

Vaccine

Sipuleucel-T Patients’ 

APCs 

activated 

by PAP and 

GM-CSF

Approved 

by FDA

Advanced 

prostate 

cancer

[12–14]

CAR-T cell 

therapy

Kymriah Patient’s 

T cells are 

engineered 

to target 

a protein 

called CD19

Approved 

by FDA

B-cell acute 

lymphoblastic 

leukaemia

[15, 16]

CAR-T cell 

therapy

Yescarta Patient’s 

T cells are 

engineered 

to target 

a protein 

called CD19

Approved 

by FDA

Large B-cell 

lymphoma

[17]

NK cell therapy oNKord NKs 

generated 

ex vivo from 

umbilical 

cord blood 

progenitor 

cells.

Phase I 

clinical 

trial

Acute myeloid 

leukaemia

[18–21]

Immune 

checkpoint 

inhibitor

Ipilimumab Anti-

CTLA-4 

mAb

Approved 

by FDA

Unresectable 

or MM

[10, 22–27]

Immune 

checkpoint 

inhibitor

Nivolumab Anti-PD-1 

mAb

Approved 

by FDA

NSCLC, MM, 

HL, SCCHN, 

MUC

[28–31]

Immune 

checkpoint 

inhibitor

Pembrolizumab Anti-PD-1 

mAb

Approved 

by FDA

NSCLC, MM, 

HL, SCCHN, 

MUC

[32–35]

Immune 

checkpoint 

inhibitor

Durvalumab Anti-PD-L1 

mAb

Approved 

by FDA

MUC [36]

Immune 

checkpoint 

inhibitor

Avelumab Anti-PD-L1 

mAb

Approved 

by FDA

Metastatic 

Merkel 

carcinoma

[37]

Immune 

checkpoint 

inhibitor

Atezolimumab Anti-PD-L1 

mAb

Approved 

by FDA

NSCLC, MUC [38]

Immune 

checkpoint 

inhibitor

CA-170 Anti-PD-L1/

PD-L2 and 

VISTA mAb

Phase I 

clinical 

trial

Lymphomas 

and solid 

cancers

[10, 39]

Cytokine Proleukin IL-2 Approved 

by FDA

Metastatic 

melanoma, 

RCC

[40, 41]

Cytokine Roferon-A IFN-α2a Approved 

by FDA

HCL, CML [40, 41]
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replication within cancer cells resulting in oncolysis. This provides self-amplification 
and release of viral progeny for infection of neighbouring tumour cells. Oncolysis 
also releases tumor antigens and following uptake by antigen presenting cells (APC), 
indirectly induces a systemic anti-tumor immunity through both innate and adaptive 
immune pathways [42, 43, 60, 61].

As therapeutic agents they also offer versatility via genetic modification to maxi-
mise their features. They can be engineered to increase tropism towards specific 
cancers via capsid insertion of ligands for enhanced tumor cell binding [43, 62, 63]. 
Additional transgenes can be inserted for expression of proteins designed to further 
amplify immune activation at the tumor site. Moreover, strategies to improve selec-
tive replication in cancer cells and hence their safety, include the deletion/insertion of 
tissue- or cell type- specific promoters to induce gene expression in tumor cells [64]; 
or the placement of viral genes under the control of tissue specific elements. Despite 
these attractive properties, successful use of OVs in the clinic to date, have been 
limited to direct tumor injection as systemic delivery results in rapid clearance whilst 
in circulation, thus preventing tumor targeting. For these to be used more widely in 
the clinic, strategies are needed to protect the virus in the blood stream so that tumors 
in inaccessible locations can be treated [65]. Whilst in the last decade immunotherapy 

Immunotherapy 

type

Drug name Mechanism Phase Tumour type References

Cytokine Intron-A IFN-α2b Approved 

by FDA

AIDS-related 

Kaposi’s 

sarcoma, 

melanoma, 

FL, multiple 

myeloma, 

HCL, CIN

[40, 41]

Oncolytic virus T-Vec (Herpes 

simplex virus)

Cancer cells 

killing and 

GM-CSF 

expression 

for APCs 

recruitment

Approved 

by FDA

Advanced 

melanoma

[42–44]

Oncolytic virus JX-594 

(Vaccinia 

virus)

Cancer cells 

killing and 

GM-CSF 

expression

Phase I 

clinical 

trail

Melanoma, 

HCC

[45, 46]

Oncolytic virus CG0070 

(Adenovirus)

Cancer cells 

killing (viral 

replication 

under the 

control of 

Rb)

Phase I 

clinical 

trail

Non-muscle 

invasive 

urothelial 

cancer

[47–49]

Oncolytic virus Reolysin 

(Reovirus)

Cancer cells 

killing (viral 

replication 

under the 

control of 

Ras)

Approved 

by FDA

Malignant 

glioma, 

metastatic 

breast cancer

[50, 51]

Table 1. 
Main immunotherapeutic agents approved by the FDA or in clinical trials for cancer treatment.
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has become a viable treatment option for some cancers, for many patients this is still 
limited due to its low response rates as a monotherapy [66].

Combination therapy is instead a treatment modality that combines two or more 
therapeutic agents to fight cancer. It is probably the most effective approach because it 
targets key pathways in a characteristically synergistic or an additive manner, reducing 
drug resistance and providing therapeutic anti-cancer benefits, such as reducing tumor 
growth and metastatic potential, arresting mitotically active cells, reducing cancer stem 
cell populations, and inducing apoptosis [67]. However, obtaining these achievements 
is complicated and an easier and more promising approach could be the use of nano-
technology. Indeed, the use of nanomedicine has several advantages such as the early 
diagnosis of disease and the combination of different therapeutic agents for overcom-
ing cancer resistance [68]. Moreover, nanoparticles can be fabricated with unique 
characteristics including their material type, size, shape, charge and surface chemical 
modifications for tunable optimization [69]. Indeed, changing nanoparticles physical 
and chemical properties has an important effect on their kinetics of internalization, 
biodistribution, cellular uptake, immunogenicity and loading efficiency [70, 71] mak-
ing them the most promising platform for biomedical applications [69].

3. Liposomes

Traditionally known as liposomes, lipopolymers, solid lipid nanoparticles, 
nanostructured lipid nanoparticles, microemulsions and nanoemulsions, lipid 
nanoparticles are used primarily for the release of small molecules, peptides, genes 
and monoclonal antibodies [72]. Liposomes consist of spherical vesicles having one or 
more lipid layers containing an aqueous core. The structure of a conventional lipo-
some allows the encapsulation of both hydrophilic and lipophilic agents in the lipid 
layers or in the internal compartment, respectively (Figure 2) [73, 74]. Depending 
on the water solubility of the payload, they can be encapsulated in the aqueous core 
(hydrophilic drugs) or in surrounding bilayer of the liposome (hydrophobic drugs) 
[75]. They are physically stable, and unlike other nanoparticles, they are not cova-
lently bound. As a delivery system, LNPs offer many advantages, including simplicity 
of simulation, self-assembly, biocompatibility, high bioavailability, the ability to 
carry large payloads, and a range of physicochemical properties that can control their 
biological properties [76]. Lipid nanoparticles are the most common class of FDA-
approved nanomedicine drugs (Table 1). Among them, the liposome-encapsulated 
form of Doxorubicin (Doxil) approved by the FDA in 1995 for the treatment of 
ovarian cancer and AIDS-related Kaposi’s sarcoma can be considered the first success 
in this field [73, 74, 77, 78].

Other examples that need to be mentioned are liposomal daunorubicin 
(DaunoXome) for treatment of poor-risk acute leukemia [79], Liposome-
encapsulated doxorubicin citrate (Myocet) for breast cancer therapy [80], the 
Liposomal cytarabine (DepoCyte) for the treatment of neoplastic meningitis [81], the 
vincristine sulfate liposome injection (Marqibo) for childhood and adult hematologic 
malignancies [82] and the irinotecan liposome injection (Nivyde) for the treatment of 
metastatic pancreatic cancer [83]. There are approximately 1862 clinical trials involv-
ing the use of liposomes in cancer therapy [84]. These liposomal formulations of 
chemotherapies were designed to overcome problems with severe side effects (nausea, 
fatigue, diarrhea, hair loss, disruption of mouth, pharynx mucosa, and bone marrow 
[85, 86]) as well as improvements in both the drug bioavailability at the tumor site 
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and its pharmacokinetic properties in order to deliver the active drug molecules to the 
site of action, without affecting healthy cells.

3.1 Liposomes and chemotherapy

The mechanism of action of Doxil is based on the use of sterically stabilized 
(composed of high Tm phospholipids and cholesterol), PEGylated nano-liposomes 
to prolong drug circulation time and allow efficicent extravasation via the EPR 
effect. Additionally, stable loading of doxorubicin (DOX) as well as DOX release at 
the tumor target is provided by a transmembrane ammonium sulfate gradient [78]. 
Unlike Doxil, the Myocet liposome does not have a PEG coating, but it seems to have 
less cardiotoxicity. It is approved in the European Union and in Canada for the treat-
ment of metastatic breast cancer in combination with cyclophosphamide, but it has 
not been approved by the FDA for use in the United States [87].

Another anthracycline to utilize the advantages of liposomal packaging is dauno-
rubicin. DaunoXome contaisn an aqueous solution of the citrate salt of daunorubicin 
encapsulated within lipid vesicles composed of a lipid bilayer of distearoylphos-
phatidylcholine and cholesterol [88]. By protecting the entrapped compound from 
chemical and enzymatic degradation, DaunoXome increases its biocompatibility and 
bioavailability by reducing uptake by normal tissues and minimizing protein binding 
respectively. It is FDA approved to treat AIDS related Kaposi’s sarcoma. It is also com-
monly used to treat specific types of leukemia and non-Hodgkin lymphoma [88].

Figure 2. 
Schematic of liposomes comprising outer phospholipid layer. PEGylated liposomes contain a layer of polyethylene 
glycol (PEG) on the surface of liposomes. Targeted liposomes contain a specific targeting ligand to target a cancer 
site. Multifunctional theranostic liposomes can be used for diagnosis and treatment of solid tumors.
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Another example of lipid-nanocarrier for chemotherapeutic agents is Depocyte, 
a liposomal formulation of cytosine arabinoside (Ara-C) which is a cytosine analog 
with arabinose sugar that kills cancer cells by interfering with DNA synthesis [89]. 
Ara-C has a short plasma half-life, low lipophilicity, stability and limited bioavail-
ability. DepoCyte consists of multivesicular lipid-based polymeric liposomal 
carriers composed of cholesterol, glycerol trioleate, triglyceride, phospholipids that 
increase the Ara-C half-life and consequently in the treatment of lymphomatous 
meningitis [90].

Vincristine (VCR) is a vinca alkaloid that is thought to work by interfering with 
cancer cell growth during mitosis and it used for treatment of hematologic malig-
nancies and solid tumors. Its main challenge is that it has a diffuse distribution and 
tissue binding that can limit drug efficacy and generate several side effects [82]. To 
overcome this, VCR has been encapsulated in sphingomyelin/cholesterol liposomes 
to produce a vinCRIStine sulfate liposome injection called Marqibo [82]. It is specifi-
cally indicated for the treatment of adults with Philadelphia chromosome-negative 
(Ph-) acute lymphoblastic leukemia in second or greater relapse or whose disease has 
progressed following two or more anti-leukemia therapies.

The topoisomerase I inhibitor Irinotecan is another example of how lipid carriers 
can increase chemotherapy efficacy and reduce toxicity. Irinotecan is indeed a drug 
currently used in the treatment of multiple solid tumors, such as metastatic colorectal 
cancer (mCRC), small-cell lung cancer, non-small-cell lung cancer, gastric cancer, 
and cervical cancer [91]. The main challenges in irinotecan usage are the acute toxici-
ties caused by it and its fast elimination that can strongly limit its clinical applications 
[92, 93]. For this reason, the liposomal formulation Onivyde has been developed to 
improve the pharmacokinetics and reducing host toxicity. Onivyde was approved 
by the US Food and Drug Administration (FDA) in October 2015 as a combination 
regimen for patients with gemcitabine-based chemotherapy-resistant metastatic 
pancreatic cancer [91].

Considering all these advancements, it is clear that liposomes have overcome the 
limitations of conventional chemotherapy by improving drug bioavailability and 
stability and minimizing their side effects by site-specific targeted delivery. This suc-
cess has paved the way for the use of liposomal agents in the field of cancer immuno-
therapy together with additional modifications of the liposomal surface, facilitating 
their active targeting to tumors. Whilst passive targeting relies on the EPR effect for 
accumulation of liposomes within tumors, active targeting is obtained by linking to 
liposomes membrane specific ligands that bind specific antigens on cancer cells [75] 
(Figure 2). Next, we describe these modifications in the context of liposomal delivery 
of immunotherapeutics.

3.2 Liposomal immunotherapies

Improving CAR-T cell therapy against solid tumors has recently adopted the use 
of lipid nanoparticles in order to address the issues surrounding the presence of an 
immunosuppressive TME that can decrease the treatment efficacy [71]. A recent 
study by Zhang and colleagues showed promising results in a model of murine breast 
cancer to overcome this obstacle using infusions of lipid nanoparticles coated with 
the tumor-targeting peptide iRGD and loaded with a combination of a PI3K inhibi-
tor to block immunosuppressive tumor cells activity and α-GalCer (an iNKT cell 
activator). The investigators demonstrated a switch in the TME from immunosup-
pressive to stimulatory thereby enabling tumor-specific CAR-T cells to home to the 
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tumor, undergo robust expansion and trigger tumor regression [94] during a 2 week 
therapeutic window. This strategy has been applied to a number of immunotherapies 
(Table 2) to assist in their delivery, efficacy and safety as follows.

3.2.1 Liposomes and ICI’s

The development of immune checkpoint inhibitors (ICIs) has been a major 
breakthrough in cancer immunotherapy. However, only a small percentage of patients 
exhibit durable responses under monotherapy and their increasing use has led to 
the discovery of immune-related adverse events (irAEs) including myopathy [112], 
immune-related myasthenia gravis (irMG) [113] and pneumonitis [114] to name a 
few. Whilst BMS-202 (a small molecule inhibitor of PD-1/PD-L1) loaded liposomes 
have inhibited tumor growth in a model of triple negative breast cancer (TNBC) 
[115] and pancreatic cancer when combined with photothermal therapy [96], there 
is now a trend towards combination therapy (Table 2). For example, amplification 
of the therapeutic potential of DOX-loaded biomimetic hybrid nanovesicles (DOX@
LINV) (synthesized by fusing artificial liposomes with tumor-derived nanovesicles, 
facilitating both targeted delivery of DOX to tumor tissue and eliciting effective 
immunogenic cell death response to improve the immunogenicity of the tumor) by 
combination treatment with aPD-1 antibody prolonged survival of B16F10 tumor-
bearing mice by 33% [116]. Additionally, the utilization of PD1/PD-L1 mAbs as 
surface ligands for enhanced tumor targeting of nanoparticles is an emerging strategy 
whereby PD-L1 targeted DOX [117] and catalase [118] immunoliposomes are promis-
ing candidates for melanoma immunotherapy.

3.2.2 Liposomes and antibodies

One of the most notorious targets for interventional antibody therapy is the 
Human Epidermal growth factor Receptor 2 (HER2) which is involved in important 
stages of growth and cell differentiation and is overexpressed by HER2 positive breast 
cancer cells. Targeting HER2 positive cancers can be achieved by coating liposomes 
with an anti-HER2 monoclonal antibody [119] and in recent years, several targeted 
therapy options for HER2-positive breast cancer has been developed including 
Pertuzumab (Perjeta), Trastuzumab (Herceptin), Tucatinib (Tukysa), Neratinib 
(Nerlynx), Margetuximab (Margenza), DS-8201 (Enhertu), and Ado-trastuzumab 
emtansine or T-DM1 (Kadcyla) [120]. In particular, Herceptin was FDA approved in 
1998 for the treatment of HER2-positive breast cancers [121] and has been studied 
extensively since including using various nano delivery systems. For example, Elamir 
et al., functionalized calcein and Doxorubicin-loaded pegylated liposomes with 
Herceptin and utilized Low-Frequency ultrasound for their controlled release to 
enhance uptake by cancer cells in vitro, paving the way for in vivo studies [119].

Anchoring antibodies to the surface of liposomes to enable targeted delivery 
(Figure 1) can also be performed within the circulation. For instance, in 2004 van 
Broekhoven et al. targeted DCs through anti-DEC-205 or anti-CD11c mAbs located 
on the surface of liposomes containing tumor antigens (B16 melanoma antigens or 
lipopolysaccharide), thus inducing potent anti-tumor immunity both in vitro and in 
vivo [122, 123].

Another molecule overexpressed by cancer cells is the vascular endothelial growth 
factor (VEGF) that increases angiogenesis for enhanced tumor growth. Indeed, it 
binds two VEGF receptors (VEGF receptor-1 and VEGF receptor-2) on vascular 
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Immunotherapy type Delivery platform Tumour type Reference

Immune checkpoint inhibitors

PD-L1 Cerasome nanoparticle loaded 

with Paclitaxel and decorated 

with PD-L1

Breast, colon [95]

BMS-202 (PD-1/PD-L1 inhibitor) BMS-202 loaded thermosensitive 

liposomes

Pancreatic [96]

Monoclonal antibodies

Intravenous immunoglobulin PEGylated nanoliposome 

encapsulating the antibody

Colorectal [97]

Anti-EGFR antibody Porphyrin containing liposomal 

cersaome decorated with 

Cetuximab

Colorectal 

carcinoma

[98]

HER2 HER2 targeted PEGylated 

liposome

Metastatic 

breast cancer

[99]

Oncolytic viruses

Oncolytic Adenovirus Liposome-cloaked oncolytic 

adenovirus conjugated to tumour 

homing E.coli

Lung [100]

Oncolytic Adenovirus CCL2-coated liposomes for 

monocytic cell delivery

Prostate [101]

Cancer vaccines

Epitope vaccine Mannose decorated liposomes 

activate DC maturation for 

enhanced cytotoxic T lymphocyte 

response

Metastatic 

breast cancer

[102]

LAG3-Ig + P5 tumour antigen PEGylated liposome bearing 

surface conjugated LAG3-Ig and 

P5 tumour antigen

Breast [103]

Synthetic long peptides Liposome loaded with tumour 

specific synthetic long peptides

Lung, 

melanoma

[104]

Combination treatments

Tumour vaccine of antigen 

epitopes + IDO inhibitor

Lipid hybrid nanovesicle-based 

liposomes containing tumour 

vaccine and immune checkpoint 

inhibitor

Melanoma [105]

Anti-PD-L1 + Docetaxel Liposome co-loaded with PD-L1 

antibody and Docetaxel

Melanoma [106]

siRNA-PD-L1 + Imatinib Liposomal co-delivery of siRNA-

PD-L1 and Imatinib

Melanoma [107]

Interleukin-2 

(IL-2) + anti-PD-L1 + Imiquimod

C25 antibody modified liposomes 

containing a combination of 

treatments attached to the surface 

of T regulatory cell

Melanoma [108]

Other immune system modulators

Interferon-gamma (IFN-γ) PEGylated liposomes containing 

IFN-γ

Colon [109]
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endothelial cells allowing tumor vasculature to grow exponentially thereby promot-
ing cancer progression and metastasis [124]. Several agents, including antibodies 
and soluble receptor constructs, have been developed to target the VEGF system. The 
drug that is currently most widely used in the clinical practice to modulate VEGF-A is 
the humanized monoclonal antibody Bevacizumab, approved by the FDA and EMA 
for the treatment of metastatic colorectal cancer, non-small cell lung cancer, breast 
cancer and glioblastoma multiforme in combination with chemotherapy (Table 1) 
[125]. Several studies have been also conducted to improve bevacizumab efficacy and 
reduce its toxicity by using lipid nanocarriers. For instance, Kuesters and Campbell 
demonstrated that cationic pegylated liposomes that preferentially target the tumor 
vasculature, can be conjugated with bevacizumab and can increase its cellular uptake 
and tumor targeting in vitro [126]. Moreover, bevacizumab is extensively studied 
for ovarian cancer treatment since the combination of surgery and platinum-based 
chemotherapy is initially very effective in treating this cancer, but most patients will 
experience a recurrence because they acquire platinum resistance. To overcome these 
challenges, a phase II clinical trial (NCT04753216) is studying the combination of 
irinotecan liposome and bevacizumab in women with recurrent, platinum resistant 
ovarian cancer and the predicted results are that the liposomal encapsulation will 
enhance drug delivery and bioavailability, thereby improving efficacy and reducing 
toxicity [127]. These examples mentioned above, strengthen the idea that the use of 
therapy combination together with nanoparticles, in particular liposomes, as delivery 
systems, could strongly increase the cancer treatments efficacy, also overcoming drug 
resistance experienced by patients, and reduce their associated toxicities.

3.2.3 Liposomes and oncolytic viruses

The encapsulation of OVs inside lipid nanoparticles is another strategy that has 
demonstrated encouraging results in the last few years (Table 2). Acting as a protec-
tive shield, the phospholipid coating can hide viral epitopes thus reducing OV neutral-
ization by pre-existing Abs upon systemic administration as seen by Chen et al. [128]. 
Not only that, but the efficacy of this encapsulated ZD55-IL-24 oncolytic adenovirus 
was demonstrated via inhibition of HCC proliferation and an enhanced anti-tumor 
immune response in vivo. Similarly, a separate study involvingliposome-encapsulated 
plasmid DNA of telomerase specific oncolytic adenovirus (TelomeScan) also recorded 
shielding from adenovirus-neutralizing Abs following intravenous administration into 
immune-competent mice compared to the naked virus together with potent anti-
tumor effects on colon carcinoma cells both in vitro and in vivo [101, 129]. Shielding 
the viral epitopes from immunosurveillance has not only reduced their rapid clearance 
from the circulation but the addition of targeting ligands on the surface increases their 

Immunotherapy type Delivery platform Tumour type Reference

Small immunostimulatory RNA Liposomes containing 

immunostimulatory RNA

Melanoma [110]

Interleukin-15 (IL-15) Folate receptor targeted liposome 

containing IL-15 plasmid

Colon [111]

Table 2. 
Preclinical models of liposomal immunotherapeutics in development.
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accumulation at target sites and reduces off-target side effects. Successful encapsula-
tion of AD[I/PPT-E1A] into CCL2-coated liposomes were preferentially taken up by 
CCR2-expressing monocytes within the circulation thereby exploiting the recruitment 
of circulating monocytes by tumors for their targeted delivery [101]. This resulted in a 
significant reduction in tumor size and pulmonary metastases in pre-clinical model of 
prostate cancer at a viral titer 3 logs lower than AD[I/PPT-E1A] alone. Taken together, 
liposome-assisted delivery cannot only target OVs via the circulation to inaccessible 
tumors but reduction in concentration of virus required for efficacy provides addi-
tional safety and cost benefits.

3.2.4 Liposomes and immune-gene therapy

Liposomes have been studied in the field of cancer gene therapy for the targeting 
of genes involved in the development of cancer (Table 2). For example, the liposomal 
delivery of a stimulator of interferon genes (STING) agonist has augmented cytokine 
therapy. In a model of metastatic melanoma, investigators saw an increase in IFNγ 
production by tumor-associated APCs, leading to anti-tumor immunity enhancement 
and cancer regression compared to the free drug [130]. Further advancements in lipid 
nanotechnology for the delivery of gene therapy have developed strategies for con-
trolled release, improved therapeutic loading and faster route to market as follows.

With their positive charge, cationic liposomes, can be used to easily encapsulate 
plasmid DNA (pDNA), messenger RNA (mRNA), or small interfering RNA (siRNA) 
via electrostatic interactions [131]. An important example is the T7 peptide modified 
core-shell nanoparticles (named as T7-LPC/siRNA NPs). The core-shell structure 
of T7-LPC/siRNA NPs enables them to encapsulate siRNA in the core and protect it 
from RNase degradation during circulation. Both in vitro and in vivo results show that 
this system can efficiently deliver the EGFR siRNA into breast cancer cells through 
receptor mediated endocytosis and down-regulate the EGFR expression [132]. 
Furthermore, plasmids can be encapsulated in lipid nanocarriers whereby a tumor-
targeted liposomal nano delivery complex (SGT-94) carrying a plasmid encoding 
RB94, a truncated form of the RB gene, has shown promising results in metastatic 
genitourinary cancer in terms of selective tumor targeting and tolerability [133].

The first marketed RNA drug, Onpattro®, was launched by Alnylam 
Pharmaceuticals in 2018. Onpattro® comprises lipid nanoparticles (LNPs) prepared 
from ionizable lipids for siRNA encapsulation and delivery [134]. LNPs have since 
become the preferential vector for nucleic acid delivery. LNPs are constructed using 
phospholipids with ionizable lipids and other supporting phospholipids to complete 
the particle [76, 135]. A high degree of encapsulation is achieved by mutual adsorp-
tion of the nucleic acid’s negative charge and the ionizable lipid’s positive charge. 
When LNPs enter the body, the cytolysis mechanism mediated by low-density 
lipoproteins allows the nanoparticles to be successfully taken up by cells [136]. The 
endosome successfully releases the phagocytosed LNPs and transports them to the 
cytoplasm for expression, producing the corresponding protein.

These mRNA vaccines have gained a lot of attention due to their good safety 
profiles, successful preventative effects and rapid development of mRNA technol-
ogy, making them very competitive [137]. Indeed, thanks to the prior optimization 
of mRNA and extensive basic research and testing of lipid nanoparticles, the mRNA 
vaccine against SARS-CoV-2 took less than a year from the publication of the virus 
sequence to the launch of the vaccine, and demonstrated an efficacy rate of over 
90% [138]. This was previously unimaginable and unattainable. Application of this 
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technology for further optimization and improvement to CAR-T therapy has utilized 
lipid nanoparticles as a medium to target mRNA delivery to T cells and constructed 
CAR- T directly in vivo to treat heart failure symptoms in mice [139]. Upon delivery of 
mRNA to mice, large mRNA molecules are captured by T cells, allowing T cells to gain 
the ability to target cardiac fibroblasts specifically. The mRNA successfully encoded 
T cells in mice with heart failure, resulting in a significant reduction in myocardial 
fibrosis and heart repair to near normal size and function. The in vivo construction of 
CAR-T was accomplished through mRNA targeted delivery, and mRNA-LNP-targeted 
delivery is far less costly than traditional cellular therapies [140].

Other non-viral vectors for gene transfer into tumor cells is the use of lipoplexes 
(LPX) and micelleplexes and are proving promising in phase I/II clinical trials for 
advanced melanoma treatment. By protecting its’ RNA payload from extracellular ribo-
nucleases, these vectors improve cell uptake and hence gene expression. For example, in 
a B16-F10 murine melanoma tumor model, a micelleplex made of an acid-activatable cat-
ionic micelle, a photosensitizer and a small interfering RNA (siRNA) was able to inhibit 
PD-L1 resulting in inhibition of both primary tumour growth and formation of distant 
metastases formation compared to photothermal therapy alone [141]. This was achieved 
through its activatable composition, only switching “on” upon internalization in the 
acidic endocytic vesicles of tumor cells, demonstrating the versatility of these particles.

4. Route to clinic/challenges

Although nanoparticle drug delivery technology has now been extensively 
researched, the prevalence of nanomedicines is far below expectations [9, 56]. One 
of the main challenges is that the current processes used for liposome manufacturing 
suffers from many severe problems such as high costs of production related to multi-
step batch processes, the need to use specialized tools and equipment for particle size 
reduction and limited batch sizes [77].

Polymeric materials were the most common delivery vehicles used by early 
scientists, such as polyethyleneimine (PEI), polyamine ester (PBAE), chitosan, etc. 
[142]. However, the application of polymeric materials has stalled at the pre-clinical 
trial stage [143]. In a study investigating PEI delivery of DNA to the lungs, the poor 
breakdown of PEI raised concerns regarding accumulation of the polymer as well as 
specific side effects, particularly for repeated treatment administration [144]. Most 
polymeric materials used for nucleic acid delivery require modification of fatty acid 
chains to improve their safety. A team of researchers developed a branched poly-
amine polymer for mRNA encapsulation and prepared polymeric RNA nanoparticles 
whereby these vaccine recipients successfully expressed antibodies against Zika and 
Ebola viruses [145]. Although LNPs have been used on a large scale (in particular 
how to achieve higher therapeutic efficacy as discussed) optimization of the produc-
tion process is also required for successful translation of these formulations to the 
clinic. This includes optimization of the LNP production process, control of the LNP 
characteristics, shelf-life, regulatory considerations and cost effectiveness.

5. Conclusions

The possibility that immunotherapy could replace surgery and other forms of can-
cer treatment is being entertained for the first time. However, this is not all good news 



Liposomes - Recent Advances, New Perspectives and Applications

14

Author details

Alessandra Iscaro†, Faith H.N. Howard†, Zidi Yang, Fern Jenkins  
and Munitta Muthana*
University of Sheffield, Sheffield, UK

*Address all correspondence to: m.muthana@sheffield.ac.uk

† Joint first authors.

as many of these immunotherapies are associated with potentially serious side effects, 
linked to inflammation in the bowel, lung, heart, skin and other organs. Liposomes 
display superiority as a delivery platform for cancer immunotherapy with the poten-
tial to overcome many of the challenges related to their systemic delivery and toxicity. 
However, for this to become reality, the less than satisfactory targeting efficiency of 
liposomes needs to be addressed to achieve improved clinical performance.
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