
Mathematical analysis of thermal diffusion shock waves

Vitalyi Gusev,1 Walter Craig,2 Roberto LiVoti,3 Sorasak Danworaphong,4 and Gerald J. Diebold5

1Université du Maine, av. Messiaen, 72085 LeMans, Cedex 09 France
2Department of Mathematics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

3Universita di Roma “La Sapienza,” Dipartimento di Energetica, Via Scarpa, 14-00161 Roma, Italy
4School of Science, Walailak University, 222 Thaiburi, Thasala District, Nakorn Si Thammarat, 80160, Thailand

5Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
�Received 14 February 2005; published 27 October 2005�

Thermal diffusion, also known as the Ludwig-Soret effect, refers to the separation of mixtures in a tempera-
ture gradient. For a binary mixture the time dependence of the change in concentration of each species is
governed by a nonlinear partial differential equation in space and time. Here, an exact solution of the Ludwig-
Soret equation without mass diffusion for a sinusoidal temperature field is given. The solution shows that
counterpropagating shock waves are produced which slow and eventually come to a halt. Expressions are
found for the shock time for two limiting values of the starting density fraction. The effects of diffusion on the
development of the concentration profile in time and space are found by numerical integration of the nonlinear
differential equation.
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I. INTRODUCTION

The separation of liquid mixtures in a thermal gradient
was discovered by Ludwig �1� in 1856, and was described
theoretically somewhat later by Soret �2�. The separation of
mixtures by a thermal gradient takes place not only in liq-
uids, but also in gases and solids, as is described by nonequi-
librium thermodynamics �3–6�. Recently, a method of pro-
ducing the Ludwig-Soret effect has been introduced where
interference in the electric fields of two phase coherent light
beams produces a temperature field with a sinusoidal com-
ponent �7–10�.

In this paper we discuss a solution to the Ludwig-Soret
equation in a one-dimensional geometry for a sinusoidal
temperature distribution. A derivation of an exact solution of
the Ludwig-Soret problem with negligible mass diffusion is
given in Sec. II. The time development of the shock fronts
�11� are given in Sec. III. Section IV gives an expression for
the shock velocity and expressions for the shock formation
time for two limiting cases of the starting density fraction.
Section IV also gives the effects of mass diffusion through
numerical integration of the Ludwig-Soret equation and a
derivation of the concentration profile in space at long times.
The mathematical analysis given here presents considerably
more detail than that given in Ref. �11�, and includes the
derivation of expressions for the shock formation time for
two limiting cases.

II. SOLUTION TO THE THERMAL DIFFUSION
EQUATION

Thermal diffusion in a binary mixture is governed by a
pair of coupled differential equations �4� for the density frac-
tions c1 and c2 of each species which obey the relation c1
+c2=1. If the temperature in a one-dimensional grating is
given by T=T0�1+sin�Kx��, where 2T0 is the peak tempera-
ture, K is a wave number determined by the optical fringe

spacing in the grating, and x is the coordinate and if the
DuFour effect is neglected �4�, then the coupled equations
�12� yield a partial differential equation for one of the com-
ponents,

�c�z,t�
��

= �
�

�z
�c�z,t��1 − c�z,t��cos z� +

�2c�z,t�
�z2 , �1�

where c2 has been written in terms of c1, and the subscript 1
dropped from the density fraction c1, where the thermal dif-
fusion factor �, is defined as �=D�T0 /D, where D� is the
thermal diffusion coefficient and D is the mass diffusion co-
efficient, and where the dimensionless quantities � and z are
defined by �=K2Dt and z=Kx.

As described in Ref. �12� if the last term in Eq. �1� de-
scribing diffusion is ignored, then the differential equation of
motion for c�z , t� can be written

�c

��
= −

� f

�z
, �2�

where a “flux” f�c ,z� is defined as f�c ,z�=−�c�1−c�cos z.
Equation �2� is the differential form of a conservation equa-
tion that expresses the buildup of c in a volume as a conse-
quence of a flux change in space. Since for a periodic tem-
perature field the density fraction must also be periodic in z,
it follows that c�2 � ,��=c�0,��. Integration of Eq. �2� over
one period of the temperature field, i.e., from z=0 to z=2�,
shows that the integral of c is independent of time and has a
value of 2�c0, where c0 is the density fraction at time t=0,
which expresses mass conservation for the Ludwig-Soret ef-
fect.

The Eulerian description of the profile c=c�z ,�� by Eq.
�1� can be transformed �12� into a Lagrangian description
yielding the coupled pair of ordinary differential equations,

dz

d�
=

� f�c,z�
�c

= ��2c − 1�cos z , �3�
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dc

d�
= −

� f�c,z�
�z

= − �c�1 − c�sin z , �4�

that determine the motion of points with coordinates z
=z�� ,c0,z0� and c=c�� ,c0,z0� on the zc plane for a point ini-
tially at �z0 ,c0� at time �=0. Numerical integration of Eqs.
�3� and �4�, which form a Hamiltonian system of equations
�11,12� as found in classical mechanics, can be used to give
the z coordinate and the value of c as a function of time for
any point initially at �z0 ,c0�, as shown in Fig. 1. From Eqs.
�3� and �4� the slope of the curves on a phase portrait is
found to be

dc

dz
= −

c�1 − c�sin z

�2c − 1�cos z
,

which can be written as

d

dz
�c�1 − c�cos z� = 0. �5�

It follows then that the quantity in brackets in Eq. �5� is a
constant, taken here to be k1, so that

c�1 − c�cos z = k1. �6�

The phase portrait for the Ludwig-Soret equation, as shown
in Fig. 2, gives the trajectories of points with specified start-
ing values of z and c. By differentiation of Eq. �6� with
respect to c, it can be seen that the extreme values of the left
hand side occurs when cos z= ±1, and c=1/2; hence the
values of k1 are restricted to �k1��1/4.

By solving Eqs. �4� and �6� for sin z and cos z, respec-
tively, and squaring and adding the resulting expressions, it
is easily shown that

� k1

c�1 − c�	2

+ � 1

c�1 − c�	2
 dc

d��
�2

= 1,

which can be written

dc

�c2�1 − c�2 − k1
2

= ± d��, �7�

where the time variable �� is defined as ��=��. Note that
since c is restricted to the range 0�c�1, real values of the
left hand side of Eq. �7� are found only for �k1��1/4. It is
convenient to define the departure of the density fraction
from a value of 1 /2 through the variable c�, and to express
the quantity in the denominator of Eq. �7� in terms of two
parameters a and b, defined by

c� = c −
1

2
,

FIG. 1. Density fraction c versus dimensionless distance z for
��=0, 1.5, 3.5, and 6.0, for a starting density fraction c0=0.3. The
curves can be determined by numerical integration of Eqs. �3� and
�4� or through solution of Eqs. �9� and �10�. The vertical lines
terminating at the density fractions cr and cl indicate the positions
of the shock fronts. The shock position is found by determining the
line that makes the areas of the shaded regions adjacent to each of
the vertical lines equal.

FIG. 2. Phase portrait for the density fraction
c versus dimensionless distance along the grating
z from Eq. �6�. Points on the zc plane move along
curves of constant k1 as time progresses.
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a =�1

4
+ �k1�, b =�1

4
− �k1� .

Owing to the restriction on the magnitude of k1, the inequal-
ity a�b�0 is automatically satisfied. Hence Eq. �7� then
can be integrated from a starting density fraction c0 at time
��=0 along a curve of constant k1 to a density fraction c at
time �� giving



c0−1/2

c−1/2 dc�
��a2 − c�2��b2 − c�2�

= ± 

0

��
d��, �8�

where the integration is taken over a trajectory in phase
space with a constant value of k1. The left hand side of Eq.
�8� can be expressed as an elliptic integral �13� of the first
kind F, so that the solution to the Ludwig-Soret problem for
a sinusoidal temperature field, neglecting diffusion, is

F�arcsin

c −
1

2

�1

4
− �k1�

,

1

4
− �k1�

1

4
+ �k1��

− F�arcsin

c0 −
1

2

�1

4
− �k1�

,

1

4
− �k1�

1

4
+ �k1�� = ± ���1

4
+ �k1� .

�9�

It can be seen that Eq. �9� gives �� explicitly for any starting
point �z0 ,c0� that arrives at the new point c; the new coordi-
nate z is determined through

c0�1 − c0�cos z0 = c�1 − c�cos z = k1. �10�

From the point of view of calculating density fraction pro-
files as shown in Fig. 1, it is convenient to specify values of
z0, c0 and �� and to solve Eq. �9� for the new values of c
through a numerical root search. Alternately, the points �c ,z�
can be substituted directly into Eq. �9� through use of Eq.
�10� to determine k1. Note that for positive values of �, the
minus sign is used in Eq. �9� for points moving in the hot
regions of the grating 0�z��, and the plus sign is used for
motion in the cold regions ��z�2�, or −��z�0. Inver-
sion of Eq. �9� to give c explicitly as a function of z for any
given time ��, does not appear to be possible; however, it is
straightforward to determine the profiles of the density frac-
tion versus coordinate through numerical methods.

III. MOTION OF THE POINTS IN PHASE SPACE

Consider the motion of a point located between 0 and � /2
with a value of c0�1/2. It can be seen from Figs. 1 and 3
that points in this region move downwards and towards the c
axis. For such points the motion is determined first by Eq. �9�
with a negative sign used, and after passing the c axis at z
=0, by Eq. �9� with the positive sign. Any point in this region
starting at �z0 ,c0� reaches its minimum value cmin at z=0,
which from Eq. �10� is given by

cmin =
1

2
−�1

4
− c0�1 − c0�cos z0. �11�

The time required to arrive at cmin is therefore

�min� = − 

c0

cmin dx
�x2�1 − x�2 − �c0�1 − c0�cos z0�2

, �12�

and the total time ��, from the starting point to the point
�z ,c� is

�� = �min� + 

cmin

c dx
�x2�1 − x�2 − �c0�1 − c0�cos z0�2

�13�

which can be written in terms of elliptic integrals as in Eq.
�9�. Since the shocks in the region −� /2�z�0 originate
from initial points in the region 0�z�� /2, Eq. �13� is an
expression that can be used to determine the time of shock
formation.

Similar reasoning gives the maximum density fraction
cmax for any point starting at �c0 ,z0� located between 0 and
� /2 as

cmax =
1

2
+�1

4
− c0�1 − c0�cos z0, �14�

where �max� , the time it takes to move from c0 to cmin to cmax,
is given by

�max� = �min� + 

cmin

cmax dx
�x2�1 − x�2 − �c0�1 − c0�cos z0�2

.

�15�

The curves in Fig. 3 show how points originally in the region
between 0 and � /2 move downwards to their minimum val-

FIG. 3. Density fraction c versus dimensionless distance z from
Eq. �13�. with �=1 for ��=0, 1, 2, and 3. The points plotted as
circles ��� are those that originally lie in the region 0�z�� /2 at
��=0. The points plotted as squares ��� are those that lie in the
region −� /2�z�0 at time ��=0. The starting density fraction is
0.3.

MATHEMATICAL ANALYSIS OF THERMAL DIFFUSION … PHYSICAL REVIEW E 72, 041205 �2005�

041205-3



ues at z=0, pass to the left of the c axis, and then rise up-
wards as time progresses.

IV. SHOCK FORMATION

A. Determination of the shock velocity

It is clear from examination of Figs. 1 and 2 that the
solutions to Eq. �9� become mutivalued, i.e., nonfunctional,
after a certain time. Similar solutions to Eq. �9� for different
values of c0 show that nonfunctional behavior is found for
any value of c0, with the largest values of the shock forma-
tion time being found for the smallest initial density fractions
c0. When the slope of any solution for c on the zc plane
becomes unbounded, i.e., immediately before the density
fraction profile becomes multivalued, the solution to Eqs. �3�
and �4� must be treated as describing a shock. At later time,
the vertical, i.e., shock, part of the concentration profile is
introduced in accordance with the mass conservation law.

The formation of a shock indicated by the vertical line in
Fig. 1 at ��=3.5, terminated by cl on the left and cr on the
right, eliminates the multivalued dependence of c on z. As ��
continues to increase �for d���0� from its value of 3.5,
points on the shock situated above c=1/2 move to the right
along the z axis while those points below c=1/2 move to-
wards the left, as can be seen in Fig. 2. As the time
progresses to ��=3.5+d�� the nonfunctionality of the solu-
tion for c must be once again eliminated by installing a new
vertical shock front, but in a position shifted along the z axis
by dzsh relative to its position at ��=3.5. The condition that
the installation of the shock does not change the area under
the density fraction profile in the zc plane can be written as

dzsh�cl − cr� = 

cr

cl

dz�c�dc

or

dzsh

d��
�cl − cr� = 


cr

cl dz

d��
dc

which, together with Eq. �3�, gives

dzsh

d�
�cl − cr�d� = � cos z


cr

cl

�2c − 1�dc . �16�

After evaluation of the integral in Eq. �16� the shock velocity
dzsh /d� becomes

dzsh

d�
= ��cl + cr − 1�cos z . �17�

It can be seen that two shocks, one on either side of the point
z=3� /2 are formed, each of which travels with the same
speed towards the cold region of the grating, the different
velocities being determined by the change in sign of the
cosine function on either side of z=3� /2. The left-going
shock comes to a halt when cl=1 and cr=0, that is, where a
complete separation of the mixture has been attained, at
which point the profile of c in space is a square wave cen-
tered at z=3� /2.

Note that the shock velocity can be obtained equally by
writing Eq. �3� as dzsh /d�= �f�cl ,z�− f�cr ,z�� / �cl−cr�, which,
after substitution of the expression for the flux function,
gives Eq. �17�. As noted in Ref. �11�, Eq. �17�, which ex-
presses the thermal diffusion shock velocity in terms of den-
sity fractions on either side of the shock, is an exact analog
of the Rankine-Hugoniot relations for one-dimensional fluid
shocks: Eq. �17� gives the thermal diffusion shock speed in
terms of the “state variables” cl and cr, the Rankine-
Hugoniot relations express the shock speed in terms of ratios
of the state variables of the fluid on either side of the shock.

The time of formation of the shock can be found from
numerical integration of the Hamiltonian system of equations
and finding the point in space and time where the profile
becomes multivalued. Figure 4 shows a plot of the dimen-
sionless time �� required for shock formation versus the ini-
tial density fraction c0 found from Eqs. �3� and �4�.

B. Shock formation time: c0›1/2

Consider the region between −� /2 and � /2. When c0 is
approximately equal to 1/2, the shock must form at a point
to the left of z=0, but near the point z=0. If the cosine
function is approximated as cos z�1−z2 /2 and substituted
into Eq. �6� then the trajectories shown in Fig. 2 reduce to
circles described by


 z

2�2
�2

+ c�2 =
1

4
− k1 �18�

on the zc plane for k1�
1
4 . Substitution of z from Eq. �18�

into Eq. �4� with the sine function approximated as sin z�z
gives

dc�

�1

4
− k1 − c�2

= ±
d��
�2

, �19�

which can be integrated to give

FIG. 4. Time for formation of a shock �� versus the starting
density fraction c0 from numerical integration of the Hamiltonian
system of equations. The point ��� at c0�1/2, is the limiting value
of �� from Eq. �25�. The points ��� are from Eq. �27� for c0�0.
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arcsin� c�

�1

4
− k1� − arcsin� c0�

�1

4
− k1� =

��
�2

, �20�

for points initially in the region z�0. Further manipulation
of Eq. �20� gives for z�0,

c��c�2 − c0�
2 + z†2 + c0�z

†

c�2 + z†2 = sin �†, �21�

where z† has been defined as z†=z /2�2 and �†=�� /�2. It is
convenient at this point to express the coordinates c� and z†

in Eq. �21� in cylindrical coordinates, c�=−r cos � and z†

=−r sin �, where � is an angle measured clockwise with
respect to the negative c axis. Equation �21� gives, after
some algebraic manipulation,

r = − c0�
cos�� + �†�

cos2� − sin2�† �22�

for points initially in the region −� /2�z�0. The modified
density fraction c� and coordinate z† then become

z† = c0�
cos�� + �†�

cos2� − sin2�†sin � ,

c� = c0�
cos�� + �†�

cos2� − sin2�†cos � . �23�

The condition for the appearance of a shock is that dz† /dc�
should approach zero, which from Eqs. �23� can be found as

dz†

dc�
=

cos�2� + �†��cos2� − sin2�†� + sin�2��cos�� + �†�sin �

sin�2��cos�� + �†�sin � − sin�2� + �†��cos2� − sin2�†�
. �24�

The shock for c0� approximately equal to zero is expected
to appear at �=� so that Eq. �24� reduces to dz† /dc�
=−cot �†=0; hence it follows that �†=� /2, and the time for
shock formation is

�� �
�

�2
. �25�

As can be seen in Fig. 4 the shock time given by Eq. �25� is
in excellent agreement with the numerical results.

C. Shock formation time: c0·0

A second case where the time of shock formation time can
be found in closed form is when the initial density fraction is
small. Consider points in the region −� /2�z�� /2. Start-
ing from Eq. �13�, the time for the density fraction to reach a
value c starting from the point �z0 ,c0� can be shown to be
given by

�� = 

c0

c dx

�x2�1 − x�2 − c0
2�1 − c0�2cos2z0

+ 2

cmin

c0 dx

�x2�1 − x�2 − c0
2�1 − c0�2cos2z0

. �26�

It is clear from plots found from the solution to Eq. �13� or
through numerical integration of Eqs. �3� and �4� that the
points first forming the shock lie originally in the region 0
�z�� /2 and which move downward and to the left along
the curves shown in Fig. 2. For small c0, the shock forms at
values of c�1/2 near −� /2 from points z0 on the positive z
axis where z0�0. Equation �26� can then be approximated as

�� � 

c0

1/2 dx

�x2 − cmin
2

+ 2

cmin

c0 dx

�x2 − cmin
2

giving �� as

�� � − ln c0 + ln
 c0 + �c0
2 − cmin

2

cmin
� ,

where cmin�c0cos z0. Since the shock is formed by points
initially in the region z0�0, the time for the shock to form
for small c0 is thus

�� � − ln c0. �27�

The plot in Fig. 4 gives two points from Eq. �27�. Evaluation
of the shock time for values smaller than those given in Fig.
4 shows that the approximation given by Eq. �27� gets suc-
cessively better for small values of c0. For example, for c0
=5	10−5, numerical integration gives ��=10.6 whereas Eq.
�27� gives ��=9.9.

V. EFFECTS OF MASS DIFFUSION

A. Results from numerical integration

The effects of mass diffusion were determined by numeri-
cal integration of Eq. �1� using the finite difference method,
which gives a solution by considering small changes in the
density fraction resulting from a change in time 
� and space

z. A solution for c is obtained by selecting successively
smaller values of 
� and 
z until the solution converges.
The first order derivative of the density fraction with respect
to z at a time tk at the point zk is given, for instance, by
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�c

�z
=

c�tk,zi+1� − c�tk,zi−1�
2
z

. �28�

Since derivatives must be computed at the end points of the
integration range in space, the periodicity of the solution is
used to give values for the required derivatives. The modulus
function mod�a ,b� is introduced to represent the remaining
integer of division of a by b. For example, mod�3,2� is equal
to 1 and mod�4,2� is equal to zero. If a is less than b, the
value of the modulus function is a, where a is a positive
integer, including zero. The expressions for the first and sec-
ond space derivatives become

�c

�z
=

c�tk,zmod�i+1,imax�� − c�tk,zmod�i−1,imax��

2
z
,

�2c

�z2 =
c�tk,zmod�i+1,imax�� − 2c�tk,zi� + c�tk,zmod�i−1,imax��


z2 .

To simplify the notation, zi and �k are now replaced by their
indices, giving Eq. �1� as

c�k + 1,i� = c�k,i� + �T
� cos
2�
i

imax
��1 − 2c�k,i��

	� c„k,mod�i + 1,imax�… − c„k,mod�i − 1,imax�…
2
z

	
− �T
��sin
2�

i

imax
��c�k,i� − c2�k,i��	

+ 
 
�


z2� 	 �c„k,mod�i + 1,imax�… − 2c�k,i�

+ c„k,mod�i − 1,imax�…� . �29�

The plots shown in Fig. 5 indicate that the effect of dif-
fusion is to remove the high spatial frequencies in the distri-
bution. Since the spatial profile of c depends on � and ��

only, it is possible to calculate the spatial Fourier compo-
nents of the distribution after obtaining c from numerical
integration, and hence to determine the intensity of light dif-
fracted from an absorption grating, as was done in Ref. �11�.
By minimizing the error in a fit to the intensities of the
diffracted light beams, the thermal diffusion factor can be
determined from experimental data.

B. Density fraction distribution for long times

When �� becomes long, thermal diffusion is exactly bal-
anced by mass diffusion and the spatial profile of the density
fraction must approach a limiting form. It can be seen that
when dc /d��=0, Eq. �1� reduces to an ordinary differential
equation in z, a first integral of which is given by

dc

dz
+ �c�1 − c�

dT̂

dz
= C , �30�

where C is a constant, and a dimensionless spatial derivative

of the temperature field dT̂ /dz has been substituted for the
cosine function. For temperature fields that are periodic in z
it is expected that in the region 0�z�2�, both dc /dz and

dT̂ /dz will be zero at the same value of z. For the present
problem, both of these quantities are zero at the point z
=3� /2; hence the constant C must be zero and Eq. �30� can
be integrated as



c�z0�

c�z� dc

c�1 − c�
= − �


z0

z dT̂

dz
dz . �31�

The general solution to Eq. �31� is thus

c�z� =
1

1 + Fe�T�z� , �32�

where F is a constant given by �1−c�z0��exp�−�T̂
	�z0�� /c�z0�. For the present problem with a sinusoidal tem-
perature field, the long time distribution becomes

c�z� =
1

1 + Fe� sin z . �33�

An equivalent expression for the linearized Eq. �1� has been
given in Ref. �12�. Since the value of c�z0� is not known
without solution to Eq. �1�, F�� ,c0� can be determined for a
given value of � and c0 through use of the mass conservation
law. Depending on the value of �, curves of c versus � from
Eq. �33� can resemble a sinusoidal function for small �, or a
nearly square wave for large �.

VI. DISCUSSION

The expressions in Eqs. �9� and �13� provide an exact
solution to the thermal diffusion problem without mass dif-
fusion. If Eq. �1� is divided by � so that the time derivative
is expressed with respect to ��, it is clear that the effects of
diffusion are small when � is large or when the gradient of
the density fraction is small, such as at short times. The
conditions for the time of appearance of the shocks is

FIG. 5. Density fraction c versus dimensionless distance z for
�=40. The times for the plots are ��=0, 0.20, 0.40, and 1.08 for
plots with successively higher peak values of c.
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straightforward, however, closed form expressions for the
shock formation time have been found only in two limiting
cases.

The formation of shocks follows from the nonlinearity of
the dependent variable c in Eq. �1�. Perhaps the unique fea-
ture of shocks produced by thermal diffusion in sinusoidal
temperature fields is that they come as counterpropagating
pairs of waves, the direction of which is governed by the
sign of the cosine function in Eq. �17� to the right and left of
z=3� /2. The left-going wave near z=3� /2 has the property
that it slows to a speed of zero when cl approaches 1, and cr
approaches zero. At this point in time, a complete separation
of the mixtures, possible only in the absence of diffusion,
takes place.

The parallel between thermal diffusion shocks and fluid
shocks has been given in Ref. �11�. In both cases, the math-
ematics are treated by ignoring the dissipative term in the

equations of motion to find the properties of the shock
waves. In fluid shocks, viscosity causes a broadening of the
shock front, just as mass diffusion broadens the thermal dif-
fusion shock fronts, as shown by the results of numerical
integration given here. The extent to which thermal diffusion
shocks are visible in the laboratory is clearly a function of
how large the thermal diffusion factor can be made.
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