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The ability of detecting human postures is particularly important in several fields like ambient intelligence, surveillance, elderly
care, and human-machine interaction. This problem has been studied in recent years in the computer vision community, but the
proposed solutions still suffer from some limitations due to the difficulty of dealing with complex scenes (e.g., occlusions, different
view points, etc.). In this article, we present a system for posture tracking and classification based on a stereo vision sensor. The
system provides both a robust way to segment and track people in the scene and 3D information about tracked people. The
proposed method is based on matching 3D data with a 3D human body model. Relevant points in the model are then tracked over
time with temporal filters and a classification method based on hidden Markov models is used to recognize principal postures.
Experimental results show the effectiveness of the system in determining human postures with different orientations of the people
with respect to the stereo sensor, in presence of partial occlusions and under different environmental conditions.
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1. INTRODUCTION

Human posture recognition is an important task for many
applications in different fields, such as surveillance, ambient
intelligence, elderly care, and human-machine interaction.
Computer vision techniques for human posture recognition
have been developed in the last years by using different
techniques aiming at recognizing human activities (see, e.g.,
[1, 2]). The main problems in developing such systems arise
from the difficulties of dealing with the many situations that
occur when analyzing general scenes in real environments.
Consequently, all the works presented in this area have
limitations with respect to a general applicability of the
systems.

In this article, we present an approach to human posture
tracking and classification that aims at overcoming some
of these limitations, thus enlarging the applicability of this
technology. The contribution of this article is a method
for posture tracking and classification given a set of data
in the form XYZ-RGB, corresponding to the output of a
stereo-vision-based people tracker. The presented method
uses a 3D model of human body, performs model matching
through a variant of the ICP algorithm, tracks the model

parameters over time, and then uses a hidden Markov model
(HMM) to model posture transitions. The resulting system
is able to reliably track human postures, overcome some
of the difficulties in posture recognition, and present high
robustness to partial occlusions and to different points of
view. Moreover, the system does not require any off-line
training phase. Indeed it just uses the first frames (about
10) in which the person is tracked to automatically learn
parameters that are then used for model matching. During
these training frames, we only require the person to be in
the standing position (with any orientation) and that his/her
head is not occluded.

The approach to human posture tracking and classifica-
tion presented here is based on stereo vision segmentation.
Real-time people tracking through stereo vision (e.g., [3–5])
has been successfully used for segmenting scenes in which
several people move in the environment. This kind of tracker
is able to provide not only information about the appearance
of a person (e.g., colors) but also 3D information of each
pixel belonging to the person.

In practice, a stereo-vision-based people tracker pro-
vides, for each frame, a set of data inthe form XYZ-RGB
containing a 2.5D model and color information of the person
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being tracked. Moreover, correspondences of these data over
time are also available. Therefore, when multiple people are
in a scene, we have a set of XYZ-RGB data for each person.
Obviously, this kind of segmentation can be affected by
errors, but the experience we report in this article is that this
phase is good enough to allow for implementing an effective
posture classification technique. Moreover, the use of stereo-
based tracking guarantees a high degree of robustness also to
illumination changes, shadows, and reflections, thus making
the system applicable in a wider range of situations.

The evaluation of the method has been performed on
the actual output of a stereo-vision-based people tracker,
thus validating in practice the chosen approach. Results show
the feasibility of the approach and its robustness to partial
occlusions and different view points.

The article is organized as follows. Section 2 describes
some related work. Section 3 presents a brief overview of
the system and describes the people tracking module upon
which the posture recognition module is based. Section 4
presents a discussion about the choice of the model that
has been used for representing human postures. Section 5
describes the training phase, while Section 6 introduces the
algorithm used for posture classification. Then, Sections
7, 8, and 9 illustrate in detail the steps of the algorithm.
Finally, Section 10 includes an experimental evaluation of the
method. Conclusions and future work conclude the article.

2. RELATED WORK

The majority of the works that deal with human body
perception through computer vision can be divided into
two groups: those that try to achieve tracking of the pose
(a set of quantitative parameters that define precisely the
configuration of the articulated body) through time and
those that aim at recognizing the posture (a qualitative
assessment that represents a predefined configuration) at
each frame.

The first category is usually more challenging since it
requires a precise estimation of the parameters that define
the configuration of the body. Given the inherent complexity
of the articulated structure of the human body and the
consequent multimodality of the observation likelihood,
one might think that propagating over time the probability
distribution on the state should be preferred with respect to
a deterministic representation of the state. The introduction
of the condensation algorithm [6] shows how this approach
can lead to desirable results, however revealing at the same
time that the computational resources needed for the task
are unacceptable for the majority of the applications. In the
following years, there have been many attempts to reduce
the problem of the time elapsed, for instance by reducing
the number of particles and including a local search [7] or a
simulated annealing [8] in the algorithm. Even if the results
remain very precise and the time elapsed decreases with these
new approaches, the goal of an application that can be used
in real-time scenarios is still far from being achieved due to
the still inadmissible time request. Propagating a probability
distribution over time yields a robust approach, because it
deals effectively with the drift of the tracking error over time.

Another class of approaches address the accumulation of
the error over time and the ability to recover from error
by recognizing the components of the articulated body in
the single image. These approaches [9–11] are characterized
by the recovery in the images of potential primitives of the
body (such as a leg, a head, or a torso) through template
search, exploiting edge and/or appearance information, and
then the search for the most likely configuration given
the primitives found. While this approach easily allows for
coping with occlusions, given its bottom-up nature, it still
remains limited in the 2D information that it exploits and
that it outputs. Other approaches try to overcome this
limitation, proposing to use a well-defined 3D model of the
object of interest, and then trying to match these models
with the range image, either using the ICP algorithm [12]
or a modified version of the gradient search [13]. These
approaches are computationally convenient with respect to
many others, especially the former that achieves the goal of
producing real-time results, even if one can suspect that it
has problems in dealing with occlusions.

The approaches in the second category, rather than
recovering the pose, attempt to classify the posture assumed
by the examined person in every single frame, picking up one
among a predefined set of postures. Usually this means that
some low-level features of the body segment of the image,
such as projection histograms [14–16] or contour-based
shape descriptors [16], are computed in order to achieve this
classification. Otherwise, a template is obtained to represent
a single class of postures and then the image is compared with
the whole set of templates to find the best match, for example
using Chamfer matching [17]. The main difficulty with this
kind of solutions is that the sets of different defined postures
are not usually disambiguated by a particular set of low-
level features. Also, the templates that are used as prototypes
for the different classes of postures do not contain enough
information to distinguish correctly all the different postures.

Our approach tries to combine aspects of the two cate-
gories. In fact, we propose a method for posture recognition
that does not discard some of the crucial information about
the body configuration that we decided to track over time.
With respect to methods in the first group, our approach
is less time consuming, allowing us to use it in applications
such as video surveillance. Indeed, though the output given
by our system is not as rich as the one showed in other works
[7, 8], we show that there is no need of further analysis of
the image when the objective is to classify a few postures.
With respect to methods in the second group, our approach
is more robust, not relying on low-level features that are
usually not distinctive of one single class of postures when
the subject is analyzed from different points of view. In fact,
we show that the amount of information we used is the right
tradeoff between robustness and efficiency of the application.

3. OVERVIEW OF THE SYSTEM

The system described in this article is schematically repre-
sented in Figure 1. Two basic modules are present in this
schema: PLT (people localization and tracking), which is
responsible for analyzing stereo images and for segmenting
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PLT PPR

Figure 1: Overview of the system.

the scene by extracting 3D and color information, and
PPR (person posture recognition), which is responsible for
recognizing and tracking human postures.

In the rest of this section, we briefly describe these
modules. Since the focus of this article is on the posture
recognition module, the detailed description of its design
and implementation is delayed to the next sections.

3.1. People localization and tracking

The stereo-vision-based people localization and tracking
(PLT) [4, 5] is composed of three processing modules: (1)
segmentation based on background subtraction, that is used
to detect foreground people to be tracked; (2) plan-view
analysis, that is used to refine foreground segmentation
and to compute observations for tracking; (3) tracking,
that tracks observations over time maintaining association
between tracks and tracked people (or objects). An example
of the PLT process is represented in Figure 2.

Background subtraction is performed by considering
intensity and disparity components. A pixel is assigned
to foreground if there is enough difference between the
intensity and disparity of the pixel in the current frame
and the related components in the background model. More
specifically, with this background subtraction a foreground
pixel must have both intensity difference and disparity
difference. This allows for correctly dealing with shadows and
reflections that usually produce only intensity differences, but
not disparity differences. Observe also that the presence of
the disparity model allows for reducing the thresholds, so
that it would be possible to detect also minimal differences
in intensity and thus being able to detect foreground
objects that have similar colors of the background, without
increasing false detection rate due to illumination changes.

Foreground analysis is used to refine the set of fore-
ground points obtained through background subtraction.
The set of foreground pixels is processed by (1) connected
components analysis, that determines a set of blobs on the
basis of 8-neighborhood connection; (2) blob filtering, that
removes small blobs (due to, e.g., noise or high-frequency
background motion). These processes remove typical noises
occurring in background subtraction and allow for comput-
ing more accurate sets of foreground pixels for representing
foreground objects. Therefore, it is adequate to be used in the
subsequent background update step.

The second part of the processing is plan-view analysis.
In this phase, each pixel belonging to a blob extracted
in the previous step is projected in the plan-view. This
is possible since stereo camera is calibrated and thus we
can determine 3D location of pixels with respect to a
reference system in the environment. After projection, we
perform a plan-view segmentation. More specifically, for
each image blob, connected components analysis is used
to determine a set of blobs in the plan-view space. This
further segmentation allows for determining and solving
several cases of undersegmentation. They occur, for example,
when two people are close in the image space (or partially
occluded), but far in the environment. Plan-view blobs are
then associated to image blobs and a set of n pairs (image
blob, plan-view blob) are returned as observations for the n
moving objects (people) in the scene.

Finally, tracking is performed to filter such observations
over time. Our tracking method integrates information
about person location and color models using a set of
Kalman filters (one for each person being tracked) [4]. Data
association between tracks and observations is obtained as
a solution of an optimization problem (i.e., minimizing
the overall distance of all the observations with respect
to the current tracks) based on a distance between tracks
and observations. This distance is computed by considering
Euclidean distance for locations and a model matching
distance for the color models, thus actually integrating the
two components in data association.

Tracks in the system are also associated to finite-state
automata that control their evolution. Observations without
an associated track generate CANDIDATE tracks and tracks
without observations are considered LOST. CANDIDATE
tracks are promoted to TRACKED tracks only after a few
frames. In this way we are able to discard temporary false
detections. While LOST tracks remain in the system for a few
frames in order to deal with temporary missing detection of
people.

The output of the entire process is thus a set of tracks for
each tracked person, where each track contains information
about the location of the person over time, as well as
XYZ-RGB data (i.e., color and 3D position) for all the
pixels that the system has recognized as belonging to the
person. Since external calibration of the stereo sensor is
available, the reference system for 3D data XYZ is chosen
with the XY plane corresponding to the ground floor and
the Z axis being the height from the ground. Therefore,
for each tracked person, the PLT system provides a set of
data ΩP = {ωP

t , . . . ,ωP
t0 } from the time t0 in which the

person is first detected to current time t. The value ωP
t =
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t) | i ∈ P } is the set of XYZ-RGB data

for all the pixels i identified as belonging to the person P .
The PLT system produces two kinds of errors in these

data: (1) false positives, that is, some of the pixels in F do
not belong to the person; (2) false negatives, that is, some
pixels belonging to the person are not present in F . Figure 3
shows two examples of nonperfect segmentation, where only
the foreground pixels for which it is possible to compute 3D
information are displayed. By analyzing the data produced
by the tracking system we estimate that the rate of false
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Figure 2: An example of the PLT process. From top-left: original image, intensity foreground, disparity foreground, plan-view, foreground
segmentation, and person segmentation.

(a) (b)

Figure 3: Examples of segmentation provided by the stereo tracker.

positives is about 10% and the one of false negatives is about
25%.

The posture classification method described in the next
sections can reliably tolerate such errors, thus being robust to
noise in segmentation that is typical in real world scenarios.

3.2. Person posture recognition

The person posture recognition (PPR) is responsible for
the extraction of the joint parameters that describe the
configuration of the body being analyzed. The final goal is
to estimate a probability distribution over the set of postures
Γ = {U , S,B,K ,L}, that is, UP, SIT, BENT, ON KNEE, LAID.

The PPR module makes use of a 3D human model and
operates in two phases: (1) a training phase, that allows for
adapting some of the parameters of this model to the tracked

person; (2) an execution phase, that is composed by three
steps: (a) model matching, (b) tracking of model principal
points, (c) posture classification.

The 3D model used by the system, the training phase,
and the methods used for model matching, tracking, and
classification are described in the next sections.

4. A 3D MODEL FOR POSTURE REPRESENTATION

The choice of a model is critical for the effectiveness of
recognition and classification, and it must be carefully
taken by considering the quality of data available from the
previous processing steps. Different models have been used
in literature, depending on the objectives and on the input
data available for the application (see [1] for a review).
These models differ mainly for the quantity of information
represented.

In our application, the input data are not sufficient to
cope with hands and arms movement. This is because arms
are often missed by the segmentation process, while noises
may appear as arms. Without taking into account arms and
hands in the model, it is not possible to retrieve information
about hand gestures. However, it is still possible to detect
most of the information that allows to distinguish among
the principal postures, such as UP, SIT, BENT, ON KNEE,
and LAID. Our application is mainly interested in classifying
these main postures, and thus we adopted a model that does
not contain explicitly arms and hands.

The 3D model used in our application is shown in
Figure 4. It is composed of two sections: a head-torso block
and a leg block. The head-torso block is formed by a set
of 3D points that represent a 3D surface. In our current
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Figure 4: 3D human model for posture classification.

implementation, this set contains 700 points that have been
obtained by a 180-degree rotation of a curve. Since we are
not interested in knowing head movements, we model the
head together with the torso in a unique block (without
considering degrees of freedom for the head). However,
the presence of the head in the model is justified by two
considerations: (1) in a camera set-up in which the camera
is placed high in the environment, heads of people are very
unlikely to be occluded; (2) heads are easy to detect, since
3D and color information are available and modeled for
tracking (it is reasonable to assume that head appearance
can be modeled with a bimodal color distribution, usually
corresponding to skin and hair color).

The pelvis joint is simplified to be a hinge joint, instead of
a spherical one. This simplification is justified if one thinks
that, most of the times, the pelvis is used to bend frontally.
Also, false positives and false negatives in the segmented
image and the distortion due to the stereo system make
the attempt of detecting vertical torsion and lateral bending
extremely difficult.

The legs are unified in one articulated body. Assuming
that the legs are always in contact with the floor, a spherical
joint is adopted to model this point. For the knee a single
hinge joint is instead used.

The model will be built by assuming a constant ratio
between the dimensions in the model parts and the height
of a person, which is instead evaluated by the analysis of 3D
data of the person tracked.

On this model, we define three principal points: the head
(pH), the pelvis (pP), and the legs point of contact with floor
(pF) (see Figure 4). These points are tracked over time, as
shown in the next sections, and used to determine measures
for classification. In particular, we define an observation
vector z = [α,β, γ, δ,h] (see Figure 4) that contains the
estimation of the four angles α, β, γ, δ, and the normalized
height h, which is the ratio between the height measured at
the current frame and the height of the person measured
during the training phase. Notice that σ is not included in the
observation vector since it is not useful to determine human
postures.

5. TRAINING PHASE

Since the human model used in PPR contains data that must
be adapted to the person being analyzed, a training phase is
executed for the first frames in the sequence (ten frames are
normally sufficient) to measure the person’s height and to
estimate the head bimodal color distribution.

We assume that in this phase the person is exhibiting an
erect posture with arms below the shoulder level, and with
no occlusions for his/her head.

The height of the person is measured using 3D data
provided by the stereo-vision-based tracker: for each frame,
we consider the maximum value of Zit in ωt; the height of the
person is then determined by averaging such maximal values
over all the training sequence.

Considering that a progressively correct estimation of the
height (and, as a consequence, of the other body dimensions)
is also available during the training phase, the points in the
image whose height is within 25 cm to the top of the head (we
assumed that the arms are below the shoulder level) can be
considered as head points. Since the input data provide also
color of each point in the image, we can estimate a bimodal
color distribution by applying the k-mean algorithm on head
color points, with k = 2. This results in two clusters of colors
C1 and C2 that are described by the means of their centers of
mass μC1 and μC2 and their respective standard deviations σC1

and σC2 .
Given the height and the head appearance of a subject, his

or her model can be reconstructed and the main procedure
(that will be described in the next sections) can be executed
for the rest of the video sequence.

6. POSTURE CLASSIFICATION ALGORITHM

As already mentioned, the PPR module classifies postures
using a three-step approach: model matching, tracking and
classification. The algorithm implementing a processing step
of PPR is shown in Algorithm 1

A couple of data structures are used to simplify the
readability of the algorithm. The sign Π contains the three
principal points of the model (pH , pP , pF); Θ contains Π, σ ,
and φ. The sign σ is the normal vector of the symmetry plane
of the person. The sign φ defines the probability of the left
part of the body to be on the positive side of the symmetry
plane (i.e., where σ grows positive).

The input to the algorithm is represented by the structure
Θ estimated at the previous frame of the video sequence,
the probability distribution of the postures in the previous
step Pγ, and the current 3D point set ω coming from the
PLT module. Thus the output will be the new structure Θ′

together with the new probability distribution P′γ over the
postures.

A few symbols need to be described in order to easily
understand the algorithm: η is the model (both the shape
and the color appearance); λ is the person’s height learned
during the training phase; z is the observation vector used
for classification, as defined in Section 4.

The procedure starts by detecting if a significant dif-
ference in the person’s height (with respect to the learned
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Structures
Θ = [Π, σ ,φ]
Π = [pF , pP , pH]

Algorithm
INPUT: Θ, ω, Pγ
OUTPUT: Θ′, P′γ
CONST: η, λ, CHANGE TH # η: model λ: learned height

# (these values are computed by the Training phase)
PROCEDURE:

H = max{Z | Z ∈ ω};
IF ((λ−H) < CHANGE TH){
Θ′ = Θ;
z = [0, 0, 0, 0, 1];

}
ELSE{

[p̃P , p̃H] = ICP(η,ω); #
IF (! leg occluded (ω, pF)) #

p̃F = find leg (ω, pF) # Detection (Section 7)
ELSE #

p̃F = project on floor (p̃P); #
Π′ = kalman points (Π, ˜Π); #
σ ′ = filter plane(σ ,Π′); #
̂Π′ = project on plane (Π′, σ ′); # Tracking (Section 8)
ρ = evaluate left posture (̂Π′, σ ′); #
φ′ = filter left posture (ρ,φ); #
z = [get angles (̂Π′, σ ′,φ′),H/λ]; #

}
P′γ = HMM (z,Pγ) # Classification (Section 9)

Algorithm 1: The algorithm for model matching and tracking of the principal points of the model. See text for further details.

value λ) occurred at this frame. If such a difference is below a
threshold CHANGE TH, that is usually set to a few (e.g., 10)
centimeters, then z is set to specify that the person is standing
up without further processing.

Otherwise, the algorithm first extracts the position of the
three principal points of the model. More specifically, pH and
pP (head and pelvis points) are estimated by using an ICP
variant and other ad hoc methods that will be described in
Section 7. While pF (feet point) is computed in two different
ways depending on the presence of occlusions. The presence
of occlusions of the legs is checked with the leg occluded
function. This function simply verifies if only a small number
of points in ωt are below half of the height of the person
(the threshold is determined by experiments and it is about
20% of the total numbers of points in ω). If the legs are
occluded, pF is estimated as the projection of pP on the
ground, otherwise it is computed as the average of the lowest
points in the data ωt.

The second step of the algorithm consists in tracking
the principal points over time. This tracking is moti-
vated by the fact that poses (and thus principal points
of the model) change smoothly over time and it allows
for increased robustness to the segmentation noise. As a
result of the tracking step, the observation vector z (as
defined in Section 4) is computed using simple trigonometry
operations (get angles). The tracking step is described in
detail in Section 8.

Finally, an HMM classification is used to better estimate
the posture for the each frame of the video sequence
(Section 9), taking into account the probability of transitions
between different postures.

7. DETECTION OF THE PRINCIPAL POINTS

The principal points pH and pP are estimated using a variant
of the ICP algorithm (for a review of the variants of the ICP
see [18]). Given two point sets to be aligned, the ICP uses an
iterative approach to estimate the transformation that aligns
the model to the data. In our case, the two point sets are ω,
the data, and η, the model.

The structure of the model η is shown in Figure 4. Since it
represents a view of the torso-head block, it can be used only
to find the position of the points pH and pP , but it cannot tell
us anything about the torso direction.

ICP is used to estimate a rigid transformation to be
applied to η in such a way to minimize the misalignment
between η and ω. The ICP is proved [19] to optimize the
function

E(R, t) =
N
∑

i=1

∥

∥di − Rmi − t
∥

∥

2
, (1)

where R is the rotation matrix and t is the translation vector
that together specify a rigid transformation, di is a point of
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ω, and mi is a point of η. We are assuming that the points
are assigned the same index if they are correspondent. Such
correspondence is calculated according to the minimum
Euclidean distance between points in the model and points
in the data set. Formally, given a point mj in η, dk in ω is
labeled as corresponding to mj if

dk = arg min
du∈ω

dist
(

mj ,du
)

, (2)

where the function dist is defined according to the Euclidean
metric.

The ICP algorithm is applied by setting the pose of the
model computed in the previous frame as initial configura-
tion. For the first frame, a model corresponding to a standing
person is used. Since postures do not change instantaneously,
this initial configuration allows for quick convergence of
the process. Moreover, we limit the number of steps to a
predefined number (18 in our current implementation), that
guarantees near real-time performance.

From the training phase, we have also computed the
head color distribution, described by the centers of mass
of the color clusters C1 and C2 and the respective standard
deviations σC1 and σC2 . Consequently, the ICP has been
modified to take into account these additional data. Indeed,
in our implementation, the search for the correspondences of
points in the head part of the model is restricted to a subset
of the data set ω defined as follows:

{

dk ∈ ω |dist
(

color
(

dk
)

,μC1

)

< t
(

σC1

)

OR

dist
(

color
(

dk
)

,μC2

)

< t
(

σC2

)}

,
(3)

where color (dk) is the value of the color associated with
point dk in the RGB color space and t(σ) is a threshold related
to the amplitude of standard deviation for each cluster.

Also, since the head correspondences exploit a greater
amount of information, we have doubled their weight. This
can be easily done by counting twice each correspondence in
the head data set, thus increasing its contribution in deter-
mining the rigid transformation in the ICP minimization
error phase. Once the best rigid transformation (R, t) has
been extracted with the ICP, it can be applied to η in order to
match ω. Since we know the relative position of pP and pH in
the model η, their position on ω can be estimated.

For pF we cannot use the same technique, primarily
because the lower part of the body is not always visible due
to occlusions or to the greater sensibility to false negatives.
Since we are interested in finding a point that represents the
legs point of contact with the floor, we can simply project
the lower points on the ground level, when at least part of
the legs is visible. When the person legs are utterly occluded,
for example if he/she is sitting behind a desk, we can anyway
model the observation as a Gaussian distribution centered
in the projection on the ground of pP and with variance
inversely proportional to the height of the pelvis from the
floor (function project on floor in the algorithm).

8. TRACKING OF PRINCIPAL POINTS

Even though the principal points are available for each image,
there are still problems that need to be solved in order to have
good performance in classification.

First, detection of these points is noisy given the noisy
data coming from the tracker. To deal with these errors it
is necessary to filter data over time and, to this end, we use
three independent Kalman filters (function kalman points in
the algorithm) to track them. These Kalman filters represent
position and velocity of the points assuming a constant
velocity model in the 3D space. Second, ambiguities may
arise in determining poses from three points. To solve this
problem, we need to determine the symmetry plane of
the person (that reduces ambiguities to up to two cases,
considering the constraint on the knee joint) and a likelihood
function that evaluates probability of different poses. The
symmetry plane can be represented by a vector σ ′ originating
at the point pF . To estimate the plane of symmetry, one
might estimate the plane passing through the three principal
points. However, this plane can differ from the symmetry
plane due to perception and detection errors. In order to have
more accurate data, we need to consider the configuration
of the three points, for example colinearity of these points
increases noise in detecting the symmetry plane. In our
implementation, we used another Kalman filter (function
filter plane) on the orientation of the symmetry plane that
suitably takes into account colinearity of these points. This
filter provides for smooth changes of orientation of the sym-
metry plane. Furthermore, principal points estimated before
are projected onto the filtered symmetry plane (function
project on plane) and these projections are actually used in
the next steps.

Given the symmetry plane, we still have two different
solutions corresponding to the two opposite orientations
of the person. To determine which one is correct, we
use the function evaluate left posture that computes the
likelihood of the orientation of the person. An example
is given in Figure 5, where the two orientations in two
situations are shown. We fix a reference system for the
points in the symmetry plane and the orientation likelihood
function measures the likelihood that the person is oriented
on the left. For example, the likelihood for the situation
in Figure 5(a) is 0.6 (thus slightly preferring the leftmost
posture), while the one in Figure 5(b) is 0, since the leftmost
pose is very unnatural. The likelihood function can be
instantiated with respect to the environment in which the
application runs. For example, in an office-like environment,
likelihood of situation in Figure 5(a) may be increased (thus
preferring more the leftmost posture).

Finally, by filtering these values uniformly through time
(function filter left posture), we get a reliable estimate of
the frontal orientation φ of the person. Considering that we
already know the symmetry plane, at this point we can build
a person reference system.

This step completes the tracking process and allows
for computing a set of parameters that will be used for
classification. These parameters are four of the five angles
of the joints defined for the model (σ does not contribute
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(a) (b)

Figure 5: Ambiguities.

to posture detection) and the normalized height (see also
Figure 4). Specifically, the function get angles computes
the angles of the model for the observation vector zt =
〈α,β, γ, δ,h〉, while the normalized height h is determined by
the ratio between the current height and the height learned
in the training phase λ. The vector zt is then used as input
by the classification step. As shown in the next sections, this
choice represents a very simple and effective coding that can
be used to make posture classification.

9. POSTURE CLASSIFICATION

Our approach to posture classification is mainly character-
ized by the fact that it is not made upon low-level data,
but on higher-level ones that are retrieved from each image
as a result of the model matching and tracking processes
described in the previous sections. This approach grants
better results in terms of robustness and effectiveness.

We have implemented two classification procedures (that
are compared in Section 10): one is based on frame by frame
maximum likelihood, the other on temporal integration
using hidden Markov models (HMM). As shown by exper-
imental results, temporal integration increases robustness
to the classifier, since it allows for modeling also transition
between postures.

In this step, we use an observation vector zt = 〈α,β,
γ, δ,h〉, which contains the five parameters of the model and
the distribution probabilities P(zt | γ) for each posture that
needs to be classified γ ∈ Γ = {U , S,B,K ,L}, that is, UP,
SIT, BENT, ON KNEE, LAID. These distributions are acquired
by analyzing sample videos or synthetic model variations. In
our case, since values zt are computed after model matching,
we used synthetic model variations and manually classified
a set of postures of the model to determine P(zt | γ) for
each γ ∈ Γ. More specifically, we have generated a set of
nominal poses of the model for the postures in Γ. Then, we
collected, for each posture, a set of random poses generated
as small variations of the nominal ones, and manually labeled
the ones that can still be considered in the same posture
class. This produces a distribution over the parameters of the
model for each posture. In addition, due to the unimodal
nature of such distributions, they have been approximated
as normal distributions.

The main characteristic of our approach is that the mea-
sured components are directly connected to human postures,
thus making easier the classification phase. In particular, the
probability distributions of each pose in the space formed

by the five parameters extracted as described in the previous
section are unimodal. Moreover, the distributions for the
different postures are well separated from each other, and
thus making this space very effective for classification.

The first classification procedure just considers the
maximum likelihood of the current observation, that is,

γML = arg max
γ∈Γ

P
(

zt | γ
)

. (4)

The second classification procedure makes use of an
HMM defined by a discrete status variable assuming values
in Γ. Probability distribution for the postures is thus given by

P
(

γt | zt:t0
) = ηP

(

zt | γt
)
∑

γ′∈Γ
P
(

γt | γ′
)

P
(

γ′ | zt−1:t0

)

,

P
(

γ | zt0
) = ηP

(

zt0 | γ
)

P(γ),
(5)

where zt:t0 is the set of observations from time t0 to time t,
and η is a normalizing factor.

The transition probabilities P(γt | γ′) are used to model
transitions between the postures, while P(γ) is the a priori
probability of each posture. A discussion about the choice of
these distributions is reported in Section 10.

10. EXPERIMENTAL EVALUATION

In this section, we report experimental results of the pre-
sented method. Experimental evaluation has been performed
by using a standard setting in which the stereo camera was
placed indoor about 3 m high from the ground, pointing
down about 30 degrees from the horizon. The people in the
scene were between 3 m and 5 m from the camera, in a frontal
view with respect to the camera, and without occlusions.
This setting has been modified in order to explore the
behavior of the system in different conditions. In particular,
we have considered four other settings varying orientation
of the person, presence of occlusions, different heights of the
camera and outdoor scenarios.

The stereo-vision-based people tracker in [5] has been
used to provide XYZ-RGB data of the tracked person in
the scene. The tracker processes 640 × 480 images at about
10 frames per second, thus giving us high resolution and
high rate data. The system described in this article has
an average computation cycle of about 180 milliseconds on
a 1.7 GHz CPU. This value is computed as the average
process time for a cycle. However, it is necessary to observe
that cycle processing time depends on the situation. When
the person is recognized in a standing pose, then no
processing on detection and tracking is performed allowing
for a quick response. The ICP algorithm takes most of the
computational time at each step, but this process is fast,
since a good initial configuration is usually available and thus
convergence is usually obtained in a few iterations.

The overall system (PLT + PPR) can process about 3.5
frames per second. Moreover, code optimization and more
powerful CPUs will allow to use the system in real-time. The
overall testing set counts 26 video sequences of about 150
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frames each. Seven different people acted for the tests (sub-
ject S.P. with 15 tests, subject L.I. with 7 tests, subjects M.Z.,
G.L., V.A.Z., and D.C. with 1 test each). As for the postures,
BENT was acted in 14 videos, KNEE was acted in 2 videos, SIT
was acted in 9 videos, LAID was acted in 3 videos, and UP was
acted in almost all the videos. Different lighting conditions
have been encountered during the experiments that have
been done in different locations and in different days, under
both natural and artificial lighting with various intensities.
The set of data used in the experiments is shown in
http://www.dis.uniroma1.it/∼iocchi/PLT/posture.html and
they are available for comparison with other approaches.

The evaluation of the system has been obtained against
a ground truth. For each video we built a ground truth by
manually labeling frames with the postures assumed by the
person. Moreover, since during transitions from one posture
to another it is difficult to provide a ground truth (and it
is also typically not interesting in the applications), we have
defined transition intervals, during which there is a passage
from one posture to another. During these intervals the
system is not evaluated.

This section is organized as follows. First, we will show
the experimental results of the system in the standard setting,
then we will explore the robustness of the system with respect
to different view points, occlusions, change in the height of
the camera, and an outdoor scenario. In presenting these
experiments, we want also to evaluate the effectiveness of
the filter provided by HMM with respect to frame by frame
classification.

10.1. Standard setting

The experiments have been performed by considering a set
of video sequences, chosen in order to cover all the postures
we are interested in. The standard setting described above
has been used for this first set of experiments and then
the results in this setting are compared with other different
settings.

Both for the values in the state transition matrix and the
a priori probability of the HMM, we have considered that
the optimal tuning is environment dependant. Indeed, an
office-like environment will very likely have different posture
transition probabilities than those of a gym: in the first case,
for example, it might be possible to have high values in
the transition between the sitting and itself; in a gym the
whole matrix should have similar values in all its entries,
taking in this way into account that the posture changes
often. The optimal values should be achieved by training on
video sequences regarding the environment of interest. For
simplicity purposes, in our application we have determined
values that could be typical of an office-like environment. In
particular, we have chosen an a priori probability of 0.8 for
the standing position and 0.2/(|Γ| − 1) for the others. This
models situations in which a person enters the scene in an
initial standing position and the transition to all the other
postures has the same probability. Moreover, we assume that
from any posture (other than standing) it is more likely to
stand (we fixed this value to 0.15) than to go to another

Maximum
likelihoodHMMOrientation

91.6% 86.7%

86% 83.1%

91.2% 89.7%

89.7% 89.7%

88.9%90.5%

Figure 6: Classification rates from different view points.

posture. Therefore, the transition probabilities Tij = P(γt =
i | γt−1 = j) have been set to
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⎟

⎟
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. (6)

Table 1 presents the total confusion matrix of the experi-
ments performed with this setting. The presence of no errors
in the LAID posture is given by the fact that the height of the
person from the ground is the most discriminant measure
and this is reliably computed by stereo vision. Instead, the
ON KNEE posture is very difficult because it relies on tracking
the feet, which is very noisy and unreliable with the stereo
tracker we have used.

The values of classification obtained by using frame by
frame classification are slightly lower (see Table 2). Thus,
the HMM slightly improves the performance, however
maximum likelihood is still effective, since postures are
well separated in the classification space defined by the
parameters of the model. This confirms the effectiveness in
the choice of the classification space and the ability of the
system to correctly track the parameters of the human model.

10.2. Different view points

Robustness to different points of view has been tested by
analyzing postures with people in different orientations with
respect to the camera. Here we present the results of tracking
bending postures in five different orientations with respect
to the camera. For each of the five orientations we took three
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Table 1: Overall confusion matrix with HMM.

System ground truth UP SIT BENT KNEE LAID

UP 93.2% 0.0% 6.0% 0.0% 0.0%

SIT 0.0% 86.6% 13.4% 0.0% 0.0%

BENT 2.0% 0.5% 97.5% 0.0% 0.0%

KNEE 0.0% 22.2% 0.0% 77.8% 0.0%

LAID 0.0% 0.0% 0.0% 0.0% 100.0%

Table 2: Classification rates of HMM versus maximum likelihood.

HMM Maximum likelihood

UP 93.2% 90.7%

SIT 86.6% 80.0%

BENT 97.5% 91.6%

KNEE 77.8% 77.8%

LAID 100.0% 100.0%

Table 3: Classification rates without and with occlusions.

No occlusions Partial occlusion

UP 93.2% 91.5%

SIT 86.6% 81.6%

BENT 97.5% 93.3%

KNEE 77.8% N/A

LAID 100.0% 100.0%

videos of about 200 frames in which the person entered the
scene, bent to grab an object on the ground and then raised
up exiting the scene. Figure 6 shows classification rates for
each orientation. The first column presents results obtained
with HMM, while the second one shows results obtained
with maximum likelihood. There are very small differences
between the five rows, thus showing that the approach is able
to correctly deal with different orientations. Also, as already
pointed out, improvement in performance due to HMM is
not very high.

10.3. Partial occlusions

To prove robustness of the system to partial occlusions, we
make experiments comparing situations without occlusions
and situations with partial occlusions. Here we consideroc-
clusions of the lower part of the body, while we assume
the head and the upper part of the torso are visible. This
is a reasonable assumption given the height (3 m) at which
the camera is placed. In Figure 7, we show a few frames
of two data sets used for evaluating the recognition of the
sitting posture without and with occlusions and in Table 3
classification rates for the different postures.

It is interesting to notice that we have very similar results
in the two columns. The main reason is that, when feet are
not visible, they are projected on the ground from the pelvis
joint pP and this corresponds to determine correct angles

(13) (18) (25) (41) (58) (62)

(a)

(2) (7) (10) (13) (28) (48) (57)

(b)

Figure 7: People sitting on a chair (nonoccluded versus occluded).

for the postures UP and BENT. Moreover, LAID posture is
mainly determined from the height parameter that is also
not affected by partial occlusions. For the posture ON KNEE
we have not performed these experiments for two reasons:
(i) it is difficult to recognize even without occlusions; (ii) it
is not correctly identified in presence of occlusions since this
posture assumes the feet to be not below the pelvis. These
results thus show an overall good behavior of the system in
recognizing postures in presence of partial occlusions, that
are typical for example during office-like activities.

10.4. Camera at different heights

In the previous setting, the camera was placed 3 m high
from the ground. However, we tested the behavior of the
system also with different camera placements. In particular,
we have put the camera at about 1.5 m from the ground.
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Table 4: Classification rates with 3 m and 1.5 m camera heights.

3 m camera height 1.5 m camera height

UP 93.2% 96.3%

SIT 86.6% 77.0%

BENT 97.5% 99.0%

KNEE 77.8% 76.9%

LAID 100.0% 90.0%

Table 5: Classification rates in indoor and outdoor environments
(1.5 m camera height).

Indoor Outdoor

UP 96.3% 95.8%

SIT 77.0% 77.1%

BENT 99.9% 99.0%

KNEE 76.9% 77.0%

LAID 90.0% 90.0%

In this setting the PLT was able to reliably segment and
track the people movement. The classification rates for each
posture are summarized in Table 4. From the results, it is
clear that there are not significant differences, except for the
SIT posture that has a relatively lower score. This can be
explained by the higher amount of occlusion occurring when
a person sits in front of a lower camera, that makes model
matching more difficult.

Given this problem with the SIT posture, we have also
performed specific tests with the low camera combined with
occlusions. The classification accuracy in this setting was
47.2%, thus denoting that performance are highly affected
by partial occlusions when the camera is low.

10.5. Outdoor setting

Finally we have tested the system on an outdoor scenario.
Since it was not possible to put a camera at a height of
3 m. In the outdoor scenario we used the 1.5 m camera
height configuration. Even though the particular outdoor
scenario was not very dynamic, since it is located in a private
area, we were nevertheless able to test the robustness of the
system against natural lights. The classification rates for this
setting are summarized in Table 5. The results do not show
a significant degradation of the performance with respect
to the low camera height setting, showing the ability of the
system to operate appropriately even in an outdoor scenario.
However, this experiment highlights a higher difficulty in
outdoor scenes, where usually it is not possible to place the
camera in the best position for the system.

10.6. Error analysis

From the analysis of the experimental results reported above,
we have highlighted situations in which errors occur. A
first class of errors is due to bad segmentation: (1) when

this occurs during the initial training phase, a noncorrect
initialization of the model affects model matching in the
following frames, thus producing errors in the computation
of the parameters that are used for classification; (2)
segmentation errors in the upper part of the body (head
and torso) may also be the cause of failures in the model
matching performed by the ICP algorithm. These errors are
generated by the underlying tracking system and in case they
are not acceptable for an application, it is necessary to tune
the tracker and/or to add additional processing in order to
provide for better segmentation.

Errors that are more related to our approach are mostly
determined by incorrect matching of the ICP algorithm,
specially in situations where movements are too quick. This
is a general problem for many systems based on tracking. A
minor problem arises when the person does not pass through
nonambiguous postures. In fact, until disambiguation is not
achieved (as described in Section 8), posture recognition
may be wrong.

Finally, the PPR system is quite robust to different
view points, partial occlusions, and to indoor/outdoor
environments. The performance is slightly worse when the
camera is placed low in the environment. In particular, low
camera setting shows a higher sensitivity to occlusions.

11. CONCLUSIONS

In this article, we have presented a method for human
posture tracking and classification that relies on the seg-
mentation of a stereo-vision-based people tracker. The input
to our system is a set of XYZ-RGB data extracted by the
tracker. The system is able to classify several main postures
with high efficiency, good accuracy, and high degree of
robustness to various situations. The approach is based
on the computation of significant parameters for posture
classification, that is performed by using an ICP algorithm
for 3D model matching. 3D tracking of these points over
time is then performed by using a Kalman filter in order
to increase robustness to perception noise. Finally, a hidden
Markov model is used to classify postures over time.

The experimental results reported here show the feasibil-
ity of the approach and its robustness to different points of
view, occlusions, and different environment conditions, that
makes the system applicable to a larger number of situations.

One of the problems experienced was that the people
tracker module works very well when people are in standing
position, while quality of data worsen when people sit, lay
down, or bend. Classification errors may be reduced by
providing feedback from the posture classification module
to the people tracker one. In fact, given these information
the tracker could adapt recognition procedure in order to
provide better data.

The work described in this article can be extended to
consider other activities (e.g., gestures), when an appropriate
segmentation process is executed before it, providing good
quality 3D information of the subject. Other activities, like
running or jumping, can be recognized by analyzing directly
data coming from the people tracking system, since for these
cases the 3D model used in this article would be less relevant.
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