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Chapter

Use of the Advantages of Titanium 
in the Metal: Organic Framework
Behnaz Delaram, Faezeh Mokari, Mostafa Gholizadeh  

and Yahya Absalan

Abstract

Titanium is one of the most attractive elements, due to its unique advantages such 
as stability, recyclability, activity under light absorption, cheapness, and safety. The 
special characteristics of titanium include different oxidation states, high coordination 
number of Ti4+, and the ability to form strong bonds with oxygen and different ligands, 
making it a good candidate for the construction of the new composite named metal–
organic framework or briefly MOF. MOFs are composites that have opened a new 
window toward the scientific world due to their special structure that makes them have 
some properties, including the highest surface activity, high porosity, tunable pore, and 
high flexibility in design that make them useful in different applications, such as gas 
storage and separation, liquid separation and purification, electrochemical energy stor-
age, catalysis, and sensing. Titanium, due to the mentioned properties, has been used as 
a node in the structure of different MOFs and applied in different fields.

Keywords: titanium, MOF, photocatalyst, modification

1. Introduction

Coordination polymers (CPs) are a class of compounds formed by metal ions  
(or clusters) coordinated to multidentate organic and/or inorganic ligands. Metal–organic 
frameworks (MOFs) are a special group of CPs with porous and crystalline one-, two- or 
three-dimensional structures. These compounds are composed of metal ions or well-
defined secondary building units and organic linkers that are connected by coordination 
bonds and other weak interactions or noncovalent bonds, such as H-bonds, π-electron 
stacking, or van der Waals interactions [1]. In the 1960s, the MOF kind of structure was 
firstly introduced by Tomic and others [2–4]. In the 1990s, research on MOF was devel-
oped by Robson et al. [5, 6] and later by Yaghi et al. [7].

After the discovery, synthesis, and characterization of the first known MOF 
structure, MOF-5 ([Zn4 (BDC) 3] (DMF) x) by Yaghi and coworkers in 1999, a rapid 
advancement has been made in the chemistry of MOFs [8]. The increasing interest in 
MOF research can be attributed to their amazing properties, including high specific 
surface area, ultra-high porosity, tunable surface chemistry, functional diversity, and 
crystallinity [9].
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The main goal of this chapter is the use of titanium as a node in the design of 
metal–organic frameworks. To achieve this goal, we will specifically investigate the 
characteristics and properties of titanium as a component in the design of metal–
organic frameworks. In the following, considering the features and advantages men-
tioned in the text for titanium, we will introduce the types of titanium-based MOFs, 
synthetic methods, and applications. Eventually, the comparison of the properties 
and performance of titanium-based MOFs with other metal–organic frameworks is 
discussed.

2. Synthesis of MOFs

MOFs are constructed by connecting inorganic and organic building units through 
coordination bonds. The inorganic units can be monovalent (Cu+, Ag+, etc.), divalent 
(Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, etc.), trivalent (Al3+, Sc3+, V3+, Cr3+, 
Fe3+, Ga3+, In3+, lanthanides3+, etc.), or tetravalent (Ti4+, Zr4+, Hf4+, Ce4+, etc.) metal 
cations or clusters, namely secondary building units (SBUs) (e.g., Zn4O(COO)6, 
Cu2(COO)4, Cr3O(H2O)3(COO)6, and Zr6O4(OH)10(H2O)6(COO)6) [10]. These 
inorganic units are connected by coordination bonds to organic linkers, which com-
monly contain carboxylate, phosphonate, pyridyl, and imidazolate, or other azolate 
functional groups [11].

Different synthesis methods have been developed and applied to synthesize MOFs 
to achieve the required properties in terms of shape, surface morphology, and others 
for various applications. The major synthesis methods of MOFs include hydrothermal 
(solvothermal) synthesis, mechanochemical synthesis, microwave-assisted synthesis, 
sonochemical synthesis, and electrochemical synthesis [12–15].

Solvothermal/hydrothermal synthesis is the most conventional method for the 
synthesis of these compounds. If water is used as a solvent, this method is termed as a 
hydrothermal method. This method generally consists of the self-assembly of soluble 
precursors, which contain the metal and the organic component. The key point of 
this method is the selection of the appropriate solvent because the solvent acts not 
only as a reaction medium but also as a structure-directing agent. Some examples of 
this synthesis include MOF-5 [16], MOF-74 [17], ZIF-8 [18], and Uio-66 [19]. The 
advantages of this technique are a large operating temperature range, relatively easy 
transposition, and high yield. Disadvantages include high energy consumption and a 
long reaction time [20].

Another commonly used method is mechanochemical synthesis, which is a green 
approach performed by grinding a mixture of the organic linker and metal salt in an 
agate mortar and pestle or in a ball mill and in the absence of solvent. Examples of 
this method include HKUST-1 [21], ZIF-4, and ZIF-8 [22].

In microwave-assisted synthesis, energy for the reaction is provided in the form 
of microwave radiation (MW). Advantages include a reduction in crystallization time 
and higher yields, on the other hand, disadvantages include difficulty in controlling 
the shape and size and the lack of a direct method for scale-up [20]. Examples include 
CoMOF-74 [23] and Cr-MIL-100 [24].

The ultrasonic/sonochemical method is another efficient synthesis of MOFs 
under ultrasonic irradiation. The impact of ultrasound on liquid and colloid systems 
is mainly caused by acoustic cavitation, which would be the production, growth, 
and implosion of bubbles within the solvent. The advantages of this method 
include homogeneous particle size and morphology in short periods of time and the 
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formation of stable structures due to the high energy and high pressure created dur-
ing this process [20]. Fe-MIL-53 [25] and MOF-177 [26] are some examples of MOF 
materials synthesized through this ultrasonic method.

In the electrochemical method, metal ions rather than metal salts are introduced 
in the anode, whereas an organic linker is placed at the cathode and the electrochemi-
cal cell is filled with conducting salt. This technique was reported by BASF in 2005. 
The advantages of this method are avoiding anions, such as nitrates, from metal salts, 
lower temperatures of reaction, and extremely quick synthesis [12]. Some examples 
of this synthesis are ZIF-8 and MIL-53 (Table 1) [27].

Synthetic method Advantages Disadvantages Examples Ref.

Hydro(solvo)thermal 1. Large operating 
temperature range 
(i.e., between 80 and 
250°C)

2. Easy transposition

3. High yield

1. High energy con-
sumption

2. Long reaction time

3. Expensive 
pressure-sealed 
metal vessels and 
heating ovens

MOF-5
ZIF-8

[16, 18]

Mechanochemical 1. Solvent-free synthetic 
method

2. No need for tempera-
ture and pressure

1. Difficult isolation 
single-crystals for 
X-ray diffraction 
studies

2. Formation of Sec-
ondary phases

HKUST-1
ZIF-4

[21, 22]

Microwave 1. Reduction in crystal-
lization time

2. High yields

3. Possibility to control 
morphology, phase se-
lectivity, and particle 
distribution

4. Simple method and 
easy to control the 
reaction parameters

1. Difficult to 
isolate large single 
crystals

2. The lack of a 
direct method for 
scale-up

CoMOF-74
Cr-MIL-100

[23, 24]

Ultrasonic 1. Homogeneous particle 
size and morphology

2. Short reaction time

3. Formation of stable 
structures

4. Suitable method for 
the preparation of 
nanosized MOFs

Destruction of 
crystallites hindering 
the formation of large 
single crystals
for X-ray diffraction 
studies

Fe-MIL-53
MOF-177

[25, 26]

Electrochemical 1. Avoiding anions such 
as nitrates from metal 
salts

2. Low temperatures of 
reaction and extreme-
ly quick synthesis

Rarely reported 
method for synthesis 
of MOFs

ZIF-8
MIL-53

[27]

Table 1. 
The advantages and disadvantages of the different methods.
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3. Applications of MOFs

MOFs have been attracting great attention in the past several decades mainly 
because of their outstanding properties, including high specific surface area, ultra-
high porosity, tunable surface chemistry, functional diversity, and crystallinity [9]. 
These properties make them good candidates for use in gas storage and separation 
[28, 29], catalysis, drug delivery, and sensing [30].

Common methods of gas storage require high-pressure tanks and multistage 
compressors, which are difficult and expensive. MOFs provide a simpler and safer 
storage method, owing to their high surface area, high porosity, and tunable pore 
structure. To date, numerous MOFs have been applied for gas storage. PCN-12 [31], 
MOF 210 [32], and NU-100 [33] are some examples for H2 storage. MOFs also have 
great potential to perform gas separations as adsorbents. In 2014, Yang et al. reported 
a hydroxyl–functionalized Al-MOF (NOTT-300) with high selectivity for C2H4/C2H6 
separation [34].

MOFs have shown great capability in heterogeneous catalysis due to their unique 
features. Numerous MOFs have been reported as catalysts in photocatalysis reactions, 
electrocatalysis reactions, and organic transformations, such as oxidation, epoxida-
tion, and Knoevenagel condensation [35]. These compounds are commonly employed 
as heterogeneous catalysts in the form of pristine solids or post-synthetically modi-
fied ones. One of the earliest studies in the field of MOF catalysis was reported in 
1994 by Fujita et al. They constructed a two-dimensional (2D) network of Cd(4,4′-
bpy)2(NO3)2 by reaction between Cd(NO3)2 and (4,4′-bpy), and used it as a hetero-
geneous catalyst for the cyanosilylation of aldehydes [36]. The first experimental 
evidence of photocatalytic activity on a MOF (MOF-5) was published in 2007 [37]. To 
date, many researches have been made in the area of MOF-based photocatalysts. For 
example, Leng et al. reported an indium-based MOF, USTC-8(In), which exhibits an 
excellent photocatalytic activity for H2 production [38].

Researches on MOFs as drug carriers have been developed in biomedical fields 
due to their features, such as drug loading ability, biodegradability, and adaptable 
functionality. According to the enhanced stability, enormous porosity, and large 
pore volume of the MIL family, they are an attractive candidate for the storage and 
controlled release of biologically important molecules [39]. Serrey and Férey et al. 
demonstrated encapsulating drug molecules (Ibuprofen) in chromium carboxylate 
MOFs, MIL – 100 and MIL – 101, exhibiting drug storage capacities of 35 wt% and 
140 wt%, respectively, and controlled drug release behavior of 5 to 6 days under 
physiological conditions [40].

In addition to the applications mentioned above, MOFs can be used as sensors in 
different fields. A sensor is a device that can receive, respond, and detect a signal. 
In MOF-based devices, the sensor responds to different external stimulations, such 
as stress, mass, optical, and environmental changes. MOFs, which can be excited by 
absorbing UV–visible light, are considered as photoluminescent. Both the metal and 
the linker increase luminescence. Lanthanides like Eu, Tb, Dy, Sm, Nd, Gd, Er, and 
Yb are employed as luminescent metal ions owing to their electronic transition from 
d- to f-orbitals. Naphthalene, anthracene, pyrene, perylene, and stilbene types of 
ligands are used for the synthesis of luminescent MOFs [15]. As an example, HKUST-1 
has shown a color change from turquoise to green as a result of the exchange of Cu2+-
coordinated water with pyridine (Table 2) [44].
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4. Different types of MOFs

MOFs can be divided into different types based on their metal nodes. Metal 
nodes may vary from the s-block, p-block, transition metals, or even rare earth 
metals. S-block main group elements, alkali and alkaline earth metals are rarely 
used because of their low stability and difficulties in the structural formation of 
MOFs. In spite of their limitations, they have some advantages, including naturally 
high abundance, less toxicity, and low density, which lead to different applications 
[48]. Most reported MOFs are based on transition metals that can divide into dif-
ferent groups.

4.1 Transition-metal-based MOFs

4.1.1 Zr-based MOFs

Zr-based MOFs are useful in different fields according to their extraordinary 
mechanical, thermal, chemical stability and high oxidation state of Zr(IV) compared 
with M(I), M(II), and M(III)-based MOFs (M stands for metal elements). Zr-MOFs 
are applied in catalysis, molecule adsorption and separation, drug delivery, and 
fluorescence sensing, and as porous carriers [49]. For instance, Feng et al. reported 
Zr-PCN-221(Fe) as the catalyst for the selective oxidation of cyclohexane with 
tert-butyl hydroperoxide (TBHP) as the oxidant [50]. Additionally, Zr-based MOFs 

MOF Metal node Linker Application Ref.

UiO-66 Zr6O4(OH)4 Benzene-1,4-dicarboxylic acid Ring-opening
reaction
cyclization

[41, 42]

HKUST-1 Cu(II) 1,3,5-Benzene tricarboxylate Esterification

Ti-MOF-
Ru(tpy)2

Ti(IV) Bis(4′-(4-carboxyphenyl)-
terpyridine)Ru(II)
complex

Photocatalytic H2 
production

[43]

PCN-12 Cu(II) 5,5′-Methylene-di-isophthalate H2 storage [31]

Al-MOF 
(NOTT-
300)

Al(III) Biphenyl-3,3′,5,5′-
tetracarboxylic acid

C2H4/C2H6 separation [34]

MIL - 101 Cr(III) 1,4-Benzenedicarboxylate Drug delivery [40]

HKUST-1 Cu(II) Benzene-1,3,5-tricarboxylate sensor [44]

Al-ATA-Ni 
MOF

Al(III) 2-Aminoterephthalate Photocatalytic water 
splitting

[45]

Zr-MOF, Zr6O4(OH)4 Dibenzoate-substituted 
2,2′-bipyridine dibenzoate

Oxidation [46]

IRMOFs
(MOF-5)

Zn4O Benzene-1,4-dicarboxylic acid Alkylation [47]

Table 2. 
Different applications of MOF.
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can act as a semiconductor in photocatalytic reactions. As an example, Lillerud and 
coworkers reported the first Zr-based MOFs including UiO-66 and UiO-66(NH2) for 
photocatalytic water splitting [51].

4.1.2 Cu-based MOFs

Copper (Cu) as an abundant and inexpensive metal with divalent copper ions 
having tetra- or hexa-coordinated structure can be used as another metal node in the 
synthesis of MOFs. Also, it has different oxidation states, such as Cu0, CuI, CuII, and 
CuIII, leading to a wide variety of redox reactions [52].

Park and coworkers reported the green synthesis of PNU-25 applied in the 
cycloaddition reaction of CO2 and epoxide [53]. In another study, a semi-conductive 
copper organic MOF, that is, {[CuICuII

2-(DCTP)2]NO3·1.5 DMF}n with 2.1 eV bandgap 
was involved in UV/visible photocatalytic H2 generation and oxidation of holes for 
photocatalytic degradation of methyl blue with use of visible light and without the aid 
of photosensitizer [54].

4.1.3 Fe-based MOFs

According to the Earth’s abundance of iron, development in various applications 
of Fe-based MOFs in CO2 reduction, photo-degradation, water splitting, and organic 
transformations occurred [55]. They are widely applied in photocatalytic reactions 
like H2 production. For example, the photocatalytic visible light H2 production of 
MIL-100(Fe) in presence of MEOH was reported by Wang et al. [56].

4.1.4 Co-based MOFs

Based on the inexpensiveness and availability of cobalt salts, cobalt-based MOFs 
have been widely used in different applications, such as oxygen and hydrogen evolu-
tion, catalysis, electrocatalysis, synthesis of nanomaterials, and more [57–59]. These 
structures can provide a transition porous framework and ultra-high surface area for 
photocatalytic H2 production. For instance, Yang et al. reported Co-based zeolitic 
imidazolate MOF (ZIF-67) with RuN3 as a photosensitizer for efficient photocatalytic 
H2 production from H2O [60]. In another study of Co-MOFs, Dirk Volkmer and 
coworkers reported the synthesis and the catalytic performance of MFU-1 MOF in the 
oxidation of cyclohexene using TBHP as an oxidant [61].

4.1.5 Ni-based MOFs

Ni-based MOFs are another useful group of metal–organic frameworks with 
properties such as high porosity, presence of coordinatively unsaturated Ni2+ 
sites and Lewis acid sites so they can be used in different fields. Miyake et al. first 
described the synthesis and application of MOFs with Ni-bipyridyl complex as 
the linker along with Ni as the nodes in ethylene oligomerization [62]. In another 
study, [Ni(phen) (oba)]n- 0.5nH2O 2D MOF has been studied as supporting 
material for metal sulfides as a visible light active photocatalyst for effective H2 
production [63].
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4.1.6 Ti-based MOFs

4.1.6.1 The overall properties of titanium (Ti)

4.1.6.1.1 The chemistry of Ti

What makes titanium an attractive candidate to use as a metal node in several 
MOFs? Indeed, divalent transition metal cations, such as Zn2+, Cu2+, Co2+, and 
Ni2+, lead to thousands of extraordinary porous MOFs. Nevertheless, they are often 
unstable in the presence of water. To enhance the strength of cation–ligand bond 
and gain stability in MOFs, increasing the charge of a metal cation and its polarizing 
power charge over ionic radius are considered [64].

Among the elements in the periodic table, titanium or Ti has drawn considerable 
attention due to its fascinating intrinsic features. To mention about its abundance, it is 
the ninth most abundant element in the Earth’s crust and is the second most abundant 
transition metal after iron. This element, located in the first row of the periodic table 
and above the zirconium, has a [Ar] 3d2 4s2 electronic configuration. In comparison 
with Zr4+, it has a stronger interaction with oxygen due to its smaller ionic radius. Its 
common oxidation states are +2, +3, and + 4. Ti+4 ion is a frequent oxidation state, 
which is the most stable in ambient conditions (air and water), while Ti3+ could be 
generated under reductive conditions but quickly oxidized back to Ti4+ in the pres-
ence of oxygen. The reasons for its tendency to hydrolyze into various titanium oxo 
clusters, or directly to generate TiO2 precipitation are low electronegativity and high 
polarizability [65–67].

Due to the all features mentioned above, titanium is a highly desirable alterna-
tive to constructing stable and diverse MOFs. There are several Ti-MOFs that were 
published, including MIL-91 [68], MIL-125 [69], NTU-9 [70], MIL-101 [71], COK-69 
[72], Ti-CAT-5 [73], MIL-167 [74], MIP-177 [75], MIL-100 [76], Ti-TBP [77], and 
ZSTUs [78], applied in different fields. However, Ti-MOFs have seldom been reported 
due to some reasons, which will be summarized into three main parts [79]:

i. Strong interaction between reactive titanium sources and ligand as a result of the 
high charge to radius (Z/r) value on Ti4+ causes poor association/dissociation of 
metal–ligand bond and formation of crystalline products. To achieve a crystalline 
structure, choosing suitable synthetic conditions, such as the organic solvents, 
ratio of the reacted solution mixture, pH, and temperature, should be considered.

ii. Another limitation is the extreme hydrolysis of reactive titanium sources

iii. Some of the titanium carboxylates show low symmetry or inappropriate  
connectivity that leads to hinder the formation of periodic networks with 
organic linkers [80].

4.1.6.1.2 History

MIL-22 was the first Ti-MOF, synthesized by Serre, Fèrey, and coworkers, using 
phosphorus ligand and TiO2 under high temperature in 1999 (Figure 1a) [81]. This 
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compound showed limited porosity. For a quite long time, no highly porous Ti-MOF 
was reported. Subsequently, in 2009, MIL-125 was discovered by the same group 
(Figure 1b) [82]. The discovery of this MOF created a scientific boom in the synthesis 
of new Ti-based MOFs material. It consists of 12-connected [Ti8O8(OH)4(COO)12] clus-
ters and 1,4-benzenedicarboxylate (BDC) linker and demonstrates permanent porosity 
with a BET surface area of 1550 m2g−1 [69]. Meanwhile, titanium oxo clusters, which can 
be seen as TiO2 nanoclusters, affect the construction of novel Ti-based MOFs [83].

Up to now, different types of Ti-MOFs have been introduced. The development of 
a titanium-based MOFs timeline is presented in Figure 2 [65].

4.1.6.1.3 Comparison of the Ti-MOF with other MOFs

In this regard, Ti-MOFs possess several advantages over other groups of MOFs, 
which are as follows:

i. Strong Ti–O bonding, which is the result of the small ionic radius of Ti4+, leads to 
rigid MOF structures.

ii. The high coordination number of Ti4+ causes structural diversity in metal-oxo 
clusters.

iii. Ti-based MOFs with large surface area and high porosity can be effective pho-
tocatalysts in which Ti–O clusters act as isolated titanium oxide quantum dots, 
making them like the Ti-grafted zeolites and the semiconducting titanium oxide.

iv. Their ability to store charge effectively because of the reversible redox transition 
between Ti4+/Ti3+ under photo-excitation leads to using them in photo-driven 
catalytic redox reactions.

v. Their photocatalytic properties can be developed and improved by function-
alization of ligands and composition with other highly active species like metal 
nanoparticles and graphene.

Figure 1. 
(a) Structure of MIL-22, (b) structure of MIL-125.
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vi. They form rigid frameworks, which are the result of strong metal–ligand 
bonding.

vii. Their well-defined porosity enhances photocatalytic activities.

viii. Their low cost and low toxicity make them good candidates as catalysts [64, 84].

To realize the importance of Ti-MOFs among all families of MOFs, their properties 
should be discussed, most notably about two important ones such as porosity and 
optical properties [85].

Porosity is one of the most effective features in photocatalytic reactions accom-
plished by MOFs. Owing to this property, the transfer of photoelectric charge hap-
pens rapidly, thus the electron–hole recombination reduces. Moreover, porosity lets 
the active sites to be in contact with the substrate more effectively by reducing the 

Figure 2. 
The timeline for the development of crystal structures of titanium-based MOFs.
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diffusion resistance [86]. In addition, this property prepares large spaces for encapsu-
lating different types of catalysts [87]. As a result, Ti-MOFs can be used in different 
fields of chemistry.

There are various strategies used for the synthesis of porous Ti-MOFs, which are 
good to mention:

i. Partial post-synthetic metal exchange; for instance, porous TiIII-MOF-5 and TiIV-
UiO-66 were synthesized by exchanging their metals with ZnII and ZrIV [88].

ii. Assembly of clusters; MTM-1, a porous Ti-MOF, is synthesized by a combination 
of {[Ti6O6][Oipr]6}6+ cluster and cross-connected Cu2I2 dimer through isonona-
nol (INA) [85].

iii. The supramolecular template strategy [86].

iv. Isoreticular expansion, an effective strategy, is used to increase the pore size, 
surface area, and porosity by self-assembly of metal centers and organic ligands. 
In this strategy, long and geometrically equivalent organic ligands influence the 
porosity of MOF. As an example, MOF-902 has a greater porosity in comparison 
with MOF-901 because of its longer organic building blocks [89]. In spite of the 
fact that the longer the organic ligands are, the higher porosity occurs, and the 
stability of Ti-MOFs diminishes.

The optical property of MOFs is an important factor for photocatalysis. In general, 
photocatalytic reactions consist of three main steps: light absorption, charge separa-
tion and transfer, and redox reaction [90]. To enhance the light absorption intensity, 
modification of organic ligands is utilized. In the same way, it can affect MOF’s 
bandgap. As an example, inserting the -NH2 functional group on the ligand of MIL-
125 yields a small bandgap [91].

To conclude, compared to other MOFs, Ti-MOFs are fascinating structures with 
various applications in different fields due to their high thermal and chemical stabil-
ity, novel structural diversity, photocatalytic properties, low cost, and low toxicity 
(Figure 3) [85]. The geometry and length of organic building blocks and metal nodes 
can affect the chemical stability and functional properties of MOFs. For instance, the 
carboxylate ligand-based MOFs with low-valent ions, such as Zn2+, Co2+, and Mn2+, 
show lower chemical stability. However, those with high-valent ions, such as Zr4+, 
Ti4+, and Cr3+, usually have high chemical stability [65].

In comparison with other metal-based MOFs, for example, Zr-MOFs, Fe-MOFs, or 
Cu-MOFs, the titanium-based MOFs exhibit richer structural and topological diver-
sity, due to the variable nuclearity of titanium cores.

Owing to the low-level control of titanium chemistry and highly unpredictable 
polycondensation of titanium cation, titanium-based MOF structures are less com-
monly reported compared with the Zr-MOFs, Fe-MOFs, or Cu-MOFs.

4.1.6.1.4 Stability

The stability of M4+-MOFs makes them an appealing choice to concentrate on. 
Many factors are involved in the stability of MOFs, such as metal nodes, organic 
ligands, metal–ligand coordination, operating environment, hydrophobicity of the 
pore surface, and defects [92–94]. Thermodynamic stability of MOFs is affected by 
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metal–ligand coordination. Based on Pearson’s hard/soft acid/base (HSAB) theory, 
strong bonds are formed between hard Lewis’s acids and bases or soft Lewis’s acids 
and bases. Carboxylate-based ligands are hard bases that can generate stable MOFs 
with group 4 metal cations such as Ti4+ [66]. Likewise, kinetic factors have an impor-
tant role in the stability of MOFs. Strong connection between metal-oxo clusters and 
rigid ligands leads to dense and rigid frameworks, which increase the stability of 
MOFs. Hence, good stability in M4+-based MOFs is expected because M4+ cations tend 
to have more ligands to balance their charges. Another factor that affects the stability 
of MOFs is the operating environment. For instance, the resistance of carboxylate-
based ligands in acids and bases is completely different. They show excellent stability 
in acids, while their stability is quite weak in bases [95].

4.1.6.1.5 The coordination behavior of titanium ions

Generally, each metal ion prefers to coordinate with other components in a 
special way. For example, Cu2+ ions tend to assemble with four carboxylate groups 
to form Cu(COO)4 paddle-wheel geometry [44] and zirconium ions construct the 
clusters like Zr6O4(OH)4(CO2)12 as 6-C, 8-C, 10-C, or 12-C nodes [49]. With regard 
to titanium ions, the coordination with other components changes with reaction 
systems. The diversity in titanium-oxo clusters makes it hard to predict the topology 
of titanium-based MOFs. Ti4+ constructs octahedrally six-coordinated structures by O 
forming TiO6 units that are bridged by μ2-O or μ3-O atoms. They lead to the creation 
of titanium-oxo clusters that vary based on their synthetic conditions. For instance, 
the cluster in MIL-125 or NH2-MIL-125, Ti8O8(OH)4 is completely different from 
Ti3(μ3-O) cluster in its polymorph Ti-MIL-101 [69, 71].

4.1.6.1.6 Applications

Most of the investigations have demonstrated that Ti-MOFs have several applica-
tions due to their diversity of stable structures, including photocatalytic reactions 
and organic transformations such as H2 productions [96], CO2 conversion [97], H2O2 

Figure 3. 
The number of photocatalytic publications on MOFs and Ti-MOFs reported annually from 2009 to 2019.
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production [98], pollutant degradation [99], and many other organic reactions. As 
an example, in 2018, an efficient photocatalytic H2 production, accomplished by 
a Ti-MOF known as MIL-125-(SCH3)2, was reported by Han et al. [100]. In 2018, 
Yamashita and coworkers reported the first example of a Ti-based MOF, MIL-
125-NH2 with NiO nanoparticles (NPs), used in photocatalytic H2O2 production 
[101]. The photocatalytic reduction of CO2 with Co/NH2-MIL-125(Ti) was reported 
by Fu et al. under visible light irradiation [102].

4.1.6.2 Titanium precursor for MOF synthesis

Titanium precursors used in MOFs synthesis include hydrous TiO2, titanium 
chlorides, titanium alkoxides, titanium complexes, and titanium-oxo-clusters.

MIL-25 [103] and MIL-22 [81], two Ti natural phosphonates, were the first 
structures that were formed by hydrous TiO2 as a precursor. Hydrous forms of TiO2 
are rarely used for the synthesis of MOFs due to their limitations, such as high reac-
tion temperature (>200 C), long reaction time (3–4 d), and highly corrosive and toxic 
reaction media (40% HF aqueous solution) [104].

Titanium chlorides extremely hydrolyze and release hydrochloride fumes in the 
reaction medium [105]. This is the reason why they are seldom used in Ti-MOFs 
synthesis. TiCl3 is an exception in the construction of di or trivalent Ti-MOFs. 
Whereas Ti4+ is not a suitable selection because of the imbalanced charge and 
ionic range. According to the reductive nature of Ti3+, exposure to air inhibits the 
synthesis [106].

In terms of titanium alkoxides, Ti(OR)4, hydrophobic character and hindrance of 
alkoxy groups cause them less hydrolyzed than TiCl4. The construction of complexes 
of Ti cations with bidentate ligands, such as carboxylates, diketonates, catecholates, 
and phosphonates, leads to a stable structure [64].

An efficient way to control the reaction degree of MOF synthesis is the utilization 
of stable six-coordinated Ti compounds (Ti-oxo-clusters) [80]. Owing to the differ-
ent sizes, geometry, and coordination numbers of Ti clusters, they have the potential 
to be chosen as building blocks of MOFs. The original cluster might be transformed 
during the reaction. For instance, in the synthesis of PCN-22 by Ti6O6(iOPr)6(abz)6 
as Ti precursor, this cluster was completely transformed to Ti7O6-oxo SBU in the final 
MOFs [107]. In comparison with Ti alkoxides, Ti clusters are useful to adjust the reac-
tion rates and obtain larger single crystals [106].

4.1.6.2.1 Synthesis methods

New synthetic methods of Ti-MOFs have been proposed to remove the restric-
tions. In this section, we have introduced some strategies to synthesize these 
structures, including direct synthesis, cooperative self-assembly strategy, and vapor-
assisted crystallization method. Besides, the synthetic strategies of Ti-MOF compos-
ites and derived porous materials are discussed [85].

4.1.6.2.1.1 Direct synthesis

Most of the Ti-MOFs have been synthesized by direct methods, such as hydro-
thermal/solvothermal, microwave, and ultrasonic synthesis. The most conventional 
method for direct synthesis of Ti-MOFs is the hydrothermal/solvothermal technique, 
which includes the interaction between metal–salt and an organic linker in a suitable 
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solvent(s) and autoclave conditions. Choosing the proper solvent and concentration 
of reactants are two important factors that affected the crystallinity and morphology 
of Ti-MOFs [106]. As an example, the morphology of NH2-MIL-125 microcrystals 
could be changed from circular plate to octahedron by changing the concentration of 
the solution [108]. In 2015, Yaghi and coworkers reported the first three-dimensional 
(3D) extended Ti catecholate MOF (Ti-CAT-5) by solvothermal reaction of the Ti ion 
and hexatopic catecholate linker, 2,3,6,7,9,11-hexahydroxytriphenylene (H6THO) at 
180 C for 4 h [73].

Other direct methods for synthesis of Ti-MOFs are ultrasonic- and microwave-
assisted techniques that have advantages including obtaining structures with different 
molecular sizes and shapes in short reaction time and low temperature [104]. Kim 
and coworkers have synthesized NH2-MIL-125 by the microwave-assisted method in a 
shorter reaction time in comparison with the solvothermal technique. As an example 
of sonochemical synthesis, Han and coworkers have reported NH2-MIL-125 in a 
uniform size distribution of around 300 nm [109].

4.1.6.2.1.2 Coordination-covalent combination method

In spite of the advantages of direct synthesis of Ti-MOFs, this methodology has 
some limitations like the formation of unpredicted structures and byproducts. The 
utilization of Ti-oxo clusters can approximately solve this problem. To obtain an ideal 
structure that does not disturb the Ti–O bonding in the clusters, combining the MOFs 
and COFs known as the coordination-covalent combination strategy was introduced 
[104]. The first example of this strategy was reported by Yaghi and coworkers. This 
reported synthesis involves in situ generation of an amine-functionalized titanium 
oxo cluster, Ti6O6(OCH3)6(AB)6 (AB = 4-aminobenzoate), which was linked with 
benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The 
crystal structure of MOF-901 with known structure and topology was achieved [110].

4.1.6.2.1.3 Post-synthetic cation exchange method

Another strategy to overcome the conventional methods’ limitations is the cation 
exchange method. This technique can avoid the high reactivity and vigorous hydro-
lysis of Ti precursors and lead to desired pore and topography in Ti-MOFs [111]. 
The example for post Ti-exchange was first reported by Cohen et al. Ti ion exchange 
occurred in Zr-MOF, UiO-66, became a better option for Ti-MOF [112].

4.1.6.2.1.4 Vapor-assisted crystallization method

To overcome the limitations of microporous structures in catalytic applications of 
Ti-MOFs by creating mesopores in MOFs structures, the vapor-assisted crystalliza-
tion method (VAC) was introduced by Hicks et al. [113].

4.1.6.2.1.5 Synthesis of Ti-MOF composites

According to the importance of MOFs supported metal nanoparticle compounds 
in catalysis, highly dispersed nanoparticle-doped Ti-MOFs were prepared. Not only 
noble metal nanoparticles, such as silver (Ag), gold(Au), platinum (Pt), palladium 
(Pd), and non-noble metal nanoparticles, such as nickel (Ni) have been success-
fully embedded into the pores of Ti-MOFs [114, 115] but also quantum dots, such as 
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graphene-like MoS2 sheets, Ag2S, CdS, and CuS have been deposited onto MIL-125 
and a series of Ti MOFs based composites [116].

4.1.6.2.2 Different types of Ti-MOFs

Ti-MOFs can be categorized based on their structures (one-dimensional (1D) 
chain structures, two-dimensional (2D) layer structures, and three-dimensional (3D) 
network structures) and ligands in their secondary building units (phosphonates, 
carboxylates, salicylates, and catecholates).

4.1.6.2.2.1 Types of Ti-MOFs based on their structures

1D and 2D Ti-MOF structures are rarely reported. For instance, MIL-168 has 1D 
zigzag chains running parallel to each other (Figure 4a) [74]. To form an ordered 1D 
zigzag, a single bidentate ligand occupies two cis positions to create an octahedral 
environment around the metal ion [117].

Generally, 2D network structures can be divided into two types: “tilt penetration” 
and “parallel penetration” [118]. In two-dimensional MIL-169 (Ti2(DOBDC)4O(H2O)2 
dimer, DOBDC4 = 2,5-dioxido-1,4-benzenedicarboxylate), the Ti ion is chelated by 
two DOBDC ligands through the six-membered ring (Figure 4b) [74].

In terms of 3D MOFs, they possess different complicated structures. For example, 
Jiang et al. reported the synthesis and structure of a 3D chiral structure, a 3-con-
nected SrSi2 net with (10,3) topology, which exhibited a novel doubly interwoven 
SrSi2 topology (Figure 4c) [119].

4.1.6.2.2.2 Types of Ti-MOFs based on ligands in secondary building units

It is noteworthy to discuss about the structures of Ti-MOFs based on different 
kinds of ligands due to their obvious directing effects toward the finally formed 
Ti-oxo SBUs.

4.1.6.2.2.2.1 Carboxylate-based Ti-MOFs

In general, Ti-MOFs are mostly constructed from carboxylate ligands. Ti cations 
with polydentate carboxylate acids have a tendency to form large Ti-oxo-carboxylate 
clusters, leading to a wide variety of Ti-MOFs’ structures. Ti-oxo-carboxylate clusters 
with the general formula TinOm(OR)x(OOCR/)y can be synthesized by a solution of a 

Figure 4. 
(a)Crystal structure of MIL-168, a 1D coordination chain. (b) Crystal structure of MIL-169, 2D coordination 
network. (c) a view of the structure of poly[bis(μ3–3,5-di-ethyl-1,2,4-triazolato-κ

3N1:N2:N4)trisilver nitrate] 
along the [110] direction, showing the three-dimensional framework.
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metal cation precursor (very often Ti(OR)4) with carboxylate ligand and/or a controlled 
amount of water. It is important to control different factors such as nature and the 
amount of the metal cation precursor, the ligand (R/COOH), the solvent, and the reac-
tion conditions (time, pressure, presence of water or not, inert conditions or not, etc.). 
In 2015, Bueken et al. reported a new Ti-MOF based namely COK-69 by reaction of 
trans-1,4-cyclo-hexanedicarboxylate (cdc) linkers and an unprecedented [TiIV

3 -(μ3-O)
(O)2(COO)6] cluster. In COK-69, three neighboring Ti atoms joined by a μ3-O2− ion 
and six carboxylates give the formation of the Ti3O3 cluster. Subsequently, the porous 
framework is formed by a connection between the cluster and six cdc2− linkers [120].

4.1.6.2.2.2.2 Phosphonate-based Ti-MOFs

A series of different phosphonate-based Ti-MOFs, typically MIL-22 [81], MIL-25n 
(n = 2, 3) [103], and MIL-91(Ti) [68], has been introduced by Férey et al. For example, 
the monoclinic MIL-22 is synthesized by corner-shared trimers of Ti-oxo octahedrals 
and PO4 from diphosphonic linkers, forming a 2D array of microporous channels.

4.1.6.2.2.2.3 Salicylate-based Ti-MOFs

As an example of using salicylate organic linkers in the structure of MOF, in 2013 
Hong et al. introduced Ti-salicylate MOF, namely ZTOF-1. Under solvothermal con-
ditions, the reaction of zinc and titanium precursors with asymmetrical dicarboxylate 
ligand, 2-hydroxyterephthalic acid (H3obdc) leads to orange crystals of ZTOF-1. In 
this structure, Ti coordinates with the “salicylate” end of the ligand, while Zn coordi-
nates with the carboxylate end [121].

4.1.6.2.2.2.4 Catecholate-based Ti-MOFs

Up to now only one Ti-MOF based on polycatecholate ligand known as Ti-CAT-5 
was reported, in spite of the richness of Ti-catecholate clusters and the potential of 
these structures to apply in different fields. Ti-CAT-5 was constructed by the connec-
tion of isolated Ti-centers and the tritopic catechol derivative ligand, H6THO [73].

5. Conclusion

Metal–organic frameworks, composed of metal ions or well-defined secondary 
building units and organic linkers, are utilized in different fields, such as gas storage and 
separation, liquid separation and purification, electrochemical energy storage, catalysis, 
and sensing, due to their unique properties. According to the features of titanium, 
such as different oxidation states, high coordination number of Ti4+, and the ability to 
form strong bonds with oxygen and different ligands, it is used as a metal node in MOF 
design. Titanium-based MOFs, as a branch of metal–organic frameworks, have recently 
attracted the researchers’ attention because of their special properties, including high 
thermal and chemical stability, novel structural diversity, photocatalytic properties, low 
cost, and low toxicity. In this regard, the characteristics, types of Ti-MOFs, methods 
of synthesis, applications, and comparison of Ti-MOFs with other MOFs are discussed 
in this chapter. In comparison with other metal-based MOFs, for example, Zr-MOFs, 
Fe-MOFs, or Cu-MOFs, the titanium-based MOFs exhibit richer structural and topologi-
cal diversity, high thermal and chemical stability, and high photocatalytic activity.
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