
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

149,000 185M

TOP 1%154

6,100

Chapter

Perspective Chapter: Deep
Reinforcement Learning for
Co-Resident Attack Mitigation in
The Cloud
Suxia Cui and Soamar Homsi

Abstract

Cloud computing brings convenience and cost efficiency to users, but multiplexing
virtual machines (VMs) on a single physical machine (PM) results in various
cybersecurity risks. For example, a co-resident attack could occur when malicious
VMs use shared resources on the hosting PM to control or gain unauthorized access to
other benign VMs. Most task schedulers do not contribute to both resource manage-
ment and risk control. This article studies how to minimize the co-resident risks while
optimizing the VM completion time through designing efficient VM allocation poli-
cies. A zero-trust threat model is defined with a set of co-resident risk mitigation
parameters to support this argument and assume that all VMs are malicious. In order
to reduce the chances of co-residency, deep reinforcement learning (DRL) is adopted
to decide the VM allocation strategy. An effective cost function is developed to guide
the reinforcement learning (RL) policy training. Compared with other traditional
scheduling paradigms, the proposed system achieves plausible mitigation of co-
resident attacks with a relatively small VM slowdown ratio.

Keywords: cloud computing, risk mitigation, resource management, co-resident
attack, reinforcement learning

1. Introduction

Cloud Computing, which has its origins in expanding the Internet, aims to provide
remote and scalable computing and storage resources to its customers. Users from
small businesses in a locally resource-limited environment can manipulate and store
large datasets for real-time processing with cloud services. The cloud platform has
gradually reshaped daily lives because it has been recognized as a convenient way to
transmit and store data in the big data era. Organizations can choose from the public,
private, or hybrid cloud that combines the public and private deployment model
features. The term “XaaS” is coined for the service-oriented architecture, emphasizing
that anything can be treated as a service under the cloud computing environment.
Examples of cloud delivery services include infrastructure as a service (IaaS),

1

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

platform as a service (PaaS), and software as a service (SaaS) [1]. Recently, function
as a service (FaaS) further expanded the backend as a service (BaaS) offering. Under
each delivery model, a cloud service provider (CSP) is responsible for allocating
enough resources to maintain quality of service (QoS) to the users and protect their
data from security risks.

Virtualization has been adopted by most cloud computing platforms to profit from
the “pay as you go (PAYG)”model [2]. Virtualization is an idea generated from IBM’s
mainframe platform in the early 1960s. After entering the twenty-first century, it was
successfully utilized in cloud computing that can bring down the cost of maintaining a
large-scale system. It converts a physical server into numerous VMs, rented out to
several occupants [3–7]. This VM-PM relationship is illustrated in Figure 1.

The apparent relationship between PMs running and power consumption places a
high demand on a strategy for energy minimization in this configuration [8]. Security
and data privacy are other concerns for cloud computing platforms. Attackers will
seek to exploit any vulnerability to achieve various malicious goals on the victim’s
network, software, and databases. The co-resident attack is one of the prevalent
cybersecurity risks resulting from virtualization. Ideally, two neighboring VMs are
isolated from each other when running their tasks. However, in reality, each co-
located VM will depend on the same PM where hardware, like CPUs or memory
elements, is shared by all the VMs. Therefore, a VM’s private information may be
accessed by its neighboring VM by launching side-channel attacks [9–12], as shown in
Figure 2. Here, a hypervisor or virtual machine monitor (VMM) creates and runs
VMs on a hosting PM. The arrows illustrate the route of side-channel attacks. A side-
channel attack is a significant security challenge that prevents many organizations
from adopting cloud computing technology. Although recently deep learning algo-
rithms have proven to be effective in cloud resource management [13–16], few paid
attention to side-channel attack avoidance at the same time.

To fill in this gap, we developed a novel deep reinforcement-learning (DRL) based
dynamic VM allocation approach to optimize the trade-offs between the VM completion
and the co-resident risks mitigation. The main contributions of this paper are as follows:

• Threat model design: A time-sensitive zero trust threat model is developed for
co-resident vulnerability analysis. The model enables the tracking of VM
co-existent pairs on the same PM.

Figure 1.
VMs and PMs in a data center via virtualization.

2

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

• DRL adoption to co-resident risk mitigation: This article is the first to investigate
the different states, actions, and rewards of DRL to fit it into cloud computing
side-channel attacks. The rewards guide the VMM decision-making.

• Simulation platform implementation: The proposed system accepts tasks
dynamically at runtime and analyzes cloud co-resident risks at each timestep for
optimized scheduling algorithms.

2. Related works: Secure cloud resource management

Resource management alone without security consideration in a cloud computing
environment is already very challenging. Multi-tenant environments allow attackers
to begin a co-resident infiltration and steal the victim’s information by side channels.
The risks that attackers pose to VMs on the same hypervisor are growing security
concerns and are being addressed differently. This section will discuss established
current resource management approaches with and without security awareness. Three
categories of methodologies are commonly used: Heuristic, game theory, and machine
learning (ML).

The exploration of heuristics and meta-heuristics to solve nondeterministic poly-
nomial time (NP) problems are growing amid the difficulties to solve them using
traditional methods [17]. Gawali and Shinde [18] combined a modified analytic hier-
archy process (MAHP), bandwidth aware divisible scheduling (BATS), and the lon-
gest expected processing time preemption (LEPT) to achieve improved performance.
Qin et al. [20] took the idea of “ant colony optimization” from [19] and proposed a
probabilistic algorithm that can simultaneously maximize the revenue of communi-
cations and minimize the power consumption of PMs. Similarly, Tawfeek et al. also
adopted ant species’ nature and presented a random optimization search approach for
allocating the incoming jobs to the virtual machines [21]. The proposed method
outperformed the popular first come first serve method. Patel introduced a hybrid
algorithm that used a modified honeybee behavior-inspired algorithm for priority-
based tasks and an enhanced weighted round-robin algorithm for non-priority-based
tasks [22] to balance the workload over the cloud dynamically. When using heuristic

Figure 2.
Side-channel attacks in cloud computing.

3

Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation…
DOI: http://dx.doi.org/10.5772/intechopen.105991

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

methods with the consideration of co-resident attacks, various policies were com-
pared. Jia et al. [23] proposed a VM allocation method to optimize load balancing and
reduce energy consumption and security risks by managing CPU utilization of the
hosting PMs. Miao et al. offered two metrics to outline co-residency and conflict of the
cloud [24]. Both placement and migration algorithms mediate differences between
tenants to alleviate co-resident attacks in the cloud proactively. Han et al. formulated a
set of security metrics and a quantitative model to assign new VMs to the server with
the most VMs [25]. The research uncovered that the server’s configuration, over-
subscription, and background traffic had a substantial impact on the ability to stop
attackers from co-locating with the targets.

Yang et al. [26] explored a simplified algorithm for energy management in cloud
computing. The paper centered around establishing a mathematical model to calculate
computing nodes’ stability, configuring a game-theoretic cooperative model for the
task of scheduling cloud computing, and examining the problem as a multi-stage
sequential game. Patra et al. presented the task as a player and the VM as a strategy in
[27]. A non-cooperative game scheduling and a task balance scheduling algorithm are
compared to collect the node’s average task processing speed. Therefore, it was deter-
mined that the game-theoretic algorithm proposed could improve energy manage-
ment in cloud computing. In [28], the cooperative behavior of multiple cloud servers
was studied. An evolutionary mechanism was presented in the hierarchical coopera-
tive game model for VMs deployment strategy to improve the efficiency in the public
cloud environment. Jia et al. modeled several basic VM allocation policies using game
theory to achieve a quantitative analysis, while also presenting the attack effective-
ness, coverage, power consumption, workload balance, and cost under the VM allo-
cation policies and solving the mathematical solution in CloudSim [23]. Their results
found that to reduce the efficiency rates for the attacker, the cloud provider should
apply a probabilistic VM allocation policy. Narwal et al. proposed a payoff matrix and
a decision tree for any number of users [29, 30]. When a unique user was selected, the
choices of investing in security were assessed until equilibrium was reached. Security
games are a way of blocking the attacker’s ability to locate the VMs they are searching
for. Han et al. proposed a policy pool with multiple VM allocation policies from which
to select the policy that will be used with a certain probability [31].

Difficulties regarding energy efficiency in cloud computing can also be addressed
using machine learning-based techniques [32]. Witanto et al. employed a neural
network-based adaptive selector procedure to arrange the VMs on the physical servers
in data centers [33]. Pahlevan et al. presented a hyper-heuristic algorithm to exploit
both heuristic and ML-based VM allocation methods by selecting the best one during
run-time [32]. Zhang et al. [34] suggested an auction-based resource allocation
scheme to represent a machine learning classification or regression problem. They
outlined machine learning classification and posed two resource allocation prediction
algorithms rooted in linear and logistic regression. Liu et al. presented a reinforcement
learning-based approach to allow complex scenarios to efficiently manage resources
[35]. In order to do so, they used neural networks to grasp the goal of the research
model, RL to enhance the model, and E-greedy methodology to expand the RL pro-
cess. Their approach lowered job delay for hybrid scenarios. ML-based methods have
been proposed to fight against co-resident attacks focusing on different factors, such
as minimizing the time of a malicious VM co-location. Joseph et al. [36] used tradi-
tional ML algorithms, such as support vector machine (SVM), naïve bayes, and ran-
dom forests to detect malware, following a self-healing methodology to power off the
attacked VMs and restore them to healthy conditions. In reality, there is a concern

4

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

with the amount of time it takes to implement a solution to mitigate VMs in the event
of co-resident attacks. To the best of our knowledge, no current ML-based approach
succeeded in mitigating co-resident attacks based on VM mitigation, while minimiz-
ing the VM downtime.

3. Threat model

There are many approaches to fight against co-resident attacks, including hard-
ware modification, intrusion detection, secure VM allocation, and migration. Threat
model building is crucial to guide proper defense. This section goes through the study
of existing models and presents our proposed threat model with detailed variable
selections.

3.1 Modeling co-resident attacks

Many optimization models were proposed to fight against co-resident attacks.
Abazari et al. suggested a multi-objective optimization method to calculate alternative
responses with the least amount of threat through graphics and proper attack coun-
termeasures [37]. Liu et al. considered the three main factors which lead to the
likelihood of malicious VMs co-locating with normal users [38]. Berrima et al. used a
VM placement strategy to reduce the co-location attacks with complete resource
optimization. Their approach presents a trade-off between security and VM startup
delay [39]. Hasan et al. proposed a co-resident attacks mitigation and prevention
(CAMP) model to separate malicious and benign VMs by comparing existing models
over data security, data survivability, and user storage overhead [5]. Other works
focused on a probabilistic co-residence coverage optimization model, while combining
a data partition technique that involves arranging servers randomly [40, 41].

3.2 Proposed threat model with detailed design components

Our proposed approach takes the time-sensitive risk level from co-resident attacks
into account and searches for the solution to the dynamic VM allocation problem
through DRL. Research shows that the co-resident attack will have a total cycle of t3,
consisting of three stages: probe, construct, and launch. Probe and construct generate
a configuration interval. This is illustrated in Figure 3. To avoid the attacks, the
defender must take action before the launching starts. In other words, before the
configuration interval t2 is reached [42].

Our co-resident risk model is developed in a similar scenario to [43]. The choice of
variables is listed in Table 1.

The co-resident risk indicator can be obtained through the following equations:

rcr vi, vj
� �

¼ ts við Þ � CoRes vi, vj
� �

� ts vj
� �

(1)

CoResFactor ¼
α0 for CoRes vi, vj

� �

< t1

α1 for CoRes vi, vj
� �

∈ t1, t2½ Þ

α2 for CoRes vi, vj
� �

≥ t2

8

>

>

<

>

>

:

(2)

5

Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation…
DOI: http://dx.doi.org/10.5772/intechopen.105991

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

The threat score, ts við Þ, reflects the potential risk to VMi. It is a floating number
between 0 and 1, with 0 representing no risk and 1 representing the highest risk. As
illustrated in Eq. (1), the risk is also proportional to the co-resident duration time
recorded in a matrix, CoRes vi, vj

� �

.
The VM’s co-resident rewards factor, CoResFactor, is the crucial parameter in

guiding RL training. It can be determined by where the co-resident attack cycle status
of the VM resides. For example, the time of a co-existing VM pair on the same PM for
a period of less than t1 is considered to be safe. If there is a malicious VM, it means that
it has not passed the probing stage yet. So, the risk of getting a co-resident attack is
low. In this case, α0 ¼ 0 is chosen. If the CoRes vi, vj

� �

is between t1 and t2, the system
needs to be aware that if a malicious VM exists in the pair; it reaches the constructing
stage and moves closer to launching the attack. So, α1 needs to be non-zero. While the
VM pair co-exists on the same PM for more than t2 time period, an attack could be
launched. This is the situation to be avoided, so that α2 is assigned to a more aggressive
number.

3.3 Assumptions

Two assumptions guide the proposed model:

Figure 3.
The timeline of attacks [42].

Variables Descriptions

N No. of PMs

n No. of resource slots in one PM

M No. of VMs

X The mapping between VMs and PMs

t1 End of probing [42]

t2 End of constructing/configuration interval [42]

ts við Þ The threat score of vi [0,1]

CoRes vi, vj
� �

The co-resident duration matrix between vi and vj

rcr vi, vj
� �

Co-resident risk indicator matrix

CoResFactor VM’s co-resident rewards factor

Table 1.
Variable definition.

6

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

1.Co-resident risk is calculated among all the active VM pairs on the same PM, and
each VM is randomly created with 1 to 15-time steps of the length.

2.All the jobs are batch jobs, and all the VMs might be malicious. The goal is to
mitigate co-resident risk by avoiding the VM pairs’ co-resident period from
reaching t2.

The system will be simulated under the above assumptions. The overall co-resident
risk level, the number of co-resident attacks, and the VM slowdown ratio is the
proposed system’s evaluation metrics.

4. DRL-based VM scheduling system design and simulation

4.1 Mathematical background of RL and schematics

RL problems can be modeled as a Markov decision process (MDP) to find a policy
by maximizing the accumulated rewards. An MDP has four tuples (S, A, Pa, Ra),
where S is a set of states called state space, A is a set of actions called action space, Pa

is the probability of state transition from s to s0 under action a, and Ra is the
immediate reward right after action a. There are two major methods to solve the
reinforcement learning iteration problem. One is called value� function, and the
other is policy� gradient. Q-Learning is an example of value� function, which has a
function: Q : S� A! R. Before learning begins, Q is initialized to 0 or a base value.
The core of the algorithm is a Bellman equation, which updates the Q value with new
information:

Qnew st, atð Þ Q st, atð Þþ

α rt þ γmax
a

Q stþ1, að Þ � Q st, að Þ
h i (3)

Here, α and γ are the learning rate and discount factor, respectively. rt is the
reward at the time step t. We adopt DeepRM [44] framework, which follows policy�
gradient with a deep neural network added into this system to solve large-scale RL
tasks. This portion of the deep RL can be illustrated in Figure 4.

The nature of the policy� gradient is to maximize the expected cumulative dis-

count reward Eπθ

P

∞

t¼0γ
trt

� �

, which can be expressed as:

∇θEπθ

X

∞

t¼0

γtrt

" #

¼ Eπθ ∇θ log πθ s, að ÞQπθ s, að Þ
� �

(4)

Here, γ ∈ 0, 1ð � is a discount factor for future rewards. rt is the reward at the time
step t. The VMM picks actions based on a policy π : π s, að Þ ! 0, 1½ �, which is defined as
the probability of action a taken in the state s. A manageable number of adjustable
parameters, θ, are called the policy parameter. So, the policy can be represented as
πθ s, að Þ, and θ will be updated via gradient descent:

θ θ þ β
X

t

∇θ log πθ st, atð Þvt (5)

7

Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation…
DOI: http://dx.doi.org/10.5772/intechopen.105991

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

where β is the step size. The corresponding expected cumulative discounted

reward Qπθ s, að Þ can be estimated by the empirically computed cumulative discounted
reward vt.

4.2 RL components design

Reinforcement learning is a unique type of machine learning paradigm, which has
been successfully applied to task scheduling [45–49]. It contains several detailed
components that need clarification. Here, we first define our state space, action space,
and rewards before introducing the simulation system.

4.2.1 State space

RL is a model-free machine learning method; an agent learns from the trial-and-
error process to interact with the environment. The state of the environment is
defined as a vector of several components as shown in Table 2. They build the data
structure of a VM which can be classified as:

1.Computing resources factors;

2.Security awareness factors (already introduced in Table 1).

The current allocation of the cluster resources can be retrieved by the mapping
between VMs and resource slots available on the PM, which can be expressed as a
matrix X.

4.2.2 Action space

It is assumed that VMs will be assigned to the PM if requested resources are
available at each time step. The action space is defined by {0, 1, ..., n}, where 0 means

Figure 4.
Reinforcement learning with policy represented via DNN [44].

8

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

no action taken, and 1 through nmeans to allocate a new VM on the n0s PM slot. After
each action, the next state space is obtained by updating the recent mapping of X.

4.2.3 Rewards

A reward strategy is designed to guide the VM allocation agent toward our goal:
Sufficiently utilize current resources to complete jobs on time and simultaneously
minimize co-resident attacks. The reward function must be carefully designed to
avoid contradiction. In the proposed system with a total of J active VMs, the rewards
function consists of two terms:

1.VMs’ completion factor, RVMD (VM delay rewards), is defined by the
accumulated VMDelayed from currently running VMs in the system. Here, Tj is the

duration of the jth VM, vj.

2.VMs’ co-resident risk level, RRC (runtime co-resident rewards), is defined by the
co-resident risk indicator matrix rcr vi, vj

� �

.

They can be calculated accordingly as:

RVMD ¼
X

j∈ J

VMDelayed vj
� �

¼
X

j∈ J

�1

Tj
(6)

RRC ¼
X

i, j∈ J

�1ð Þ � rcr vi, vj
� �

=2 (7)

The full rewards are calculated as a weighted sum of the two terms with weights ω1

and ω2. The overall rewards can be obtained by:

Vector component Values Data type

Computing Resources

Hosting PMs 1 Integer

VM ID 1 Integer

Ideal length of finishing 1 Float

Resources requested 2 Integer

Start time 1 Float

Finish time 1 Float

VMDelayed 1 Float

Security

ts 1 Float

CoRes n Integer

rcr n Float

Table 2.
Data structure of a VM.

9

Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation…
DOI: http://dx.doi.org/10.5772/intechopen.105991

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

TotalRewards ¼ ω1 � RVMD þ ω2 � RRC (8)

This rewards equation implies the objective of this novel VM allocation system is
focused on:

1.Efficiently allocating VMs to minimize the VM delay time as shown in Eq. (6);

2.Aware of co-resident attacks through VM assignment correlations and take
action to avoid the risk as shown in Eq. (7).

4.3 Simulation system design

4.3.1 System model

Similar to the DeepRM [44] framework, the proposed simulation system is illus-
trated in Figure 5. CPU and memory (MEM) are the two resources for limited
constraint consideration. When the VM is assigned to the PM, a time step starts to
count the duration of the VM. If there are other VMs simultaneously assigned to the
same PM, the co-resident counter is also started to accumulate the time steps and
recorded in CoRes vi, vj

� �

. VM requests arrive according to a Bernoulli process. The
backlog queue houses all the incoming VMs waiting for allocation.

4.3.2 Co-resident duration matrix

The time steps will be recorded in the co-resident duration matrix as shown below.
This small-scale example limits each CPU and MEM resource to five slots. Here, five
VMs VM1, … , VM5f g are illustrated with the life cycles marked with a start and end

Figure 5.
Resource, time steps, job slots, and backlog queue in [44].

10

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

time steps as VM1 : 0, 2½ �, VM2 : 0, 4½ �, VM3 : 0, 10½ �, VM4 : 2, 4½ �, VM5 : 4, 11½ �: Their
life cycle lengths can be represented as 2, 4, 10, 2, 7f g, respectively. The overlapped
time steps shown in a co-resident duration matrix are:

CoRes vi, vj
� �

¼

2 2 2 0 0

2 4 4 2 0

2 4 10 2 6

0 2 2 2 0

0 0 6 0 7

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

The proposed zero-trust strategy means all the VMs could be malicious, so the
threat scores for all VMs are set to 1 (ts við Þ ¼ 1). Thus, the co-resident risk indicator
matrix is:

rcr vi, vj
� �

¼ 1� CoRes vi, vj
� �

� 1 ¼ CoRes vi, vj
� �

(9)

4.3.3 Configuration interval

In the simulated system, five-time steps are chosen to represent t1 and ten-time
steps to represent the configuration interval t2. In Figure 5, time is represented in a
vertical direction. In order to mitigate the co-resident attacks, the system is designed
to train the agent to avoid two VMs sharing the same PM for more than t2 time
interval. Based on the timeline of the attacks illustrated in Figure 3, different values
will be assigned to the CoResFactor as shown in Eq. (2).

4.3.4 Risk mitigation strategies

When two VMs have overlapped time steps less than t1, there is a minor risk of co-
resident attacks, so α0 ¼ 0; when two VMs have resided on the same PM for more
than t1 time steps, but less than t2, co-resident attack risks start to accumulate. Thus,
the first risk mitigation function is set to be: α1 ¼ k� t� t1ð Þ, while k has been chosen
from {0, 0.25, 0.5, 1, 2} to explore the efficiency of different choices. When two VMs
have co-residence on the same PM for more than t2 time steps, there is enough
construction time for attacks to take place, so a more aggressive factor in the form of
k2 is added to the reward function. The proposed system applies the second risk
mitigation function: α2 ¼ k� t� t1ð Þ þ k2, where k2 has been tested in the pool of
0, 1, 2, 3, …f g. A portion of the risk mitigation function design can be found in

Figure 6, where all the k values are presented; only k2 ¼ 0, k2 ¼ 1, and k2 ¼ 2 on top
k ¼ 2 are shown on the graph.

4.3.5 Software

The system is programmed in Python with the flowchart illustrated in
Figure 7. First, the arriving VMs are placed in a backlog queue. If the queue is not
empty, the scheduling system operates to find the optimized solution to assign VMs
to PMs. At each time step, the system will update the co-resident duration matrix
which reflects the current risk level and will guide the choice of risk mitigation
strategies.

11

Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation…
DOI: http://dx.doi.org/10.5772/intechopen.105991

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

Figure 6.
Risk mitigation function design.

Update CoRes Matrix

Potential Attack?

End

Y

Start

Queue Empty?

N

RL VM Allocation

Y

N

Figure 7.
The flowchart of the proposed system.

12

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

5. Simulation results analysis

The co-resident simulation program is built upon the Python-based DeepRM [44]
open-source platform. The neural network is constructed by a fully connected hidden
layer with 20 neurons, and a total of 89,451 parameters. Poisson distribution with a
new arriving rate of 0.7 is chosen to simulate the VMs’ dynamic arrival. All the results
are obtained in 2500 iterations.

Our proposed system introduces co-resident risk mitigation to task scheduling by
adding Eq. (7) to the total rewards calculation of Eq. (8). During the investigation, it
was observed that the system performed differently, while manipulating the risk
mitigation function parameters illustrated in Figure 6. The effectiveness of the pro-
posed mitigation scheme can be analyzed by the RL rewards, VM slowdown ratio, and
attack reduction.

5.1 Total rewards affected by risk mitigation factors

As illustrated in Eq. (8), total discounted rewards can be captured by taking
both VM delay and co-resident risks into consideration. Since there is no
preference between the two, ω1and ω2 in Eq. (8) are both set to 1. In the first
experiment, k2 is set to 0, and k is chosen from 0, 1, and 2. The recorded total
accumulated rewards in Figure 8 explain that a smaller k value leads to a larger
reward (Note: the reward is negative). When k ¼ 0there is no risk mitigation. As k
increases, more mitigation influence will be placed in the system, and the total
discounted reward decreases.

DeepRM provides DRL and other heuristics VM allocation methods, such as tetris,
random allocation, and small jobs first (SJF), for comparison. Although those methods
do not have co-resident risk mitigation features, the total discounted rewards can
illustrate how severe the cybersecurity risks they are experiencing. Two user cases are

0 500 1000 1500 2000 2500

Iteration

-450

-400

-350

-300

-250

-200

-150

T
o

ta
l
D

is
c
o

u
n

te
d

 R
e

w
a

rd

k=0

k=1

k=2

Figure 8.
The total rewards accumulated from different k values.

13

Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation…
DOI: http://dx.doi.org/10.5772/intechopen.105991

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

shown in Table 3. A negative number with a larger absolute value means a worse
situation.

5.2 Slowdown ratio affected by risk mitigation factors

The metric to measure the efficiency of VM scheduling is to calculate the VMDelayed

as defined in Table 2. In programming, the slowdown ratio is utilized. Each VM has
its own expected life cycle shown as the “Ideal length of finishing” in Table 2. It also
has a length marked by time step when generated. When the VM is assigned to a PM,
the “Start time” is marked. At the time of finishing, a “Finish time” is recorded. The
parameter Slowdown is calculated by Eq. (10). Ideally, if there is no delay in the
execution, Slowdown ¼ 1, but in the actual application, many factors can cause the
delay. Thus, Slowdown≥ 1.

Slowdown ¼ FinishTime� StartTimeð Þ=VMLength (10)

With an increment of k value, more rewards are generated to mitigate the potential
co-resident risks through the risk mitigation function. As a matter of fact, it sacrifices
the VM completion time, so the slowdown ratio increases. Experiments show that
“Random” allocation of VMs has the largest average slowdown ratio. If using “Ran-
dom” slowdown ratio as a baseline, the percentage of slowdown ratio reduction from
the baseline data is shown in Table 4.

5.3 Co-resident attacks reduction by risk mitigation factors

Considering the goal of mitigating co-resident attacks, a group of experiments is
conducted to represent the effectiveness of different risk mitigation function param-
eters under RL scenario. Figure 9 illustrates the total counts of co-resident attacks if k
and k2 are set as in Figure 6. If k ¼ 2 and k2 ¼ 1, the count reduces dramatically
compared with k ¼ 0 and k2 ¼ 0, where there is no mitigation applied.

6. Conclusions and future work

This chapter addresses the importance of cybersecurity awareness in cloud com-
puting resource management. The proposed RL-based scheduling method takes both

Methods Tetris Random SJF DRL

Case 1 �644.94 �426.81 �501.40 �320.17

Case 2 �267.88 �167.50 �187.33 �142.69

Table 3.
Total discounted rewards.

Methods Tetris SJF DRL (k ¼ 0) DRL (k ¼ 1) DRL (k ¼ 2)

ASR 63% 60% 72% 71% 68%

Table 4.
VM slowdown ratio over random method.

14

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

VM slowdown time and co-resident attack risks mitigation into consideration. The
co-resident risk model under no-trust conditions is formed. As a result, the problem is
narrowed down to minimizing the co-tenancy on the same PM among all the active
VMs. Finally, a DRL-based task scheduling system is simulated with proposed risk
mitigation factors.

This chapter proves that much can be explored in resource management and risk
mitigation in cloud computing. It is evident that ML obtained much attention
recently, and more applications are being developed in this direction. Although
there is a concern about training costs under a deep learning algorithm, it outper-
forms other methods in adaptation to a more dynamic environment, which makes it
outstanding. If designed properly, the computational burden can be shifted to off-
line. The above experiment results are obtained by using MacBook Air with a 2.2GHz
dual-core Intel i7 processor and 8GB memory. It takes 3 minutes per 2500 iterations
to train the policies. While applying the pre-trained model to take actions during
runtime testing, it will not take longer than 2 seconds for the longest allocation
decision. The results show applying reinforcement learning to co-resident risk
mitigation is plausible. Different mitigation strategies lead to different VM comple-
tion ratios and risk levels. The proposed strategies proved to be helpful in searching
for VM allocation improvement with consideration of both VM completion con-
straints and co-resident risk awareness. In the future, a more in-depth investigation
of the reward equation design will be conducted. A thorough search accompanied by
mathematical models to discuss the convergence will be explored. An advanced cost
function will be developed with resources and security constraints. Multi-agent
reinforcement learning will be applied to extend the model of this research and the
efficiency will be tested and compared.

Figure 9.
The potential co-resident attacks by different k and k2 selection strategies.

15

Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation…
DOI: http://dx.doi.org/10.5772/intechopen.105991

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

Acknowledgements

This work was supported in part by the Air Force Research Laboratory and
Department of Education MSEIP grant award no. P120A180114, Texas A & M Engi-
neering Experiment Station Annual Research Conference Project (TEES TARC)
Award 28-235980-00020, and the National Science Foundation grant award no. OAC
1827243. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force Research Laboratory or
the U.S. Government.

Conflict of interest

The authors declare no conflict of interest.

Author details

Suxia Cui1*† and Soamar Homsi2†

1 Prairie View A&M University, Prairie View, TX, USA

2 US Air Force Research Laboratory, Rome, NY, USA

*Address all correspondence to: sucui@pvamu.edu

†These authors contributed equally.

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

16

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

References

[1]Hossain S. Chapter 1 Cloud
Computing Terms, Definitions, and
Taxonomy. In: Cloud Computing Service
and Deployment Models: Layers and
Management. IGI Global. 2013. pp. 1-25

[2] BarbosaAndrea FP, Charão AS.
Impact of pay-as-you-go cloud platforms
on software pricing and development: A
review and case study. Computational
Science and Its Applications. 2012;7336:
404-417

[3] Smith JE, Nair R. Virtual Machines:
Versatile Platforms for Systems and
Processes. Amsterdam, Netherlands:
Elsevier; 2005

[4] Tank D, Aggarwal A, Chaubey N.
Virtualization vulnerabilities, security
issues, and solutions: a critical study and
comparison. International Journal of
Information Technology. 2022;14:847–862

[5]Hasan MM, Rahman MA. Protection
by Detection: A Signaling Game
Approach to Mitigate Co-Resident
Attacks in Cloud. In: 2017 IEEE
10th International Conference on
Cloud Computing (CLOUD). Honolulu,
HI, USA; 2017. pp. 552-559

[6]Ding J, Sha L, Chen X. Modeling and
evaluating IaaS cloud using performance
evaluation process algebra. In: 2016 22nd
Asia-Pacific Conference on
Communications (APCC). Yogyakarta,
Indonesia. 2016. pp. 243-247

[7] Addya SK, Turuk AK, Satpathy A,
Sahoo B, Sarkar M. A strategy for live
migration of virtual machines in a cloud
federation. IEEE Systems Journal. 2019;
13(3):2877-2887

[8] Velayudhan Kumar MR,
Raghunathan S. Heterogeneity and
thermal aware adaptive heuristics for

energy efficient consolidation of virtual
machines in infrastructure clouds.
Journal of Computer and System
Sciences. 2016;82(2):191-212

[9]Mthunzi SN, Benkhelifa E,
Alsmirat MA, Jararweh Y. Analysis of VM
communication for VM-based cloud
security systems. In: 2018 Fifth
International Conference on Software
Defined Systems (SDS). 2018. pp. 182-188

[10] Sane BO, Niang I, Fall D. A review of
virtualization, hypervisor and VM
allocation security: Threats,
vulnerabilities, and countermeasures. In:
2018 International Conference on
Computational Science and
Computational Intelligence (CSCI). Las
Vegas, NV, USA. 2018. pp. 1317-1322

[11]Navamani BA, Yue C, Zhou X.
Discover and Secure (DaS): An
Automated Virtual Machine Security
Management Framework. In: 2018 IEEE
37th International Performance
Computing and Communications
Conference (IPCCC). Orlando, FL, USA.
2018. pp. 1-6

[12] Kong T, Wang L, Ma D, Xu Z,
Yang Q, Chen K. A Secure Container
Deployment Strategy by Genetic
Algorithm to Defend against Co-
Resident Attacks in Cloud Computing.
In: 2019 IEEE 21st International
Conference on High Performance
Computing and Communications; IEEE
17th International Conference on Smart
City; IEEE 5th International Conference
on Data Science and Systems (HPCC/
SmartCity/DSS). Zhangjiajie, China:
IEEE; 2019. pp. 1825-1832

[13]Qiao A, Choe SK, Subramanya SJ,
Neiswanger W, Ho Q, Zhang H, et al.
Pollux: Co-adaptive cluster scheduling

17

Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation…
DOI: http://dx.doi.org/10.5772/intechopen.105991

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

for goodput-optimized deep learning. In:
15th USENIX Symposium on Operating
Systems Design and Implementation
(OSDI 21). Virtual Conference; 2021.
pp. 1-18

[14] Xiao W, Ren S, Li Y, Zhang Y,
Hou P, Li Z, et al. AntMan: Dynamic
scaling on GPU clusters for deep
learning. In: 14th USENIX Symposium
on Operating Systems Design and
Implementation (OSDI 20). virtual
conference; 2020. pp. 533-548

[15]Gu J, Chowdhury M, Shin KG,
Zhu Y, Jeon M, Qian J, et al. Tiresias: A
GPU cluster manager for distributed
deep learning. In: 16th USENIX
Symposium on Networked Systems
Design and Implementation (NSDI 19).
Boston, MA: USENIX Association; 2019.
pp. 485-500

[16] Zhao J, Rodríguez MA, Buyya R. A
deep reinforcement learning approach to
resource management in hybrid clouds
harnessing renewable energy and task
scheduling. In: 2021 IEEE 14th
International Conference on Cloud
Computing (CLOUD). Chicago, IL,
USA; 2021. pp. 240-249

[17]Gupta K, Katiyar V. Survey of
resource provisioning heuristics in cloud
and their parameters. International
Journal of Computational Intelligence
Research. 2017;13(5):1283-1300

[18]Gawali MB, Shinde SK. Task
scheduling and resource allocation in
cloud computing using a heuristic
approach. Journal of Cloud Computing.
2018;7(1):4

[19]Dorigo M, Birattari M, Stutzle T. Ant
colony optimization. IEEE
Computational Intelligence Magazine.
2006;1(4):28-39

[20]Qin Y, Wang H, Zhu F, Zhai L. A
multi-objective ant colony system

algorithm for virtual machine placement
in traffic intense data centers. IEEE
Access. 2018;6:58912-58923

[21] Tawfeek MA, El-Sisi A, Keshk AE,
Torkey FA. Cloud task scheduling based
on ant colony optimization. In: 2013 8th
International Conference on Computer
Engineering Systems (ICCES). Cairo,
Egypt; 2013. pp. 64-69

[22] Patel KD, Bhalodia TM. An efficient
dynamic load balancing algorithm for
virtual machine in cloud computing. In:
2019 International Conference on
Intelligent Computing and Control
Systems (ICCS). Madurai, India; 2019.
pp. 145-150

[23] Jia H, Liu X, Di X, Qi H, Cong L, Li J,
et al. Security strategy for virtual
machine allocation in cloud computing.
Procedia Computer Science. 2019;147:
140-144

[24]Miao F, Wang L, Wu Z. A VM
placement based approach to proactively
mitigate co-resident attacks in cloud. In:
2018 IEEE Symposium on Computers
and Communications. Natal, Brazil:
IEEE; 2018. pp. 00285-00291

[25]Han Y, Chan J, Alpcan T, Leckie C.
Virtual machine allocation policies
against co-resident attacks in cloud
computing. In: 2014 IEEE International
Conference on Communications (ICC).
Sydney, NSW, Australia: IEEE. 2014.
pp. 786-792

[26] Yang J, Jiang B, Lv Z, Choo KKR. A
task scheduling algorithm considering
game theory designed for energy
management in cloud computing. Future
Generation Computer Systems. 2020;
105:985-992

[27] Patra MK, Sahoo S, Sahoo B,
Turuk AK. Game theoretic approach for
real-time task scheduling in cloud

18

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

computing environment. In: 2019
International Conference on Information
Technology (ICIT). Bhubaneswar, India:
IEEE; 2019. pp. 454-459

[28]Han K, Cai X, Rong H. An
evolutionary game theoretic approach
for efficient virtual machine deployment
in green cloud. In: 2015 International
Conference on Computer Science and
Mechanical Automation (CSMA).
Hangzhou, China; 2015. pp. 1-4

[29]Narwal P, Singh SN, Kumar D.
Predicting strategic behavior using game
theory for secure virtual machine
allocation in cloud. In: Networking
Communication and Data Knowledge
Engineering. Singapore: Springer; 2018.
pp. 83-92

[30]Narwal P, Kumar D, Singh SN. A
hidden markov model combined with
Markov Games for intrusion detection in
cloud. Journal of Cases on Information
Technology (JCIT). 2019;21(4):14-26

[31]Han Y, Alpcan T, Chan J, Leckie C.
Security games for virtual machine
allocation in cloud computing. In:
International Conference on Decision
and Game Theory for Security. Fort
Worth, TX, USA: Springer; 2013.
pp. 99-118

[32] Pahlevan A, Qu X, Zapater M,
Atienza D. Integrating heuristic and
machine-learning methods for efficient
virtual machine allocation in data
centers. IEEE Transactions on
Computer-Aided Design of Integrated
Circuits and Systems. 2017;37(8):
1667-1680

[33]Witanto JN, Lim H, Atiquzzaman M.
Adaptive selection of dynamic VM
consolidation algorithm using neural
network for cloud resource
management. Future Generation
Computer Systems. 2018;87:35-42

[34] Zhang J, Xie N, Zhang X, Yue K,
Li W, Kumar D. Machine learning based
resource allocation of cloud computing
in auction. Comput Mater Continua.
2018;56(1):123-135

[35] Liu Z, Zhang H, Rao B, Wang L. A
reinforcement learning based resource
management approach for time-critical
workloads in distributed computing
environment. In: 2018 IEEE
International Conference on Big Data
(Big Data). Seattle, WA, USA: IEEE;
2018. pp. 252-261

[36] Joseph L, Mukesh R. To detect
malware attacks for an autonomic self-
heal approach of virtual machines in
cloud computing. In: Fifth International
Conference on Science Technology
Engineering and Mathematics
(ICONSTEM). Chennai, India: IEEE;
2019. pp. 220-231

[37] Abazari F, Analoui M, Takabi H.
Multi-objective response to co-resident
attacks in cloud environment.
International Journal of Information and
Communication Technology Research.
2017;9(3):25-36

[38] Liu Y, Ruan X, Cai S, Li R, He H. An
optimized VM allocation strategy to
make a secure and energy-efficient cloud
against co-residence attack. In:
International Conference on Computing,
Networking and Communications
(ICNC). Maui, HI, USA: IEEE; 2018.
pp. 349-353

[39] Berrima M, Nasr AK, Ben RN.
Co-location resistant strategy with full
resources optimization. In: Proceedings
of the 2016 ACM on Cloud Computing
Security Workshop. Hofburg Palace,
Vienna, Austria; 2016. pp. 3-10

[40] Levitin G, Xing L, Dai Y. Co-
residence based data vulnerability vs.
security in cloud computing system with

19

Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation…
DOI: http://dx.doi.org/10.5772/intechopen.105991

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

random server assignment. European
Journal of Operational Research. 2018;
267(2):676-686

[41] Xing L, Levitin G. Balancing theft
and corruption threats by data
partition in cloud system with
independent server protection.
Reliability Engineering & System Safety.
2017;167:248-254

[42] Zhang Y, Li M, Bai K, Yu M,
Zang W. Incentive compatible moving
target defense against vm-colocation
attacks in clouds. In: IFIP International
Information Security Conference.
Heraklion, Crete, Greece: Springer; 2012.
pp. 388-399

[43]Wang X, Wang L, Miao F, Yang J.
SVMDF: A secure virtual machine
deployment framework to mitigate co-
resident threat in cloud. In: 2019 IEEE
Symposium on Computers and
Communications (ISCC). Barcelona,
Spain; 2019. pp. 1-7

[44]Miao H, Alizadeh M, Menache I,
Kandula S. Resource management with
deep reinforcement learning. In: HotNet
’16: Proceedings of the 15th ACM
Workshop on Hot Topics in Networks.
Atlanta, Georgia, USA. 2016. pp. 50-56

[45]Mao H, Schwarzkopf M,
Venkatakrishnan SB, Meng Z,
Alizadeh M. Learning Scheduling
Algorithms for Data Processing Clusters.
In: Proceedings of the 2019 ACM Special
Interest Group on Data Communication
(SIGCOMM). Beijing, China; 2019. p.
270–288

[46] Tuli S, Ilager S, Ramamohanarao K,
Buyya R. Dynamic scheduling for
stochastic edge-cloud computing
environments using A3C learning and
residual recurrent neural networks. In:
IEEE Transactions on Mobile
Computing. 2022 March;21(3):940-954

[47] Tuli S, Poojara SR, Srirama SN,
Casale G, Jennings NR. COSCO: Container
Orchestration Using Co-Simulation and
Gradient Based Optimization for Fog
Computing Environments. IEEE
Transactions on Parallel and Distributed
Systems. 2022;33(1):101-116

[48] Paeng B, Park IB, Park J. Deep
reinforcement learning for minimizing
tardiness in parallel machine scheduling
with sequence dependent family setups.
IEEE Access. 2021;9(10):1390-1401

[49] Asheralieva A, Niyato D, Xiong Z.
Auction-and-learning based lagrange
coded computing model for privacy-
preserving, secure, and resilient mobile
edge computing. In: IEEE Transactions
on Mobile Computing. 2021;early access.
pp. 1-2

20

Cloud Computing - New Perspectives for AI and Cybersecurity

Approved for Public Release on 01 June 2022; Distribution Unlimited; Case number: AFRL-2022–2581.

