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Chapter

N1-(3-(Trifluoromethyl)Phenyl) 
Isophthalamide Derivatives as 
Promising Inhibitors of Vascular 
Endothelial Growth Factor 
Receptor: Pharmacophore-Based 
Design, Docking, and MM-PBSA/
MM-GBSA Binding Energy 
Estimation
Aliaksandr Faryna and Elena Kalinichenko

Abstract

Targeting protein kinases is a common approach for cancer treatment. In this 
study, a series of novel terephthalic and isophthalic derivatives were constructed 
as potential type 2 protein kinase inhibitors adapting pharmacophore features of 
approved anticancer drugs of this class. Inhibitory activity of designed structures was 
studied in silico against various cancer-related protein kinases and compared with 
that of known inhibitors. Obtained docking scores, MM-PBSA/MM-GBSA binding 
energy, and RF-Score-VS affinities suggest that N1-(3-(trifluoromethyl) phenyl) 
isophthalamide could be considered as promising scaffold for the development of 
novel protein kinase inhibitors which are able to target the inactive conformation of 
vascular endothelial growth factor receptor.

Keywords: terephthalic and isophthalic derivatives, anticancer activity, VEGFR, virtual 
screening, MM-PBSA/MM-GBSA, docking

1. Introduction

Since its approval in 2001, imatinib has revolutionized drug therapy of chronic 
myeloid leukemia (CML) [1, 2]. Imatinib is a selective inhibitor of a specific pro-
tein – BCR-ABL tyrosine kinase, which biosynthesis is encoded by the Philadelphia 
chromosome, which is characteristic for all CML cells [3, 4]. High and uncontrolled 
activity of this protein leads to disruption of cell signaling causing a rapid growth of 
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the tumor tissue. Imatinib has secured more than 80% 8-year overall survival rate in 
patients with CML, almost double compared to the previous drugs generation [5, 6].

The clinical success of imatinib has fueled an explosion in the protein kinase 
inhibitor research. The strategy of blocking signaling pathways mediated by an 
overexpression or deregulation of certain protein kinases has proven to be effective in 
treating many other cancers as well as some non-cancer diseases. More than seventy 
drugs of this class have now been registered, targeting dozens of various kinase 
targets, which constitutes about 10% of the total number of kinases encoded by the 
human genome [7, 8]. Besides BCR-ABL, another large group of drugs targets various 
growth factors receptors (epidermal, platelet, vascular endothelial, etc.) [9, 10].

The use of protein kinase inhibitors for cancer treatment has some limitations. 
First of all, an important problem is drug resistance in patients. Resistance can occur 
initially (primary resistance) or over time (secondary resistance) [11–13]. One of 
the key mechanisms of secondary resistance is the emergence of the mutants of the 
primary target, which appears with the disease progression. Binding affinity of an 
inhibitor to the mutant target is significantly lower. In some cases, such mutations 
completely block binding [14–19].

The second key consideration is inhibitor selectivity. Since all protein kinases 
accept ATP as a substrate, there is a high structural similarity between the active sites 
of different protein kinases. An inhibitor usually does not act exclusively on its main 
target but can suppress, to some degree, the activity of some or many other kinase 
targets. So, such multitargetness can be a positive (e.g. when cancer cells express 
several types of kinases) or a negative factor – side inhibition can be the cause of 
adverse effects [20, 21]. Selectivity modulation becomes even more problematic with 
the disease progression as it is accompanied by further genetic degradation of cancer 
cells [22, 23]. For example, in the case of CML, the optimal choice for a second-line 
therapy inhibitor between dasatinib, bosutinib, and nilotinib can be made based on a 
personalized assessment of the actual kinase overexpression profile [24].

Since the efficacy of treatment with protein kinase inhibitors depends signifi-
cantly on the time of treatment initiation, the most important property of a drug is its 
actual inhibitory activity, including that toward mutant targets. For example, nilo-
tinib, a second-generation structural analog of imatinib, has been initially considered 
as a second-line therapy option [25]. Further investigations have showed that this 
drug could be more effective than imatinib as a first-line therapy being a more potent 
inhibitor of BCR-ABL and its mutants [26, 27].

Therefore, the search for the novel highly effective inhibitors of therapeutically 
relevant protein kinases with a given selectivity and the ability to suppress mutant 
targets is still an important scientific challenge.

In this context, the recent advances in the development of molecular modeling 
techniques for the search of biologically active compounds cannot be overlooked. 
The literature describes cases of successful application of pharmacophore screening 
[28, 29], molecular docking, and molecular dynamics [30–32] to identify new chemi-
cal structures with anti-kinase activity. In addition, the improvements in technical 
and theoretical background of machine learning algorithms have made it possible to 
adapt them, inter alia, for the modeling of protein-ligand interactions [33–36].

The present work continues our previous studies on the design of novel poten-
tial protein kinase inhibitors using directed pharmacophore design and molecular 
modeling [37, 38]. In this case, the object of such studies is new derivatives of tere-
phthalic and isophthalic acids, which are designed in a manner to give the structures 
significant pharmacophore similarity to known type 2 protein kinase inhibitors. 
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The potential anti-kinase activity of the designed terephthalic and isophthalic acids 
derivatives has been investigated by molecular docking, molecular dynamics, as well 
as by using machine learning model for virtual screening RF-Score-VS [39].

2. Materials and methods

2.1 Design of target structures

X-ray diffraction data have revealed a number of common patterns in terms of 
binding of known protein kinase inhibitors to their targets. Two large groups of 
inhibitors can be distinguished. Type 1 inhibitors are direct ATP competitors and bind 
to the active center of the biologically active conformation of a protein kinase. Most 
of the approved inhibitors are type 1 inhibitors. However, in the case of imatinib, 
the binding is of a slightly different nature. The loop that links the two main lobes of 
BCR-ABL tyrosine kinase is flexible and in a certain position opens up an additional 
allosteric pocket adjacent immediately to the ATP binding site, thus extending the 
active center of the enzyme [40]. At the same time, the structure of the ATP pocket 
changes significantly, so it is unable to accept the natural substrate. Such inactive 
conformations can be seen for many others protein kinases. Inhibitors that bind to this 
inactive conformation of a protein kinase target are classified as type 2 inhibitors [41]. 
The described classification to this most common inhibitor classes is not perfectly 
strict, since there are stable intermediate kinase conformations with different vol-
umes of allosteric pocket available and it is hard to classify ligand binding as type 1 or 
type 2 unambiguously [42].

In the structure of type 2 inhibitors, a number of key structural and pharmaco-
phore features can be distinguished. Firstly, there is a benzamide fragment, most 
often with the 3-trifluoromethyl substituent in the benzene ring, which facilitates the 
formation of the necessary interactions, including hydrogen bonds, in the allosteric 
pocket of the active center. Secondly, the structure of type 2 inhibitors contains a 
heteroaromatic system, which in some sense imitates adenine but can form hydrogen 
bonds in the modified ATP pocket, which has been subjected to the structural changes 
upon the transition of a kinase to the inactive conformation. The relative orientation 
of these structural fragments is managed by the linker, which is usually represented 
by a benzene ring containing substituents in different positions [43–46].

In our previous studies, we have used the 4-methylbenzamide linker as a frame-
work for constructing novel type 2 protein kinase inhibitors and that are allowed us 
to identify novel bioactive compounds with actual inhibitory activity against protein 
kinases [37, 38].

In this study, we have proposed that isophthalic and terephthalic acids transform 
into appropriate amides as a promising linkers for developing potential protein 
kinase inhibitors (Figure 1). In our opinion, the use of such linkers may be favorable 
for several reasons. For instance, these structures contain an amide bond, which is 
necessary for the formation of hydrogen bonds in the allosteric pocket of a kinase 
binding pocket. In addition, the overall size of linkers corresponds to those in the 
structures of known inhibitors. Moreover, the presence of a second carboxylic group 
may lead to the formation of hydrogen bonds in the ATP pocket. If compared to 
4-methylbenzamide this linkers are more rigid, which may have a positive effect on 
kinase binding affinity. It is also important to note that we have used both isophthalic 
and terephthalic fragments to more fully study the conformational space of the linker 
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region. By varying the mutual arrangement of carbonyl groups, it could be possible to 

determine which linker is more suitable to be placed in a kinase’s binding site.
On the basis of selected linkers, we have generated a library of novel chemical 

structures by introducing different amines into the carbonyl groups of phthalic acids 

Figure 1. 
Pharmacophore features of approved type 2 protein kinase inhibitors and proposed structures. Structural 
fragments that bind to different regions of binding site are highlighted with red (ATP pocket), blue (allosteric 
pocket), and orange (linker). Interactions were obtained by PLIP [47].
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to study their potential anti-kinase activity by molecular modeling and molecular 
docking. A total of 28 unique chemical structures are generated (Figure 2). As 
substituents at carbonyl groups of phthalic linkers, we have used structural frag-
ments of known inhibitors: 3-trifluoroaniline (nilotinib, ponatinib, and sorafenib), 
4-(4-aminophenoxy)-N-methylpyridine-2-carboxamide (sorafenib), and other 
amines convenient in terms of commercial availability and possibility of further 
derivatization.

2.2 Docking

For molecular docking experiments, 3D structures of studied phthalic acid deriva-
tives are generated using the Cactus service [48]. For docking studies, we have used 
open-source software AutoDock Vina [49] as Qvina 2.1 [50] modification.

The 3D structures of 33 cancer-relevant protein kinases are used as docking recep-
tors. Their structures are obtained from the database of experimental X-ray data The 
Protein Data Bank (PDB) [51]. Most of the receptors are protein kinases of different 
families. Two receptors are poly (ADP-ribose)-polymerases as this protein class is also 
used for targeted cancer therapy [52] (Table 1).

Docking of the constructed ligands and receptors is performed using “each to 
each” scheme. Coordinates of active centers for Qvina are generated based on a visual 
assessment of the location of native ligands from PDB complexes with an increase of 
approximately 10–30% in each dimension. The Qvina search exhaustiveness param-
eter is set to 24. The preparation of receptors and ligands for the docking has been 
performed using Chimera 1.13.1 [54].

Figure 2. 
The generation scheme of studied phthalic acids derivatives. Letters a-h represent amine substituents. Letters I, T, 
and IT represent what type of linker was used for a structure: Isophthalic, terephthalic, or both.
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PDB 

code

Protein 

family

Original (native) ligand Ligand 

binding type

1 1r0p c-Met Alkaloid K-252a 1

2 2bfy Aurora-B Hesperadin 1

3 2hyy Abl Imatinib 2

4 2in6 Wee1 PD311839 1/2

5 2pl0 Lck Imatinib 2

6 2vrz Aurora-B ZM447439 1/2

7 3bbt ErbB4 

(Her4)

Lapatinib 1/2

8 3cs9 Abl Nilotinib 2

9 3gcs P38-Map Sorafenib 2

10 3hng Vegfr1 N-(4-chlorophenyl)-2-[(pyridin-4-ylmethyl)amino]

benzamide

2

11 3og7 Braf V600E PLX4032 2

12 3 pp0 ErbB2 

(Her2)

2-{2-[4-({5-chloro-6-[3-(trifluoromethyl)phenoxy]

pyridin-3-yl}amino)-5H-pyrrolo[3,2-d]pyrimidin-

5-yl]ethoxy}ethanol

2

13 3qrj Abl T315I Rebastinib (DCC-2036) 2

14 3wze Vegfr2 (kdr) Sorafenib 2

15 3zbf Ros1 Crizotinib 1

16 4ag8 Vegfr2 Axitinib (AG-013736) 2

17 4asd Vegfr2 Sorafenib 2

18 4at3 Trkb CPD5N 1/2

19 4b8m Aurora-B VX-680 1/2

20 4c2w Aurora-B ATP 1

21 4dce Alk (3S)-N-(4-methylbenzyl)-1-{2-[(3,4,5-

trimethoxyphenyl)amino]pyrimidin-4-yl}

piperidine-3-carboxamide

1/2

22 4g5p Egfr T790M BIBW2992 1

23 4lmn Mek1 GDC0973 + ATP —

24 4tvj* Parp2 Olaparib —

25 5ew9 Aurora A MK-5108 1

26 5hi2 Braf Sorafenib 2

27 5kup Btk 6-{tert}-butyl-8-fluoranil-2-[3-(hydroxymethyl)-4-

[1-methyl-6-oxidanylidene-5-(pyrimidin-4-ylamino)

pyridin-3-yl]pyridin-2-yl]phthalazine-1-one

28 5kvt Trka Entrectinib 1

29 5toz** Jak3 PF-06651600 1

30 5y5u Syk 4-[(1-methylindazol-5-yl)amino]-2-(4-

oxidanylpiperidin-1-yl)-8H-pyrido[4,3-d]

pyrimidin-5-one

1
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2.3 Molecular dynamics

After the docking step, the most promising protein-ligand complexes have been 
subjected to molecular dynamics simulation for more accurate binding affinity esti-
mation. The complexes for the simulation are selected based on the obtained docking 
scores. The open-source GROMACS 2019.1 [55] software is used to conduct molecu-
lar dynamics experiments. The standard molecular dynamics protocol includes a 
minimization step, two 200 ps equilibration steps, and a final 2 ns simulation. The 
resulting molecular dynamics trajectory is used to estimate the binding energy, which 
is performed in three ways. All ligands are parameterized by Acpype [56]. Complete 
md-protocol is described in previous work [37].

The first two calculation methods include the implementations of the molecular 
mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics-
generalized Born surface area (MM-GBSA) [57]. These methods are widely used to 
estimate inhibitory activity for protein-ligand complexes. Their main advantage is 
the relatively high accuracy of obtained results along with a simpler system setup 
procedure if compared to the thermodynamic integration or free energy perturbation 
methods [58]. A relatively short simulation time is chosen based on the published 
evidence that the accuracy of the MM-PBSA/MM-GBSA protocols is in many cases are 
independent of simulation time, and in some experiments a short simulation time is 
preferable [59].

In our case, the MM-PBSA/MM-GBSA binding energy calculation has been carried 
out using two kinds of softwares: g_mmpbsa [60] and gmx_MMPBSA [61]. The 
main difference between these programs, apart from the technical implementation, 
is that g_mmpbsa only calculates the Poisson-Boltzmann surface area (PBSA) vari-
ant, whereas gmx_MMPBSA allows to also using the generalized Born surface area 
(GBSA) and also provides entropy change estimation.

The third approach used provides the estimation of the binding affinity of the 
studied phthalic derivatives applying the RF-Score-VS (Random Forest-based scoring 
function for Virtual Screening) machine learning algorithm [39]. This algorithm uses 
a “set of decision trees” model trained on a large set of active and inactive docking 
poses. The main purpose of RF-Score-VS is to refine the estimation of docking results. 
In training procedure for this model, a set of deliberately inactive ligands are used 
aimed to increase the probability of distinguish real “hits” between the structures 
with the highest scores. This is what makes RF-Score-VS different from many other 
rescoring protocols, including RF-Score v3 [62] from the same authors, which are 
focused on more accurate numerical estimation of binding energy for known ligands. 
According to the published data [39], the RF-Score-VS model is significantly superior 

31 6kzd Trkc 3-[2-[6-(4-aminofenyl)imidazo[1,2-a]pyrazin-3-yl]

ethynyl]-2-methyl-{N}-[3-(4-methylpiperazin 

−1-yl)-5-propan-2-yl-phenyl]benzamide

2

32 6nec Ret Nintedanib 1

33 7kk4* Parp1 Olaparib —

*A receptor is poly (ADP-ribose)-polymerase.
**A ligand is a covalent inhibitor – it binds to the receptor by forming a chemical bond [53].

Table 1. 
Receptors used for the docking studies.
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to the AutoDock Vina scoring function in terms of the probability of finding a real 
inhibitor. In our study, we have extended the scope of RF-Score-VS uses by apply-
ing it not to the obtained docking pose, but to the frames of the resulting molecular 
dynamics trajectory. In our opinion, this approach can be more accurate as it takes 
into account time-dependent changes of the protein-ligand complex reflected by the 
simulation. At the same time, the computing expenses remain acceptable.

In all three methods, we did not use the full 2-ns-long trajectory of the complex, 
but every 20th frame skipping first 200 ps of the production run.

3. Results and discussion

After docking stage, we obtained 924 complexes of the studied structures along 
with the corresponding docking scores representing binding energy estimation. In 
order to study any binding patterns, the resulting docking poses were filtered based 
on their binding energy. Docking scores better or equal to −11.5 kcal/mol were used as 
a threshold for filtering. This threshold was chosen based on our previous experience. 
After filtering, we obtained 133 docking poses out of 924 that showed such a high 
binding energy. We investigated then the distribution of filtered docking poses by 
linker type (isophthalic or terephthalic), by the most frequent amine fragments and 
by receptor type.

Out of 133 poses with high docking scores, 101 poses corresponded to the struc-
tures containing an isophthalic linker; therefore, 22 poses belonged to the structures 
having terephthalic linker. This ratio remained virtually unchanged when the filtration 
threshold was increased: 63/12 for the threshold of 12.0 kcal/mol and better, 30/8 at 
12.5 kcal/mol, and 20/5 at 13.0 kcal/mol.

The distribution of amine substituents in high-scoring docking poses is shown in 
Figure 3. Amines containing 3-trifluoromethylaniline are the most frequent.

The most frequent receptors in protein-ligand complexes with a score of −11.5 kcal/
mol and better are trkc kinase (PDB: 6kzd), abl family (PDB: 3cs9, 2hyy), and vegfr 
family (PDB: 3hng, 3wze, 4asd), as shown in Figure 4. It is important to note that all of 
these receptors are essentially protein kinases being in inactive conformation accept-
ing type 2 ligands, which indirectly confirms the correctness of the chosen approach to 
the design of studied phthalic derivatives.

The obtained docking results indicate that the isophthalic linker, together with the 
attached 3-trifluoromethylaniline, might be a promising structural fragment in terms 
of its ability to bind to protein kinases as type 2 inhibitor.

At the second stage, we selected 25 complexes of the studied structures that were 
obtained during the docking step to refine ligand binding energies using molecular 
dynamics methods. The complexes for molecular dynamics simulation were chosen 
based on their docking score and to get a certain degree of diversity in chosen linkers 
and receptors. Out of 25 complexes, seven had terephthalic linker and 18 contained 
isophthalic linker.

After conducting a 2-ns simulation for each complex, we calculated the binding 
energy via processing the obtained trajectory frames using three methods: MM-PBSA 
(g_mmpbsa), MM-GBSA (gmx_mmpbsa), and rescoring with the RF-Score-VS scor-
ing function. The last is based on a machine learning model (Table 2).

It was of particular interest for us to compare the results obtained by three 
methods of binding energy estimation. In our case, the values of electrostatic and 
van der Waals interactions obtained by g_mmpbsa (MM-PBSA) and gmx_mmpbsa 
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(MM-GBSA) are in strict linear correlation with each other (Figure 5), which 
indicates that the methods for calculating the molecular-mechanical component of 
binding energy in these two tools are uniform.

When taking into account the solvation component, the correlation between this 
two methods decreases but remains high with the correlation coefficient R2 = 0.76. 
The decrease in correlation can be naturally explained by the differences in the 
estimation of the solvation component of binding energy applying the Poisson-
Boltzmann surface area and the generalized Born surface area. When the entropic 
component of gmx_mmpbsa is added, the correlation coefficient decreases slightly 
more but remains high (R2 = 0.66). Thus, in general, both used programs show similar 
results for the same complexes.

We also compared the results obtained from MM-PBSA/MM-GBSA calculations 
with those of RF-Score-VS machine learning algorithm. The RF-Score-VS values mod-
erately correlated both with the g_mmpbsa (R2 = 0.50) and gmx_mmgbsa (R2 = 0.51) 

Figure 3. 
Frequency of different amine fragments appearing in docking poses with a score of −11.5 kcal/Mol and better.

Figure 4. 
Distribution of docking poses with a score of −11.5 kcal/Mol and better by receptor type.
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pdb Linker Amines gmx_mmpbsa, kcal/mol RF-score g_mmpbsa, kJ/mol

v.d.w. electr. entr. total v.d.w. electr. total

3wze iso c a −71,1 −26,2 9,9 −48,8 6,5 −297,4 −54,7 −150,5

6kzd iso a f −65,8 −40,7 17,8 −31,4 6,3 −275,3 −85,14 −95,59

6kzd iso a h −62,7 −4,4 16,2 −31,4 6,1 −262,3 −9205 −111,5

3cs9 iso a h −72,6 −13,5 6 −53,3 6,3 −303,5 −28,01 −144,9

6kzd iso a e −70,1 −20 9,9 −45,6 6,2 −293,4 −41,89 −137,9

6kzd tere a h −69,6 −19 18,7 −38,8 6,2 −291,3 −39,37 −141,1

6kzd iso d h −59,3 −2,4 13,3 −34,5 6,0 −248 −5111 −123,5

6kzd tere d e −58,1 −29,8 8,6 −39,3 6,0 −243,1 −62,39 −128,4

6kzd iso d e −48,5 −30,7 14,4 −21,5 6,0 −202,8 −64,39 −76,8

3 pp0 iso d e −55,6 −9,1 7,7 −34,1 6,0 −232,6 −19,04 −96,72

6kzd tere a e −63,8 −5,5 15,2 −27,4 6,2 −266,7 −11,69 −125,9

5hi2 iso d h −57,4 −27,4 7 −46,6 6,1 −240,2 −57,45 −118,9

3cs9 iso d h −62,6 −14 13,2 −41 6,2 −262 −29,21 −128,6

3wze iso a h −74 −30,8 7,4 −64 6,5 −309,6 −64,57 −157

3wze tere d e −51,9 −30,3 8 −34,7 6,0 −217 −63,19 −85,65

6kzd tere a g −69,2 −12,5 9,9 −40,8 6,4 −289,5 −26,05 −134,3

3cs9 iso c a −77,1 −37,1 9,1 −47,9 6,3 −322,3 −77,15 −144,4

3cs9 iso d f −68 −21,6 13,8 −46 6,1 −284,4 −43,96 −141,8

6kzd tere a f −69,8 −22,4 14,2 −37 6,2 −291,8 −46,92 −149

4asd iso c a −79,9 −33,8 10,1 −53,6 6,5 −334,2 −70,75 −155,3

3hng iso a d −64,9 −22,6 16 −36,8 6,3 −271,3 −47,31 −119,6

3 pp0 tere d h −50,8 −15,6 11,5 −26,7 6,0 −212,6 −32,59 −86,55
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4ag8 iso c a −76,4 −34,4 9,3 −53,5 6,5 −319,5 −71,87 −150,8

4ag8 iso a d −65,4 −23,2 11,2 −44 6,2 −273,6 −49,12 −138,8

4ag8 iso d f −65,2 −33,1 7,7 −58 6,2 −272,9 −69,09 −148,4

Reference ligands

2hyy imatinib −67,4 −20,1 5,3 −50,5 6,2 −282,1 −42,4 −154,7

3cs9 nilotinib −72,8 −28,1 6,1 −56,1 6,6 −304,6 −57,8 −183,1

3 pp0 original −71 −19,5 12,7 −50,2 6,5 −297,1 −41,1 −143,6

6kzd original −82,6 −37,7 8,2 −61 6,4 −345,5 −66,2 −206,9

Table 2. 
Calculated binding affinities of studied and reference structures to their receptors.
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final scores. It is noteworthy that the correlation between RF-Score-VS values and 
the van der Waals component of MM-PBSA/MM-GBSA binding energy is quite high 
(R2 = 0.73) and extremely low for the electrostatic component (R2 = 0.13).

All used methods for binding energy estimation are known to be more efficient for 
the relative ranking of potential inhibitors than for the precise calculation of absolute 
binding energy. Therefore, we have used known inhibitors as reference structures. 
In most cases, the studied phthalic derivatives showed worse binding energy scores 

Figure 5. 
Correlations between binding affinities obtained by different approaches.
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compared to known inhibitors. The latter, in turn, were characterized by relatively 
high binding energy scores regardless the applied method for the calculation. Among 
the known inhibitors, the highest RF-Score-VS scores were observed for nilotinib 
(PDB id: 3cs9). Extremely high MM-PBSA/MM-GBSA energies were obtained for the 
native ligand of trkc kinase complex (PDB id: 6kzd). In the case of abl-protein kinase, 
nilotinib, being a second-generation inhibitor, showed higher estimated activity 
compared to the first-generation drug imatinib.

Among the studied phthalic acid derivatives, two structures can be distinguished 
which showed high binding energy scores calculated by all three methods. Both of 
these structures are isophthalic acid derivatives and contain a 5-imidazolyl-3-tri-
fluoraniline fragment of nilotinib. The second carboxyl group in these structures is 
modified by 4-(4-aminophenoxy)-N-methylpicolinamide a (sorafenib fragment) and 
(2-fluorophenyl) (piperidin-1-yl) methanone h, respectively. If compared to known 
inhibitors, high in silico inhibitory activity of these structures was observed for vegfr 
receptors (pdb ids: 4asd, 4ag8, 3wze) and, to a slightly lesser extent, for abl (3cs9).

Several complexes of two aforementioned structures have been subjected 
to hydrogen bonds analysis. For the frames of the molecular dynamics trajectory, 
hydrogen bonds are searched using GROMACS hbond module. The frames with 
the highest number of hydrogen bonds have been visualized. Visualization shows 
that this structures bind to the active center similar to known type 2 inhibitors: the 
3-trifluoromethylaniline fragment occupies the allosteric pocket and the isophthalic 
acid fragment plays a linker role. In both cases, the allosteric amide bond forms two 
hydrogen bonds with amino acid residues of asparagine and glutamine, which is 
typical for type 2 inhibitors. (Figure 6). Regarding the ATP binding site, our analysis 
shows that the carbonyl group of phenyl (piperazin-1-yl) methanone may be involved 
in hydrogen bonding. In the case when 4-(4-aminophenoxy)-N-methylpicolinamide 
is located in this region, hydrogen bonds can be formed by oxygen atoms of pheno-
lic and carbonyl groups. Hydrogen bonds of the non-allosteric amide bond of the 
phthalic linker have not been detected.

Figure 6. 
Structure of most promising structures and the visualization of their binding to receptors. The binding of 
3-(4-(2-fluorobenzoyl)piperazine-1-carbonyl)-N-(3-(4-methyl-1H-imidazol-1-yl)- 5-(trifluoromethyl)phenyl) 
benzamide to vegfr is shown on the left (PDB id: 3wze, h-bonds: Cys-106, Asp-183, Glu-72, Arg-164. The binding 
of N1-(3-(4-methyl-1H-imidazol-1-yl)- 5-(trifluoromethyl)phenyl)-N3-(4-((2-(methylcarbamoyl)pyridin-
4-yl)oxy)phenyl) isophthalamide to vegfr is shown on the right (PDB id: 4asd, h-bonds: Cys-151, Asn-155, 
Asp-228, Glu-117).
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4. Conclusions

In this study, 28 unique chemical structures of new derivatives of terephthalic and 
isophthalic acids have been studied. These structures are designed in such a way as to 
give the structures a significant pharmacophore similarity with known type 2 protein 
kinase inhibitors. Three-dimensional structures of 33 protein kinases associated with 
cancer have been used as docking receptors. At the same time, most of the receptors 
represent protein kinases of different families. The obtained docking parameters, the 
binding energy of MM-PBSA/MM-GBSA, and the affinity of RF-Score-VS suggest 
that the isophthalic linker together with the attached 3-trifluoromethylaniline may 
be a promising structural fragment in terms of its ability to bind to protein kinases 
as a type 2 inhibitor. In comparison with known inhibitors, high inhibitory activity 
of isophthalic structures in silico are observed for vegfr (pdb ids: 4asd, 4ag8, 3wze) 
receptors and to a somewhat lesser extent for abl (3cs9). If compared to known 
inhibitors, high in silico inhibitory activity of these structures was observed for 
vegfr receptors (pdb ids: 4asd, 4ag8, 3wze) and, to a slightly lesser extent, for abl 
(3cs9). At the same time, the use of terephthalic acid for this purpose is ineffective. 
The most promising structural fragment is 1-[3-(trifluoromethyl)phenyl]benzene-
1,4-dicarboxamide. By introducing different substituents to the free amino group to 
this structure, the anti-kinase activity of the obtained chemical compounds can be 
expected.
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