
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

School of Medicine Publications and 
Presentations School of Medicine 

6-14-2016 

Progressive Bidirectional Age-Related Changes in Default Mode Progressive Bidirectional Age-Related Changes in Default Mode 

Network Effective Connectivity across Six Decades Network Effective Connectivity across Six Decades 

Karl Li 

Angela R. Laird 

Larry R. Price 

D. Reese McKay 

John Blangero 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.utrgv.edu/som_pub 

 Part of the Medicine and Health Sciences Commons 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/som_pub
https://scholarworks.utrgv.edu/som_pub
https://scholarworks.utrgv.edu/som
https://scholarworks.utrgv.edu/som_pub?utm_source=scholarworks.utrgv.edu%2Fsom_pub%2F676&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=scholarworks.utrgv.edu%2Fsom_pub%2F676&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Karl Li, Angela R. Laird, Larry R. Price, D. Reese McKay, John Blangero, David C. Glahn, and Peter T. Fox 



ORIGINAL RESEARCH
published: 14 June 2016

doi: 10.3389/fnagi.2016.00137

Frontiers in Aging Neuroscience | www.frontiersin.org 1 June 2016 | Volume 8 | Article 137

Edited by:

Aurel Popa-Wagner,

University of Medicine Rostock,

Germany

Reviewed by:

Monica Baciu,

Université Grenoble Alpes, France

Dhruman D. Goradia,

Banner Alzheimer’s Institute, USA

*Correspondence:

Peter T. Fox

fox@uthscsa.edu

Received: 09 March 2016

Accepted: 27 May 2016

Published: 14 June 2016

Citation:

Li K, Laird AR, Price LR, McKay DR,

Blangero J, Glahn DC and Fox PT

(2016) Progressive Bidirectional

Age-Related Changes in Default Mode

Network Effective Connectivity across

Six Decades.

Front. Aging Neurosci. 8:137.

doi: 10.3389/fnagi.2016.00137

Progressive Bidirectional
Age-Related Changes in Default
Mode Network Effective Connectivity
across Six Decades
Karl Li 1, Angela R. Laird 2, Larry R. Price 3, D. Reese McKay 4, 5, John Blangero 6,

David C. Glahn 4, 5 and Peter T. Fox 1, 7, 8*

1 Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA, 2Department of

Physics, Florida International University, Miami, FL, USA, 3Department of Mathematics and College of Education, Texas State

University, San Marcos, TX, USA, 4Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA, 5Olin

Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA, 6Genomics Computing Center,

South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA,
7 Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA, 8Neuroimaging Laboratory, Shenzhen

University School of Medicine, Shenzhen, Guangdong, China

The default mode network (DMN) is a set of regions that is tonically engaged during the

resting state and exhibits task-related deactivation that is readily reproducible across a

wide range of paradigms and modalities. The DMN has been implicated in numerous

disorders of cognition and, in particular, in disorders exhibiting age-related cognitive

decline. Despite these observations, investigations of the DMN in normal aging are scant.

Here, we used blood oxygen level dependent (BOLD) functional magnetic resonance

imaging (fMRI) acquired during rest to investigate age-related changes in functional

connectivity of the DMN in 120 healthy normal volunteers comprising six, 20-subject,

decade cohorts (from 20–29 to 70–79). Structural equation modeling (SEM) was used

to assess age-related changes in inter-regional connectivity within the DMN. SEM was

applied both using a previously published, meta-analytically derived, node-and-edge

model, and using exploratory modeling searching for connections that optimized model

fit improvement. Although the two models were highly similar (only 3 of 13 paths differed),

the sample demonstrated significantly better fit with the exploratory model. For this

reason, the exploratory model was used to assess age-related changes across the

decade cohorts. Progressive, highly significant changes in path weights were found in 8

(of 13) paths: four rising, and four falling (most changes were significant by the third or

fourth decade). In all cases, rising paths and falling paths projected in pairs onto the same

nodes, suggesting compensatory increases associated with age-related decreases.

This study demonstrates that age-related changes in DMN physiology (inter-regional

connectivity) are bidirectional, progressive, of early onset and part of normal aging.

Keywords: default mode network (DMN), structural equation modeling (SEM), meta-analytic connectivity

modeling, functional connectivity (FC), normal aging
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INTRODUCTION

Motivation
The default mode network (DMN) is a widely studied,
readily replicated neural network that has been implicated
in a wide range of disorders affecting cognition, including
neurological disorders (temporal lobe epilepsy, Ji et al., 2013;
Parkinson’s disease, Liu et al., 2013), psychiatric disorders
(schizophrenia, Garrity et al., 2007; depression, Sheline et al.,
2009), and developmental disorders (autism, Kennedy et al.,
2006). Disorders exhibiting age-related cognitive decline, in
particular, have been repeatedly and robustly demonstrated to
show disordered processing (aberrant activity and connectivity
patterns) within the DMN. The precuneus (Volkow et al.,
2002) and posterior cingulate cortex (Minoshima et al., 1997;
Johnson et al., 1998), two key hubs in the DMN, show
significantly decreased cerebral glucose metabolism and blood
flow and significantly increased variability in metabolic activity
in patients with Alzheimer’s disease. In turn, the coherence of
their activity shows decreases in early Alzheimer’s disease (He
et al., 2007). Patients with amnestic mild cognitive impairment,
a transitional stage between normal aging and Alzheimer’s
disease, also demonstrate aberrant connectivity when compared
to controls (Bai et al., 2008), an abnormality that is correlated
with cognitive task performance (Li et al., 2013). The DMN
has been demonstrated to have unique metabolic characteristics,
with a much higher rate of non-oxidative glucose consumption
than other brain regions and networks (Vlassenko et al., 2010).
This metabolic profile likely is due to the high tonic neural
activity levels in the DMN and likely underlies its susceptibility
to pathology (Sperling et al., 2009; Villain et al., 2010).

Age-related changes in DMN physiology have been reported
in normal aging, as well as in pathology. Damoiseaux et al.
(2008) compared healthy young adults (mean age = 22.8)
with healthy older adults (mean age = 70.7), demonstrating
significant decreases in DMN BOLD signal change in older
subjects that were also correlated with decreased executive
function (independent of age). Bernard et al. (2013) also reported
overall decreases in the functional connectivity strength of large-
scale resting state cortico-cerebellar networks in older adults
(mean age= 64.6) compared to young adults (mean age= 22.8).
However, it should be noted that both these studies compared
cohorts at opposite ends of the age spectrum: young vs. old.
To date, studies assessing DMN changes by sampling uniformly
across the age spectrum, either in health or disease are lacking.
The purpose of the investigations reported here was to determine
age-related change patterns in theDMN in a large, cross-sectional
sample of healthy normal subjects in a decade by decade manner.

Background of the DMN
The concept of the DMN emerged from the early observation
(Shulman et al., 1997; Binder et al., 1999; Mazoyer et al.,
2001; Raichle et al., 2001) that while the spatial distribution of
task-induced activation varied with the cognitive/sensory/motor

Abbreviations: ALE, Activation Likelihood Estimation; DCM, Dynamic Causal

Modeling; DMN, Default Mode Network; MACM, Meta-Analytic Connectivity

Modeling; SEM, Structural Equation Modeling.

demands of the specific tasks, task-induced decreases in cerebral
blood flow were spatially consistent across tasks (task-negative
regions). This was interpreted as indicating that a group of
regions was tonically engaged during quiet rest, i.e., that the brain
defaulted to using specific regions/network when not otherwise
engaged. Various theories on the mental processes underlying
DMN function have been proposed. From its task-negative
nature it has been suggested that the DMN is responsible for non-
goal-directed thought processes, monitoring of the environment
and self, or perhapsmonitoring of one’s emotional state (Shulman
et al., 1997). More recent works, however, have demonstrated
the DMN’s role in more goal-directed tasks. Meta-analysis
of previous studies shows high involvement of the posterior
cingulate cortex (PCC) in both episodic memory as well as
processing emotionally salient stimuli (Laird et al., 2009). The
DMN also demonstrates high overlap with regions underlying
prospection, recall, and internal motivators (Spreng et al., 2009).
The anterior network, including the medial prefrontal cortex, has
been shown to play a role in linking visceral sensory stimuli with
emotional behavior (Ongur and Price, 2000). Core areas of the
DMN, including the posterior cingulate cortex, inferior parietal
lobules, and medial temporal lobes, have also been shown to
be involved in scene construction of past and fictitious events
(Hassabis et al., 2007; Kim, 2012; Andrews-Hanna et al., 2014).

The DMN has been demonstrated via a variety of different
modalities and analytical techniques. First analyzed using resting
state fMRI connectivity in Greicius et al. (2003), DMN analysis
using resting state fMRI data has since been extended to healthy
adults (Damoiseaux et al., 2008; Bernard et al., 2013), children
(Supekar et al., 2010), patients (Greicius et al., 2009), and even
animals (Mantini et al., 2011). The DMN also consistently
appears in independent components analysis of task-activation
fMRI of both primary studies (Calhoun et al., 2009) and meta-
analytic studies (Smith et al., 2009). In addition to functional
changes with age and disease, structural changes in the DMN
were demonstrated in patients with mild cognitive impairment
(gray matter atrophy, Sorg et al., 2007). Physiological data
demonstrates the overlap between the presence of amyloid
plaques and the DMN (Buckner et al., 2005; Sperling et al.,
2009), and plaque presence disrupts functional connectivity of
the precuneus to other regions of the DMN (Sheline et al., 2010).
Glycolytic index of brainmetabolism shows a distribution similar
to the DMN as well (Vlassenko et al., 2010). Taken together, the
DMN can be considered a highly robust network observable by
measurements from multiple modalities and of different natures.

Meta-Analytic Model of the DMN
A comprehensive meta-analysis of the DMN was previously
performed combining well-developed quantitative techniques
with a vast database of functional activations to generate a
candidate node-and-edge model of the DMN (Laird et al.,
2009). Activation likelihood estimation (ALE; Turkeltaub et al.,
2002) was performed on foci corresponding to task-induced
deactivations to create a voxel-wise concordance map of the
most probable regions of the DMN; nine functional regions
(nodes) were identified. Building upon these identified regions, a
meta-analytic connectivitymodel (MACM; Robinson et al., 2010)
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was constructed modeling inter-regional connectivity. Seeding
each of the regions of interest (ROIs) to determine which
pairs co-activated during task yielded a functional connectivity
model with 13 connections. Two core hubs (exhibiting more
extensive connectivity with other regions) in the posterior
cingulate cortex and middle temporal gyrus were identified,
suggesting their crucial role in the DMN. In this meta-analytic
model, more extensively connected regions displayed lower levels
of functional specialization while the more specialized regions
exhibited a reduced degree of connectivity. The Laird MACM
model provided a fully data driven, highly plausible candidate
model for DMN connectivity, but did not quantify the strength
of the connections between regions. Thus, additional analytic
techniques are necessary to formally quantify DMN connectivity
strength and its age-related changes.

Modeling Technique: Structural Equation
Modeling
Structural equation modeling (SEM) is a general statistical
analysis method that computes partial correlations among a set
of mutually influential variables. Although not originally created
for neural systems modeling, SEM has proven remarkably well-
suited for this purpose (McIntosh andGonzalez-Lima, 1994), and
has a well-established literature base modeling connectivity in a
variety of modalities and paradigms (Zhuang et al., 2005; Peltier
et al., 2007; Laird et al., 2008; Price et al., 2009). SEM also offers
the freedom to investigate networks in an exploratory manner
wherein the model is iteratively evolved by adding or removing
candidate interactions to best improve model fit. This allows
identification of interactions potentially missed by an a priori
model, and can also be used to improve a previously specified
model (Price, 2013), a key feature required for ensuring that no
strong connections are missed. SEM also models interactions
in a simultaneous multivariate matrix, which allows modeling
of mutual interactions between all nodes (as opposed to a
pairwise approach). In addition, due to its rich history in
psychometric analysis, SEM has a strong foundation that can be
extended to model the interactions of a variety of physiological or
neurological testing data upon the network, and is not restricted
to solely modeling connectivity. SEM offers a statistical modeling
framework to quantitatively track changes in DMN functional
connectivity with age progression. Furthermore, it allows the
evaluation of other factors (such as pathology and gender) and
the strength of their interaction effects with the DMN.

Popular alternate approaches to modeling connectivity in
neuroimaging datasets include casual modeling, most commonly
dynamic causal modeling (DCM) and Granger causality. DCM is
a modeling technique originally formulated to analyze functional
connectivity modeled as fMRI responses to experimental inputs
using an a priori specified biophysical model (Friston et al.,
2003; Friston, 2009). More recently, DCM has been applied to
modeling resting state fMRI data using a newer technique known
as spectral DCM (Friston et al., 2014; Razi et al., 2015). However,
spectral DCM for resting state data has only been performed
with a specified model structure (Friston et al., 2014) or in an
exploratory fashion with a more restricted set of four nodes (Di

and Biswal, 2014; Sharaev et al., 2016). For the purposes of this
study, we sought to examine a larger set of nodes identified by
meta-analysis for comparison across age-groups, making SEM
a more appropriate choice for the study. Granger causality is
more similar to SEM in mathematical structure than DCM while
retaining an emphasis on causal modeling. However, GC is more
adapted to modeling neuronal causality, requiring high temporal
resolution in the hundreds of milliseconds range (Kayser et al.,
2009; Witt and Meyerand, 2009; Deshpande et al., 2010). The
current study uses high resolution resting state data with a
TR of 3 s, and would not be suited for analysis with Granger
causality. A final commonly employed modeling technique is
graph theory analysis, which can be applied to broadly test
interactions between nodes within the DMN (Song et al., 2011),
but lack a multivariate formalism that allows it to account for
simultaneous effects from interactions between nodes.

Goals of the Present Study
Here, we applied SEM to resting-state fMRI in a large healthy
subject sample that spans a large age range (21–79 years). We
report progressive alterations in the resting-state connectivity
of the DMN using a previously published, meta-analytic model
of the DMN (Laird et al., 2009) as a prior in six by-decade
cohorts of healthy normal subjects. The primary physiological
goal of this study was to characterize the progression of age-
related adaptations in the DMN, a network strongly implicated in
age-related cognitive decline. It was expected that a connectivity
would should both decreases (decompensations) and increases
(adaptations), but a specific pattern was not hypothesized. Prior
studies have argued both for an anterior-to-posterior progression
(Davis et al., 2008) and hemispheric asymmetries in aging
(Cabeza, 2002; Dolcos et al., 2002). The methodology applied
did not require a prediction of the anticipated pattern of
change beyond that it would involve the DMN. The primary
methodological goal of the study was to construct a connectivity
model of the DMN using per decade functional resting state
data and demonstrate its efficacy in investigating age-related
changes in functional connectivity. As a previously established
meta-analytic model served as a baseline to guide modeling, a
secondary methodological goal was to assess the suitability of
using meta-analytic modeling techniques to inform modeling of
primary neuroimaging data.

METHODS

Subjects
Data used in the present study are a subset of those
acquired in the Genetics of Brain Structure (GOBS) project
(1R01MH078111-01, David Glahn PI). GOBS participants are all
of Mexican-American heritage living in the greater San Antonio
region. All GOBS participants undergo extensive psychometric
testing, including clinical diagnostic instruments as well as the
imaging battery described below. From this data archive, 120
right-handed persons were selected at random spanning six
decades (20–70s) of age, including 20 subjects (10 men and 10
women) per decade. All persons with known present or past
neurological or psychiatric disorders or evidence of cognitive
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impairment by psychometric testing were excluded from the
present analysis. Subjects in each decade cohort have similar
levels of education. Intelligence quotient measures were also
similar across decades using the Wechsler Abbreviated Scale of
Intelligence II. Persons with systemic disorders common in this
demographic (diabetes, hypertension, and hypercholesterolemia)
were not excluded. See Table 1 for full breakdown of subject
demographics. All participants provided written informed
consent on forms approved by the institutional review board at
the University of Texas Health Science Center at San Antonio
(UTHSCSA).

Image Acquisition
Scanning was performed at the Research Imaging Center,
UTHSCSA, on a 3T Siemens Trio scanner with an eight-
channel head coil. High-resolution (isotropic 800µm) 3D
TurboFlash T1-weighted anatomic images were acquired for
each subject using a retrospective motion-corrected protocol
(Kochunov et al., 2006) with the following parameters: echo
time (TE)/ repetition time (TR)/time for inversion (TI) =
3.04/2,100/785ms and flip angle = 13◦. Whole brain, resting
state functional imaging was performed using a gradient-echo
echoplanar imaging (EPI) sequence sensitive to the BOLD effect
(TE/TR = 30/3000ms; flip angle = 90◦; isotropic 1.72mm2).
The 7.5-min resting state protocol included 43 slices acquired
parallel to the anterior commissure and posterior commissure
plane. During the resting state scan, subjects were instructed to
lie in dimmed light with their eyes open and try not to fall asleep.

Regions of Interest Selection
The DMN model constructed by Laird et al. (2009) using
activation likelihood estimation (ALE) and meta-analytic
connectivity modeling (MACM) was adopted as our starting
model. The Laird MACM model consisted of nine nodes
connected by 13 edges. Data from the BrainMap R© database
(Fox and Lancaster, 2002) were used to construct the model,
including 119 published deactivation contrasts from 62 papers,
representing 840 individual subjects and 1056 coordinate brain
locations. The nodes included: precuneus (pC), left middle
frontal gyrus (LMFG), left inferior parietal lobule (LIPL), right
inferior parietal lobule (RIPL), posterior cingulate cortex (PCC),
middle prefrontal gyrus (MPFG), left middle temporal gyrus
(LMTG), right middle temporal gyrus (RMTG), and ventral
anterior cingulate cortex (vACC). Table 2 details the coordinate
locations of the centers of mass of DMN nodes in Talairach space
(Talairach and Tournoux, 1988).

Data Pre-processing
Image analysis was performed with FMRIB’s Software Library
(FSL) tools (www.fmrib.ox.ac.uk/fsl). Preprocessing for resting
state data included motion correction, brain extraction, spatial
smoothing (5mm FWHM Gaussian kernel), and two runs were
performed with high-pass temporal filtering (100 s) (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide). FSL uses a local fit
of a straight line smoothed by Gaussian weighting to remove
low frequency artifacts as opposed to a sharp rolloff frequency

filter to avoid introducing additional autocorrelation into the
data (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide).

Head motion has previously been demonstrated to be a small
but significant source of variance in functional connectivity. In
particular, the DMN has been shown to exhibit decreased within-
network functional connectivity with increasing motion (Van-
Dijk et al., 2012). This can be corrected by the inclusion of
a number of motion parameters that can include simple x, y,
z translations as well as additional temporal derivatives of the
parameters to further correct for delays in effects (Satterthwaite
et al., 2013). Motion correction was applied to each time series
extracted per ROI x subject via FSL’s MCFLIRT tool, which takes
the middle volume of the time series and compares adjacent
time points successively to estimate rotation and translational
matrices to correct for the effects of motion using multiple
sequential time points as reference (Jenkinson et al., 2002). Each
subject’s fMRI volumes were linearly aligned using FSL’s FRMIB
Linear Image Registration Tool (FLIRT; Jenkinson and Smith,
2001), first aligning each subject’s resting state scan to their high-
resolution neuroanatomic scan, and then to a common Talairach
space. In all, this created six sets of 20 4D data sets (6 age groups×
20 subjects per group× 150 scans per subjects= 18,000 images).

Many studies have also demonstrated the effects of including
average white matter and cerebral spinal fluid signals as
additional regressors that can account for the effects of
motion as well as physiological effects such as respiration and
cardiac pulsation (Windischberger et al., 2002; Lund et al.,
2006). Data cleaning processes that include motion correction
generally yield better temporal signal-to-noise ratio and more
consistent connectivity maps. However, most studies evaluate
the effectiveness of the methods through voxel-based approaches
such as independent components analysis (Murphy et al., 2011,
2013; Bright and Murphy, 2015). This results in reduction in
the noisiness of connectivity between voxels, generally achieved
by eliminating motion induced falsely coactivating voxels on the
periphery of each cluster. By contrast, an ROI based approach
pre-averages a cluster of voxels and hence pre-smooths the
defined area. Fluctuations in signal at the voxel level are unlikely
to impact the overall time course signal. The impact of using
voxel-based signal denoising methods on evaluating connectivity
strength between select gray regions using SEM is much less
understood, especially since regression of white matter and CSF
generally results in decreased gray matter connectivity mostly
with deep tissue and ventricles (Griffanti et al., 2015). A common
concern cited when using regressors to remove the effects of noise
is the potential for removal of true neural signals along with
the noise (Power et al., 2015), and in the case of this study, the
efficacy of noise-correction methods applied to region based data
analyzed with SEM is not well-understood. As such, additional
preprocessing of the data was also performed using white
matter and cerebral spinal fluid signals (each isolated using FSL’s
FMRIB’s Automated Segmentation Tool [FAST]) as confounds
that were regressed from the resting state scans to compare with
the non-regressed data. SEM derived path coefficients using this
data showed decreases of varying magnitude in all paths in the
DMN as well as motor network when compared to unscrubbed
data. However, almost all age-related trends continue to hold
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TABLE 1 | Demographic information (gender, education in years, Wechsler Abbreviated Scale of Intelligence [WASI] II subtest IQ, global assessment of

function score, and incidence of systemic disease) for subjects divided by decade.

Decade 20 s 30 s 40 s 50 s 60 s 70 s

Gender (M:F) 10:10 10:10 10:10 10:10 10:10 10:10

Education (in years) 12.1 11.8 11.8 12.8 11.3 12.3

WASI II subtest IQ 87.2 ± 1.9 91.2 ± 2.3 83.5 ± 2.5 88.1 ± 3.3 85.6 ± 2.6 84.7 ± 2.7

Global assessment of function 81.0 ± 1.2 79.6 ± 2.4 84.5 ± 1.3 79.3 ± 2.6 79.9 ± 1.8 84.6 ± 1.0

Incidence of normal vs. Diabetes/Hypertension/Hypercholesterolemia 20–0/0/0 19–0/1/0 15–2/3/4 12–3/5/3 7–6/11/8 4–8/10/12

Note that due to the WASI II subtest being administered in English while the participants were from Spanish speaking backgrounds, the test scores may skew lower. Subjects with a

systemic disorder often were comorbid with other systemic disorders.

TABLE 2 | Regions of interest with coordinates.

Region of interest (x, y, z)

Precuneus (pC) (−4, −58, 44)

Posterior Cingulate Cortex (PCC) (−4, −52, 22)

Ventral Anterior Cingulate (vACC) (2, 32, −8)

R Inferior Parietal Lobule (RIPL) (52, −28, 24)

Medial Prefrontal Gyrus (MPFG) (−2, 50, 18)

R Middle Temporal Gyrus (RMTG) (46, −66, 16)

L Middle Frontal Gyrus (LMFG) (−26, 16, 14)

L Inferior Parietal Lobule (LIPL) (−56, −36, 28)

L Middle Temporal Gyrus (LMTG) (−42, −66, 18)

Regions were derived from a meta-analysis of deactivations across the BrainMap

database (Laird et al., 2009).

(see Supplementary Table I), and due to the unclear efficacy
of applying these regressors to ROI based analysis with SEM
(instead of voxel based ICA), the data presented above and
discussed below are without these confounds regressed.

Time series data were then extracted from the nine DMN
ROIs using FSL’s Featquery tool with 12mm radius spherical
ROI masks created in MANGO (Multi-Image Analysis GUI)
developed at the Research Imaging Institute at UTHSCSA
(http://rii.uthscsa.edu/mango/). Following time series extraction,
additional filters were applied removing time points showing
high changes compared to the time series average to exclude
motion-induced time points that could not be fully corrected
by MCFLIRT. Specifically, time points that displayed significant
sudden (from time point to time point) signal deviation across
multiple ROIs (more than 7 standard deviations across at least 2
ROIs, 6 SDs across 3 ROIs, 5 SDs across 4 ROIs, 4 SDs across 5
ROIs, 3 SDs across 6 ROIs) were removed.

Structural Equation Modeling
Unified SEM Approach
Following extraction, the data were normalized for each Subject
× ROI to a mean of zero and a variance of one to reduce bias.
DMN connectivity was assessed using a unified SEM approach
(Kim et al., 2007), implemented in Amos 22.0 (IBM, Inc.).
The distinction between traditional SEM and unified SEM is
the inclusion of additional variables that improve the temporal
representation of fMRI data via multivariate autoregressive
modeling. Due to the strong autocorrelations present in fMRI

time series data (Friston et al., 1995), each ROI was represented
in the SEM by two variables: one of the time series extracted from
the data set, and the other a lag-1 version that has each time point
offset by one (Kim et al., 2007). Each lagged variable represents
the next time point, and A → Alagged (Figure 1) captures the
autoregressive component of the time series variance. Partial
autocorrelations in time series data corrected with the high-pass
temporal filter were estimated using sample covariances using
the software R. Successively higher order autoregressive models
were fitted to a maximum of a lag-5 model. Time series data from
fMRI studies generally do not have higher order than lag-1, but
up to 5 were tested to ensure accuracy. As the study used resting
state scans with no inherent block structure, it was expected
that there would not be later lag factors with significant impact.
These analyses demonstrated, in agreement with prior results
(Bullmore et al., 1996), that lag-1 autocorrelations explained
over 36% of the variance in FMRI data on average, while lag-
2 and higher explained 5% or less with diminishing returns
for each additional lag factor. Hence, unified SEM included an
added set of variables based on a multivariate autoregressive lag-
1 model. To assess the interactions between two brain regions
A and B, four variables were created with three possible paths
representing both contemporaneous (unlagged) effects as well as
any longitudinal (lagged) effects. For example, ROI A loading
on ROI B was modeled as Aunlagged loading on Bunlagged, Alagged

loading on Blagged, and Aunlagged loading on Blagged (Figure 1).
The most informative effect is Alagged loading on Blagged, as it
captures the effects of A on B after having considered delayed
effects as well as the effects of autocorrelation. This general
procedure for examining the relationships between two variables
was then extended to simultaneously model all interactions for all
variables.

Laird MACM Model Fitting
The Laird MACM model was tested using SEM combining
the unified SEM approach described above with the published
edges between nodes. Five of the paths in the MACM model
were specified to be bidirectional, given that both regions in
the path appeared in one-another’s MACM maps. Thus, these
paths were tested in a non-recursive SEM as a feedback loop
as well as recursively using a unidirectional path to determine
which modeling approach yielded the best fit for the resting
state data. In all cases, the recursive SEM with unidirectional
paths produced the model with lowest RMSEA and highest CFA.
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FIGURE 1 | Connectivity between two regions as modeled by SEM. An

ROI is modeled as two observed variables: the original time series and the

time series offset by one time point. A loads onto B with both the original and

offset time series. Additionally A loads on to the offset B time series to account

for any delayed effects.

Finally, model fit for the entire subject pool and per age groupwas
assessed to determine the robustness of the Laird MACM model
fit to resting state fMRI data.

Exploratory Modeling
To construct a model that provides optimal fit, exploratory
SEM using published nodes and every possible edge was also
performed. Our exploratory model fitting protocol followed
guidelines established from research in the information-theoretic
and Bayesian modeling fields (Leamer, 1978; Raftery, 1993;
Burnham and Anderson, 2002). Specifically, we employed the
Kullback-Leibler distance measure (Kullback and Leibler, 1951)
as incorporated into the information theoretic measure the
Browne-Cudeck Criterion (BCC; Browne and Cudeck, 1993),
to identify the model with the highest probability of being
the correct model. The BCC was developed specifically for
covariance structure modeling and imposes a greater penalty for
model complexity than does the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). The BCC is
defined as:

BCC = Ĉ + 2q
6G

g= 1b
(g) p

(g)(p(g) + 3)

N(g)−p(g)−2

6G
g= 1b

(g)(p(g) + 3)

Where, Ĉ is the minimum value of the discrepancy function,
q is the number of parameters in the model, p is the number
of sample moments in all groups combined, b(g) equals the
total sample size (N) times the ratio of the sample size in a

group N(g) to the total sample size (N), p(g) is the number of

variables in an observed group N(g), and G is the number of
groups in the model. Of particular relevance, the exploratory
strategy we employed provides a mechanism for the prevention
of overfitting (a challenge in specification search procedures with

high-dimensional data structures, Hastie et al., 2009; Gelman,
2014). Exploratory modeling began with a null model with
only the unlagged version of each ROI loading on the lagged
version, the model representation that each region has no
significant correlation with the activity of any other region. Fit
statistics for the baseline model is provided in Table 3. Model
improvement evolved through evaluating improvement in the
rootmean square error of approximation (RMSEA; Steiger, 1990)
and Browne-Cudeck Criterion (BCC) with successive additions.
Modification indices (an index that is a lower bound estimate
of the improvement in chi-squared statistic when a parameter is
allowed to be unconstrained instead of zero) were used to identify
candidate connections, and the top five choices were tested for
the three-path A to B and B to A connection that yielded the
greatest improvement to the model. RMSEA is defined as:

RSMEA = √
(
max(χ2 − df , 0)

n ∗ df )

where χ2 is the chi-squared statistic for the goodness of fit of
the model, df is the degrees of freedom in the model, and n
is the number of samples. RMSEA has 90% confidence interval
upper and lower limits found by first solving the non-central
chi-squared distribution:

Φ
(

χ2|δU , d
)

= 0.05

Φ
(

χ2|δL, d
)

= 0.95

HI90 = √
(

δU

n ∗ d )

LO90 = √
(

δL

n ∗ d )

The RMSEA was selected to be the primary fit criterion because
it is not as sensitive to the effects of sample size. An RMSEA
of 0.05 or 0.08 has typically been deemed as indicative of a
reasonably good fit to the data (Browne and Cudeck, 1993). In
order to achieve a satisfactory level of fit without creating an
overly complex model, an RMSEA 90th percentile confidence
interval upper bound of 0.08 for at least half the age groups
was selected to be the criterion for a final model. This criterion
was selected to ensure that the resulting model fits the cohorts
reasonably well without being overly skewed by one or two age
groups that require overly complex fits.

DMN Age Effects
Path coefficients vary around an average value (i.e., each path
coefficient produced by SEM is associated with a regression
error). The standard error of the path coefficient for a single
subject is relatively large compared to the average. Using the
model generated via exploratory SEM, aging trends were assessed
by correlating the path coefficients observed within each age
group. For the purpose of a negative control, a second set ofmeta-
analytically derived ROIs supporting motor execution (Laird
et al., 2008) were analyzed, including the primary motor cortex,
ventral premotor, secondary somatosensory cortex, posterior
parietal cortex, and cerebellum. The motor network was chosen
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TABLE 3 | Iterative process to building the exploratory model.

Addition χ
2 DF RMSEA BCC Modification index

None 108963.189 864 0.0841 113770.189 n/a

pC –> PCC 90425.675 846 0.0773 90788.013 1621.349

PCC –> pC 90744.040 846 0.0775 91106.378 1621.349

pC –> LMTG 96708.717 846 0.0800 97071.055 1304.231

LMTG –> pC 96623.581 846 0.0799 96985.919 1304.231

pC –> RMTG 97937.403 846 0.0805 98299.740 1196.528

RMTG –> pC 97785.355 846 0.0804 98147.693 1196.528

pC –> PCC ADDED

pC –> LMTG 78171.204 828 0.0726 78569.775 1304.231

LMTG –> pC 78286.068 828 0.0727 78684.639 –

pC –> RMTG 79399.889 828 0.0732 79798.460 1196.528

RMTG –> pC 79247.842 828 0.0731 79646.413 –

RIPL –> LIPL 83086.561 828 0.0746 83485.133 1174.327

LIPL –> RIPL 83069.857 828 0.0745 83468.428 1174.327

The top five possible connections between two ROIs were identified using modification indices (only three are shown per step here) and the three path connection as shown in Figure 1

was tested for both A->B and B->A. In the first step, pC - -> PCC was determined to improve RMSEA the most, and was added to the model, and a second iteration began with

the connection included. LMTG - -> pC and RMTG - -> pC did not show up in the top modification indices (indicated by the dash), but their model improvements were also tested for

thoroughness.

because of a rich literature of investigations demonstrating age-
related changes in motor network behavior (Wu and Hallett,
2005; Naccarato et al., 2006; Graziadio et al., 2015) and the
analysis was intended as a comparison to the DMN network to
determine if similar age-related patterns would be observed.

RESULTS

MACM Model Fit
The Laird MACM model was specified a priori, and was tested
for model fit using the unified SEM approach. Overall, the Laird
MACM model did not fit any of the individual age groups with
acceptable levels of fit based on RMSEA, though it provided a
reasonable fit of the entire subject pool as a whole (Tables 4, 5).
Because of its non-significant fit to each individual age group (no
decade cohort had an RMSEA <0.122), the Laird MACM model
was not considered a sufficiently well-fitting candidate model to
test age-related changes in functional connectivity strength, as
relatively large amounts of covariances were not explained by the
model across every age group.

Exploratory Model Fit
Exploratory modeling iteratively improving upon model fit
resulted in 13 connections for a total of 39 paths. The final model
fit the data as a group well (χ2 = 11164.4, df = 630, RMSEA =
0.030, BCC = 11961.5), and fit the decade cohorts reasonably
well (highest RMSEA upper bound was 0.091). The resulting
model was very similar to the meta-analytic connectivity model
(MACM) previously established (Figure 2). Given that there are
36 possible connections between regions ignoring directionality,
the probability of 10 of the 13 paths in theMACMmodel showing
up in the exploratory model by random chance is 0.023%,
suggesting that MACM provided a reasonable a priorimodel that
needed only minor modifications to fit the primary data well. The

key difference between the two models is the relative importance
of the right middle temporal gyrus vs. the precuneus.

Age-Related Trends
Analysis of the path coefficients revealed that eight of the
thirteen connections found in the DMN showed significant linear
age-related changes (Figure 3 and Table 6). The four regions
receiving connections that exhibited age-related changes received
them in pairs that increased and decreased in strength with age
(Figure 4). The regions receiving age-varying paths represent
four out of the five lateralized regions in this study (LMFG,
RIPL, LMTG, RMTG; LIPL is the exception). Paths that project to
midline regions did not show significant path coefficient changes
with age. The total increases or declines from the twenties to
the seventies varied by path, but were 10–20 times the standard
error of the regression weight estimates (0.013 to 0.021 range).
Due to the far lower standard error of the regression weights of
the decade cohorts compared to per subject regression weights,
it is a more reliable indicator, and age-related correlations were
performed using decade path coefficients instead (per subject
correlations do show similar effects). Age-related trends were
similar for bothmales and females across all paths except between
MPFG and LMFG, where females demonstrated significant
monotonic increases (0.11, 0.24, 0.30, 0.34, 0.36, 0.47 by decade,
r = 0.97), while males largely stayed level (0.37, 0.34, 0.35, 0.36,
0.38, 0.35 by decade; r = 0.10).

Comparison to Motor ROIs
Age-related changes in connectivity between motor ROIs were
minimal (Table 7); in homologous pairs, a decreasing trend was
only observed between the secondary somatosensory cortices.
The other pairs showed little change in connectivity strength with
age. Notably, even extending the analysis to all possible pairings
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TABLE 4 | Fit statistics of the baseline (no connectivity between regions), Laird MACM, and exploratory SEM models for the entire subject pool.

Fit statistic Baseline Laird MACM Exploratory SEM

RMSEA 0.084–0.084 0.051–0.052 0.030–0.031

Browne-Cudeck criterion 109289.292 31107.005 11961.529

Comparative fit index 0.169 0.770 0.918

χ2 108963.189 30309.863 11164.387

Degrees of freedom 864 630 630

Sample size 17832 17832 17832

Across every fit statistic assessed, the exploratory SEM model provides fits that approach acceptable levels. The Laird MACM model, while not fitting as well as the exploratory SEM

model, does fit reasonably well according to RMSEA.

TABLE 5 | RMSEA 90% confidence intervals for the MACM model and exploratory model across age groups.

Decade Baseline Laird MACM Exploratory SEM

RMSEA (20s) 0.230–0.235 0.143–0.149 0.085–0.091

RMSEA (30s) 0.215–0.220 0.126–0.132 0.072–0.078

RMSEA (40s) 0.191–0.196 0.122–0.128 0.083–0.089

RMSEA (50s) 0.207–0.212 0.123–0.129 0.080–0.086

RMSEA (60s) 0.212–0.217 0.138–0.144 0.071–0.077

RMSEA (70s) 0.210–0.215 0.127–0.133 0.070–0.076

The MACM model is a distinct improvement over the baseline model, but lacks a few key paths that would greatly improve model fit, as indicated by the superior fit of the exploratory

SEM. Each decade cohort was fit to just under 3000 sample points (150 time points * 20 subjects—discarded time points due to motion).

of the regions (45 total), no path was observed to increase in
strength with age.

Subject Motion Correction
Subject motion did not differ significantly across decades,
although it was highest in subjects in their 70 s (see
Supplementary Table II). This trend was not significant using
a Pearson r test for either the absolute displacement (r = 0.09,
DF = 118, p = 0.33) or relative displacement (r = 0.14, DF =
118 p = 0.13) ANOVA tests of displacement differences also
indicate no significant differences across decades (F = 0.97,
p = 0.44 for absolute displacement; F = 0.81, p = 0.55 for
relative displacement; Fcritical = 2.29).

DISCUSSION

A primary methodological goal of this study was to demonstrate
the efficacy of using SEM to elucidate age-related changes in
neural systems. This was strongly confirmed, as a well-fitting
model was constructed with robust linear changes in connectivity
strengths with age observed in multiple paths, also confirming
the primary physiological goal. A secondary methodological goal
was to determine the suitability of meta-analytic modeling to
guide and inform SEM (and other node-and-edge modeling
constructs). While a shift in the center of activity was observed,
the primary data driven exploratory model showed overall strong
agreement with the Laird MACM model, suggesting that meta-
analytically generated models may provide a useful source for
baselinemodels that are not biased by a limited sample of primary
data.

Age-Related Effects
Path coefficients significantly correlated with age were observed
in 8 of the 13 paths in the SEM exploratory model (Figure 3).
Changes with age were restricted to the paths involving
lateralized regions while all four medial paths demonstrated
no correlation with age. One of the most notable effects was
the paired increases and decreases of connections with age
(Figure 4). The four paths that showed decrease in connectivity
strength with age were all matched with another path inputting
into the same region that increased with age. These changes
are progressive and, at least in some paths, show early onset.
Specifically, four paths exhibited near monotonic increases or
decreases (Table 6) from the initial (2nd) decade, with six of
the eight paths demonstrating significant changes by the 3rd
or 4th decade. This suggests that the process observed here is
an intrinsic component of healthy, normal aging. The increases
observed in the functional connectivity between regions also
appeared to be unique to the DMN. In the control set of motor
network regions, no connection between regions was observed to
increase with age. This matches previous findings of decreases in
the functional connectivity of the motor network in the resting
state with age (Wu et al., 2007), and it was suggested that
this may be a contributing factor to deteriorating motor ability
with age. The changes in connectivity strength with age provide
insight into future application of SEMmodeling of disease effects
for diagnostic purposes within individual subjects. Different
cognitive disorders have implicated the DMN as a key network,
and have highly differing average age of subjects (autism vs.
Alzheimer’s disease, for example). When considering deviation
of connectivity strengths from expected norms, it is important to
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FIGURE 2 | Comparison of the Laird MACM model with the data-derived exploratory SEM model. Black solid lines are paths that overlap between the two

models, black dotted lines are paths that are exclusively in the MACM model, and gray dashed lines are paths that exclusively appear in the exploratory SEM model.

Ignoring directionality, there is an overlap in 10 of the 13 paths. The probability for this to have occurred by random chance is 0.023%.

adjust for the effect of subject age on the expected connectivity
strength of a path for a subject.

Changes in resting-state connectivity (including the DMN)
with age have been previously demonstrated. Andrews-Hanna
et al. (2007) found major decreases in DMN connectivity
seeding from the MPFC as well as the precuneus, demonstrating
some overlap with the findings of this study, including
decreased connectivity between the precuneus and bilateral
MTG. However, while within-network connectivity decreases
with age, between-network connectivity has been shown to
increase with age (Chan et al., 2014). This decrease in segregation
and specialization may in part account for the paired increases
and decreases in functional connectivity observed in this study.
When parcellated by function, networks implicated in higher
cognition demonstrated the most decrease in connectivity with
age, while basic information processing networks showed an
increase in connectivity with age (Geerligs et al., 2014). These
studies also demonstrate changes in healthy aging, though
applying their findings to this study remains a challenge as they
examine the overall changes in multiple networks, rather than
specific connectivity changes within a singular network.

Gray matter volume has been demonstrated to linearly decline
across adulthood (Giorgio et al., 2010), and is a strong candidate
for the source of reorganization of the DMN. Other structural

changes that likewise exhibit a linear trend include declines in
fractional anisotropy (from increase in perpendicular diffusivity
but no change in parallel diffusivity) (Kochunov et al., 2007;
Giorgio et al., 2010) as well as linear increases in mean diffusivity
across adulthood (Giorgio et al., 2010). White matter volume
(Giorgio et al., 2010) and ratio (Wu et al., 2013), however, was
shown to have a mix of regions that linearly decrease with age
or have a wide parabolic shape. While all tracts exhibit similar
patterns or decline, they are not consistently the same across
different tracts, with some demonstrating more change with age
than others (Westlye et al., 2010). This may explain why not all
paths demonstrate a change with age.

Common systemic disorders may also play a role in
the progressive alterations of network activity observed here,
particularly in late age. The present cohort did not exclude
subjects with diabetes, hypertension or hypercholesterolemia,
although other neurological and psychiatric disorders were
excluded. Previous studies have suggested that long-standing
hypertension reduces functional connectivity in regions supplied
by the internal carotid artery (Mentis et al., 1994). Diabetes
likewise can cause changes in functional connectivity in advance
of frank microvascular damage (Duinkerken et al., 2009).
Diabetes and hypercholesterolemia have also been shown to
increase blood-brain barrier permeability that leads to amyloid
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FIGURE 3 | Axial (A) and coronal (B) view of the exploratory SEM model of resting state data. Age-related trends in functional connectivity strength are

highlighted in color, with red indicating increasing strength with age, blue indicating decreasing strength with age, and black indicating no significant change with

age.Midline paths show little change with age while lateralized regions show significant changes with age. Connectivity in the posterior circuit show extensive changes

with age.

TABLE 6 | Path coefficients (per decade cohort) for the exploratory SEM model arranged by hub.

Path Path Coefficient (By Decade) Pearson r Correlation with Decade

pC → LMFG 0.37 | 0.33 | 0.25 | 0.20 | 0.23 | 0.17 −0.93

pC → RIPL 0.20 | 0.29 | 0.29 | 0.36 | 0.34 | 0.41 0.94

pC → LIPL 0.42 | 0.39 | 0.38 | 0.37 | 0.47 | 0.44 0.46

pC → LMTG 0.39 | 0.32 | 0.24 | 0.27 | 0.24 | 0.14 −0.93

pC →PCC 0.64 | 0.61 | 0.61 | 0.59 | 0.62 | 0.60 −0.59

PCC → LMTG 0.30 | 0.38 | 0.41 | 0.43 | 0.41 | 0.52 0.91

PCC → RMTG 0.23 | 0.27 | 0.35 | 0.32 | 0.34 | 0.42 0.92

PCC →MPFG 0.47 | 0.52 | 0.47 | 0.48 | 0.41 | 0.45 −0.61

PCC →vACC 0.23 | 0.25 | 0.24 | 0.27 | 0.19 | 0.18 −0.41

MPFG →vACC 0.42 | 0.39 | 0.31 | 0.31 | 0.44 | 0.42 0.15

MPFG → LMFG 0.24 | 0.27 | 0.30 | 0.36 | 0.37 | 0.41 0.99

LIPL → RIPL 0.49 | 0.37 | 0.27 | 0.30 | 0.16 | 0.08 −0.97

LMTG → RMTG 0.47 | 0.36 | 0.31 | 0.30 | 0.25 | 0.27 −0.89

The precuneus is the core hub with five connections exiting followed by the posterior cingulate cortex with four. The medial prefrontal gyrus has two connections with other nodes in the

anterior network. The two remaining paths are connections between bilateral regions. Bolded rows are paths that show significant correlation with age. Unbolded paths demonstrate

neither significant linear trends with age nor vary significantly across the age-span. Standard errors range from 0.013 to 0.021.

deposition (Acharya et al., 2013), a pathology that has high
specificity for the DMN (Vlassenko et al., 2010). All three
of these common system disorders are associated with the
gradual accumulation of white-matters lesions that could alter
connectivity in the DMN, including compensatory increases
(Sharp et al., 2011). The effect of these systemic disorders on
DMN connectivity could not be assessed fully in the present study
due to the limited sample size, but could be examined in future
analysis with an expanded subject pool.

Age Invariant Markers
Age-invariant paths also provide insight when considered in
the context of previously observed disease effects. The strongest
age-invariant path is between the PCC and pC. Yet, significant
decrease in coherence (similarity of time series) between the
posterior cingulate cortex and pC were observed in early
Alzheimer’s disease (He et al., 2007). Furthermore, both regions
were frequently observed to show decreased metabolic activity
in Alzheimer’s disease (Minoshima et al., 1997; Johnson et al.,
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FIGURE 4 | Connectivity of paths showing age-related changes by decade. Paths are paired by receiving region. Each node receives one path that increases

in strength with age and one that decreases with age. Effects are strongly linear (lowest correlation between average age of each decade cohort vs. average path

coefficient of the cohort is r = −0.89, significant at p = 0.05 level).

1998; Volkow et al., 2002), and easily could affect connectivity
between the regions. This may indicate a useful marker that
could predict early course of disease when significant declines
are observed, and also suggests that the elderly subjects used
in the present study are less likely to be suffering from not
yet symptomatic mild cognitive impairment that has affected
connectivity. Use of a per subject imaging measure as a marker
for disease was previously demonstrated with decreased activity
in the PCC and hippocampus that when fit to each subject was
shown to be a potential marker to distinguish Alzheimer’s disease
from normal aging with 85% sensitivity and 77% specificity
(Greicius et al., 2004). Abnormal changes in connectivity in the
age-invariant paths could also likewise provide markers to be
investigated.

Plausibility of Models
Overall, the exploratory SEM model showed very reasonable
fits across the decade cohorts, and fit the subject pool very
well as a whole. The Laird MACM model, while inferior in
fit to the data across all fit statistics, still provided statistically
significant paths that overlapped with the exploratory model.
SEM models are often specified a priori, with a mask of
ROIs that are specified to include the regions considered
most interesting. By contrast, the ROIs were selected in
this study using meta-analytic techniques pooling published
literature. The a priori model used was also specified by meta-
analytic connectivity modeling, and subsequent exploratory
modeling only sought to optimize model fit. This creates
a highly standardized method for defining and creating
models, but it is worth considering whether the nodes and
edges produced are plausible in the context of previous
studies.

TABLE 7 | Correlation coefficients of the 13 strongest pairs within the

motor control dataset.

Path Correlation Coefficient (By Decade)

LCer <- -> RCer 0.58 | 0.61 | 0.58 | 0.68 | 0.60 | 0.60

LM1 <- -> RM1 0.54 | 0.56 | 0.45 | 0.53 | 0.54 | 0.44

LPMv <- -> RPMv 0.54 | 0.39 | 0.31 | 0.45 | 0.42 | 0.32

LS2 <- -> RS2 0.60 | 0.39 | 0.33 | 0.46 | 0.38 | 0.13

LPPC <- -> RPPC 0.65 | 0.58 | 0.62 | 0.68 | 0.65 | 0.64

RM1 <- -> RPPC 0.48 | 0.50 | 0.48 | 0.57 | 0.60 | 0.45

LM1 <- -> LPPC 0.54 | 0.55 | 0.45 | 0.48 | 0.56 | 0.56

RM1 <- -> LPPC 0.45 | 0.50 | 0.40 | 0.48 | 0.52 | 0.49

LM1 <- -> RPPC 0.43 | 0.47 | 0.42 | 0.48 | 0.53 | 0.41

RPMv <- -> RS2 0.59 | 0.42 | 0.39 | 0.50 | 0.41 | 0.31

LPMv <- -> LS2 0.48 | 0.39 | 0.36 | 0.46 | 0.49 | 0.37

RM1 <- -> RS2 0.59 | 0.42 | 0.39 | 0.50 | 0.41 | 0.31

LM1 <- -> RS2 0.47 | 0.42 | 0.29 | 0.43 | 0.39 | 0.23

While one pair (LS2 and RS2) shows significant decreases with age and other pairs show

nearly significant decreases with age as well, no pair (including ones not shown) show

increases in strength with age.

Node Plausibility
The regions of interest selected were the strongest ALE
determined regions from published deactivations. None of the
included regions would be considered contentious, as all have
been repeatedly demonstrated to be components of the DMN.
(See Laird et al., 2009 for region-by-region discussion). The
most notable deviation from common descriptions of the DMN
is the absence of the hippocampus, which is often included in
the definition of the DMN. Within the DMN, the hippocampus
is functionally related to the posterior cingulate (Greicius
et al., 2004; Teipel et al., 2010), and demonstrates structural
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atrophy significantly correlated with age (De Leon et al., 1997;
Chowdhury et al., 2011). However, even at a more relaxed
ALE criterion (expanding the number of nodes to 12), the
hippocampus still did not achieve significance in ALE activation.
As such, it was most appropriate to stay with the well-defined
methodology for region selection and exclude the hippocampus
from the analysis. However, given the significant age-related
connectivity changes observed within the DMN, it may be worth
exploring regions previously shown to be connected to the DMN
and demonstrate significant age-related structural or functional
changes in future analyses.

Edge Plausibility (Model Overlap)
The LairdMACMmodel and the exploratory SEMmodel showed
very good concordance, overlapping in 10 of 13 connections
between regions (Figure 2). The extent of the overlap between
models generated from meta-analytic techniques vs. primary
resting state data is unsurprising, given previous studies have
shown highly similar connectivity patterns are observed for
co-activation (meta-analytic) and for resting-state connectivity
(primary data) (Toro et al., 2008; Smith et al., 2009; Crossley
et al., 2013). This phenomenon is observed throughout the brain,
including but not limited to the DMN. The overlapping edges
also have strong support in the structural imaging literature.
Diffusion tensor imaging tractography has shown the PCC to
be structurally connected the MPFG as well as to both MTG
(Greicius et al., 2009). The same tractography study also found
no evidence of a direct structural link between the MPFG to
the bilateral MTG, reflecting similar findings to this study.
Voxel-based connectivity show the pC/PCC, inferior parietal
lobe, prefrontal gyrus, and left middle frontal gyrus show
strong overlaps in both functional and structural connectivity
to one another (Horn et al., 2014). Connectivity map of the
ventral anterior cingulate showed the most significant functional
connectivity with the MPFG and PCC (Greicius et al., 2003), in
good agreement with both the Laird MACMmodel as well as the
SEM exploratory model.

Models that are overly specified for a specific dataset are
always a concern when performing fully exploratory SEM
analyses. Considering the dramatic changes in connectivity in
subjects from their 20 s to their 70 s, had we chosen to construct a
fully exploratorymodel of either the youngest or the oldest cohort
separately, they likely would have yielded somewhat different
looking models for the same system. Given the strong overlap
between the Laird MACM and exploratory SEM models, a meta-
analytically constructed model may serve as a good starting
model that can be subsequently refined to provide a model that is
not as specifically tailored for the subject group being analyzed.

Model Difference (Hub Shift)
However, while the Laird MACM model determined that
the RMTG was the most extensively involved hub of the
DMN, exploratory resting state modeling shows the precuneus
to be the key hub of the network. Outside the differences
between connections exiting the respective key hubs, the
remaining connections in the Laird MACM model are identical
to those in the exploratory model (though not necessarily

in direction). Recent studies in voxel-based resting state
connectivity have suggested that the precuneus is strong core
hub of the DMN (Tomasi and Volkow, 2010, 2011; Utevsky
et al., 2014), in agreement with the results of the exploratory
model.

One possible source of the difference between the two
hubs is that source of data for the Laird MACM model
was task-based data. While DMN regions were determined by
ALE using deactivations with task, coactivation patterns were
determined based on task-driven co-increases. The underlying
network structure does not appear to fundamentally change
with cognitive state, only undergoing minor changes in line
with previous studies showing that switching between rest and
task will only switch a few pathways as required by cognitive
demands (Goparaju et al., 2014). This reconfiguration of network
coactivation patterns when shifting between rest and active task
has also been observed in the parcellation of the cingulate cortex,
another node of the DMN (Torta et al., 2013). Despite this
switch in hub, however, the general structure of the network does
not change and connectivity between the other regions remains
undisturbed. This may explain why the strongest connection
in the exploratory model, pC → PCC, was absent in the
Laird MACM model. The posterior cingulate was determined
to be the second strongest hub by both the Laird MACM
model as well as the exploratory model. It may be that in the
resting state, the precuneus is a key hub, and maintains strong
communication with the posterior cingulate, a secondary hub.
When transitioning to task, the precuneus may switch off as
a hub while the right middle temporal gyrus turns on, and
the communication between the precuneus and the posterior
cingulate disappears. This possibility is supported by previous
observation that the right middle temporal gyrus showed strong
differentiation in functional connectivity when processing stories
compared to rest, but not when listening to unrelated sentences
compared to rest (Hasson et al., 2009). This effect was also
observed more directly by Buckner et al. (2009), who noted
that cortical hub locations were very similar when comparing
active tasks vs. passive fixation, though the connectedness of
prefrontal and temporal areas increase during task. Higher
level cognitive processing is a part of many of the studies
in the BrainMap database, and may explain the much more
extensive right middle temporal gyrus connectivity found in the
Laird MACM model. Despite the differences, the MACM model
nevertheless demonstrated very similar patterns to connectivity
found in primary resting state data, suggesting its application in
guiding futuremodeling of functional networks. This is especially
surprising given the widely discrepant source of data (published
co-activations across tasks compared to primary resting state
data), and may suggest that studies involving more similar tasks
(such as a MACM model of finger tapping vs. primary finger
tapping data) may yield even more similar models.

Limitations and Caveats
One limitation of the study is that the subjects were drawn
from a randomly ascertained sample of ∼ 30 extended Mexican-
American families. Because of this, the subjects are much more
genetically similar than a typical sample of healthy control
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subjects. That is, the findings could theoretically be specific
only to regionally specific genetic and environment factors.
To partially address this limitation, a second, non-overlapping
sample of 105 subjects were selected for maximal genetic distance
and analyzed in the same manner as reported here. This sample
was more limited in age range, with the oldest subject being
54 years of age. Despite this, the cohort showed similar aging
effects. To fully address this limitation, replication studies from
other geographic regions with different genetic compositions and
environmental factors will be needed.

Extending upon this, a second limitation of the study is that
any exploratory model that any exploratory model constructed is
specified by the attributes of the dataset including factors such
as scan parameters and subject pool. While it is not expected
that general connectivity patterns would differ wholesale across
studies, specific values for connectivity strength may differ.
This may create difficulties in projecting expected connectivity
strengths across studies, and would merit investigation.

A third limitation of the study is the cross-sectional nature of
the data. Themodel attempts to predict the course of connectivity
changes with age without longitudinal data. However, given the
range of ages the study attempts to model, longitudinal data
of this magnitude would not be possible. Comparisons between
cross-sectional and longitudinal designs have been performed
previously, and have demonstrated that longitudinal studies may
produce greater slopes of change (Desrosiers et al., 1998; Royall
et al., 2005). Suggestions for the cause of this effect include cohort
bias associated with cross-sectional design, and its influence on
the results of this study may require further investigation.

Conclusions and Future Directions
This study demonstrates progressive, bidirectional functional
connectivity changes within the DMN in healthy aging, using
SEM to quantify per-decade path coefficients. Declining path
coefficients and rising path coefficients were observed to
share common nodes, suggesting a compensatory mechanism
for maintaining node input. This provides a framework for
interpreting changes in DMN integrity in brain disorders across
the age range and for assessing the effects of systemic disorders
implicated in accelerated brain aging. Per-subject biometrics have

the potential to be used as biomarkers for genetic analyses,
for diagnosis, for prediction of response to therapy, and the
like. For example, if this analysis was applied to the entire
GOBS cohort, path coefficients could be used a biomarkers
for gene discovery. Similarly, the extensive neuropsychological
data available on this cohort, correlations between individual
path coefficients and psychometric scores could provide guide
functional interpretation of the individual paths.

Furthermore, the study demonstrates high correspondence
between a meta-analytically derived model and a fully optimized
exploratory model, suggesting meta-analytic modeling as a
generally applicable method for constraining analysis of brain
networks. Meta-analytic data may be a good source to generate
starting models that can be refined and used to investigate
network connectivity and disease effects in other systems as well.
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