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Abstract

In this article, the authors discusses the numerical simulations of higher-order differential equa-
tions under a fuzzy environment by using Homotopy Perturbation Method and Variational Iteration
Method. The fuzzy parameter and variables are represented by triangular fuzzy convex normalized
sets. Comparison of the results are obtained by the homotopy perturbation method with those ob-
tained by the variational iteration method. Examples are provided to demonstrate the theory.

Keywords: Fuzzy number; Fuzzy differential equation; Homotopy perturbation method; Varia-
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1. Introduction

Fuzzy differential equations are a significant aspect of the fuzzy analytic theory, and a valuable in-
strument to describe a dynamical phenomenon when the information about it is vague and its nature
is under uncertainty. The rise is in the modeling of the real-world problems, when there is impre-
ciseness, for example, population models, physics, medicine, robotics, aircraft dynamics, electrical
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circuits, power systems, aerospace engineering, chemical processing, robotics, aircraft dynamics,
biological systems, and time-series analysis. Chang and Zadeh (1972) were the first to establish the
fuzzy derivative concept, which was followed by Dubois and Prade (1982), who utilized the exten-
sion principle. The measurability and integrability of fuzzy set-valued mappings of a real variable
with values that are normal, convex, upper semicontinuous, and compactly supported by fuzzy
set were discussed (Kaleva (1987); Kaleva (1990)). In Abbasbandy and Allahviranloo (2002), Al-
lahviranloo et al. (2009), and Mansouri and Ahmady (2012), numerical techniques for solving
fuzzy differential equations are proposed. Two analytical methods for solving nth order linear dif-
ferential equations with fuzzy initial conditions were addressed by Buckley and Feuring (2001).
The first technique involved fuzzifying the crisp solution and then determining whether it satisfied
the differential equation with fuzzy initial conditions, whereas the second method involved solving
the fuzzy initial value problem first and then determining whether it defined a fuzzy function. Bede
(2008) found exact solutions to fuzzy differential equations. The study of fuzzy differential and
integral equations, which has attracted interest for some time, especially concerning fuzzy pro-
cesses, has progressed in recent years as a result of their applications in a wide range of domains
(Chalco-Cano and Roman-Flores (2009); Salahshour and Allahviranloo (2013); Liu et al. (2020);
Esmi et al. (2021); Paripour et al. (2015); Mosleh and Otadi (2015); Ahmadian et al. (2016);
Gasilov et al. (2018)).

Several analytical approaches for solving linear and nonlinear differential equations have been
developed in the recent phenomenon. Some of these techniques include the Homotopy Perturba-
tion Method (HPM), Variational Iteration Method (VIM), Differential Transform Method (DTM),
Adomian Decomposition Method (ADM), and Homotopy Analysis Method (HAM). The purpose
of this study is to provide a numerical simulation for linear fuzzy differential equations using the
HPM. Ji-Huan He was the first to introduce HPM in He (1999a), He (2000a), He (2003), and He
(2009). He proposed a homotopy perturbation methodology for the solution of algebraic equations
that combines the introduction of homotopy in topology with the classic perturbation method.
Homotopy is generated using the homotopy procedure with an embedding parameter as a small
parameter. This technique yields a summation of an infinite series with easily computed terms that
converges quickly to the solution of the problem. Many researchers have used this technique to
solve a wide range of linear and non-linear differential equations in science and engineering ap-
plications. Ghanbari (2009) investigates using HPM to approximate the solution of fuzzy initial
value problems with generalized differentiability. In Bota and Caruntu (2017) and Roul and Meyer
(2011), the authors investigated analytical and approximate solutions of nonlinear differential and
integrodifferential equations by using HPM.

He also developed the VIM (He (1999b); He (2000b); He and Wu (2007)) which produces rapidly
convergent consecutive approximations of the exact solution. In recent years, researchers have an-
alyzed mathematical modelling by using the variational iteration method (Hetmaniok et al. (2011);
Jafari (2014); Mungkasi (2021); Wang et al. (2020)). The equations are first approximated with
possible unknowns in this manner. A general Lagrange multiplier, which can be found efficiently
via variational theory, establishes a correction functional. The approach provides successive ap-
proximations of the precise solution that are fast converging. There are no limitations or unrealistic
assumptions in the VIM, such as linearization or a nonlinear operator with minimal parameters.
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190 P. Chandru and B. Radhakrishnan

The VIM is capable of handling both linear and nonlinear problems. The concept of convergence
has been proven.

The main focus of this research is to demonstrate how HPM and VIM can be used to compare
numerical simulations of higher-order fuzzy differential equations with fuzzy initial conditions.

2. Preliminaries

This section provides some fundamental definitions, concepts related to fuzzy numbers, which are
essential to analyze fuzzy differential equations.

Definition 2.1.

A fuzzy number is a convex normalized fuzzy set Ã of the real line R such that,

µÃ(x) : R→ [0, 1] ∀x ∈ R,
where µÃ is called the membership function of the fuzzy set and it is piecewise continuous.

Definition 2.2.

The α−cut or α−level cut of fuzzy set Ã is a set consisting of those elements of the universe X
whose membership values exceed the threshold level α,

Ãη = x/µÃ(x) ≥ α.

Definition 2.3.

A triangular fuzzy number Ã is a convex normalized fuzzy set Ã of the real line R such that:

(i) There exist exactly one r0 ∈ R with µÃ(x0)=1 (x0 is called the mean value of Ã), where µÃ is
called the membership function of the fuzzy set.

(ii) µÃ(x) is piecewise continuous.

The triangular fuzzy number Ã = (a1, a2, a3). The membership function µÃ of Ã is defined as
follows,

µÃ(x) =


0, if x ≤ a,
x−a1

a2−a1
, if a1 ≤ x ≤ a2,

a3−x
a3−a2

, if a2 ≤ x ≤ a3,

0, if x ≥ a3.

Any arbitrary triangular fuzzy number Ã = (a1, a2, a3). It can be represented with an ordered pair
of functions through r−cut approach,

[v(r), v(r)] = [(a2 − a1)r + a1, (a3 − a2)r + a3], r ∈ [0, 1].

The triangular fuzzy numbers the left and right bound of the fuzzy numbers satisfies the following
conditions:
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(i) v(r) is a bounded left continuous non-decreasing function over [0, 1].
(ii) v(r) is a bounded right continuous non-increasing function over [0, 1].

(iii) v(r) ≤ v(r), 0 ≤ r ≤ 1.

Lemma 2.1.

If w̃(t) = (x(t), y(t), z(t)) is fuzzy triangular number valued function and if w̃ is Hukuhara differ-
ential, then w̃′(t) = (x′(t), y′(t), z′(t)). Use this property to solve the fuzzy initial value problem.

Proof:

Now, consider the following fuzzy initial value problem

ỹ′ = f(t, ỹ),

ỹ(t0) = ỹ0,

with,

ỹ0 = (y
0
, yc0, y0) ∈ R,

ỹ(t) = (w,wc, w) ∈ R,
f : [t0, t0 + a]×R→ R,

f(t, (w,wc, w)) = (f(t, w, wc, w), f c(t, w, wc, w), f(t, w, wc, w)).

Insert the above equations into the following system of ordinary differential equations as below:

w = f(t, w, wc, w),

wc = f c(t, w, wc, w),

w = f(t, w, wc, w).

w(0) = y
0
, wc(0) = yc0, w(0) = y0. ■

3. Analysis of Homotopy Perturbation Method

Consider the general non-linear differential equation shown below,

D(u)− h(z) = 0, z ∈ Ψ, (1)

with boundary condition

E
(
u,

∂u

∂z

)
= 0, z ∈ Λ, (2)

where D− General differential operator, E− Boundary operator, h(z)− Analytical function, and
Λ- Boundary of the domain Ψ.

After dividing D into two parts, the equation (1) can be written as,

K(u) +M(u)− h(z) = 0, z ∈ Λ, (3)

4
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where K− linear and M− nonlinear.

By the homotopy technique (He (1999a); He (2000a)),

U(z, q) : Ψ× [0, 1] → R,

which satisfies
G(U ,Q) = (1− q)[K(U)−K(u0)] + q[D(U)− h(z)] = 0, q ∈ [0, 1], z ∈ Λ

or
G(U ,Q) = K(U)−K(u0) + qK(uo) + q[M(U)− h(z)] = 0

 , (4)

where u0 is an initial approximation of the equation (1) that satisfies the boundary conditions, and
q ∈ [0, 1] is an embedding parameter.

From the equations (3) and (4), we have

G(U , 0) = K(U)−K(u0) = 0, (5)
G(U , 1) = D(U)− h(z) = 0. (6)

The process of changing q from 0 to 1, that is, U(z, q) from u0(z), is known as deformation in
topology, and K(U)−K(u0),D(U)−h(z) are homotopic. To proceed, use the embedding param-
eter q as a small parameter in HPM, and assume that the solutions of (4) and (5) can be represented
as a power series in q,

U = u0 + qu1 + q2u2 + q3u3 + q4u4 + q5u5 + q6u6 + . . . , (7)

and the exact solution is obtained as follows:

u = lim
q→1

U = lim
q→1

(
u0 + qu1 + q2u2 + q3u3 + q4u4 + q5u5 + q6u6 + . . .

)
=

∞∑
j=0

uj , (8)

U = U0 + U1 + U2 + U3 + U4 + U5 + U6 + . . . (9)

4. Applying HPM to Fuzzy Differential Equations

Let us consider the following nth order fuzzy differential equation,

ũ(n)(t) + f(t, ũ(t), ũ′(t), ũ′′(t), ũ′′′(t), . . . , ũ(n)(t)) = 0, t ∈ [0, 1], (10)

with initial conditions,

ũ(i) = (gi(z), ki(z)), i = 0, 1, 2, 3, . . . n− 1.

By the HPM (He (1999a); He (2000a)), to establish a homotopy

(1− q)ũ(n) + q[ũ(n)(t) + f(t, ũ(t), ũ′(t), ũ′′(t), ũ′′′(t), . . . , ũ(n)(t)] = 0, (11)
ũ(n)(t) + q[f(t, ũ(t), ũ′(t), ũ′′(t), ũ′′′(t), . . . , ũ(n)(t))] = 0, (12)

where q ∈ [0, 1] is an embedding parameter.

Substituting q = 0 in Equation (11), we obtain ũ(n)(t) = 0, and substitute q = 1 in equation (11).
Hence, we obtain

ũ(n)(t) + f(t, ũ(t), ũ′(t), ũ′′(t), ũ′′′(t), . . . , ũ(n)(t)) = 0.

5
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This is known as deformation in topology; ũ(n)(t) and ũ(n)(t) + f(t, ũ(t), ũ′(t), ũ′′(t), . . . , ũ(n)(t))
are called homotopic. According to HPM, assume that the solution of Equation (11) or (12) can
be expressed as a series in q,

ũ(t) = ũ0(t) + qũ1(t) + q2ũ2(t) + q3ũ3(t) + q4ũ4(t) + q5ũ5(t) + q6ũ6(t) + . . . (13)

When q → 1, Equation (11) or (12) corresponds to Equation (10) and (13) and becomes the
approximate solution of Equation (10),

ũ(t) = ũ0(t) + ũ1(t) + ũ2(t) + ũ3(t) + ũ4(t) + ũ5(t) + ũ6(t) + . . . (14)

The approximate solution to the equation (10) is as follows. The series equation (14) is usually
convergent, leading to the exact solution of equation (10). For approximate solutions, one can use
either the closed form or the truncated form.

5. Analysis of Variational Iteration Method

Consider the following general non-linear equation,

Ku(t) +Mu(t) = v(t), (15)

where K and M are linear and non-linear operators respectively. v(t) is the non-homogeneous
term. He has modified the general Lagrange multiplier method to an iteration method known as
correction functional.

The basic character of the method is to construct a correction functional for the above equation,
which follows,

un+1(t) = un(t) +

∫ t

0

λ(Kun +Mun − v(s))ds, (16)

where λ is a general Lagrange multiplier that can be ideally determined by variational theory, un

is the nth approximate solution, and ũn is a restricted variation. γũn = 0. It is to be noted that
the Lagrange multiplier λ can be constant or a function. It is required to determine optimally via
integration by parts and employing a limited variation.

A general formula λ for the nth order differential equation,

u(n) + f(u(t), u′(t), u′′(t), u′′′(t), . . . , u(n)(t)) = 0, (17)

λ = (−1)n
(s− t)n−1

(n− 1)!
. (18)

The following approximations un + 1 calculated by any initial function u0 after the Lagrange
multiplier has been obtained. As a consequence, by taking the limit the result is obtained,

u = lim
n→∞

un. (19)

The corrections functional (16) generates a series of approximations, with the precise solution
determined at the limit of the approximations. Then, under an appropriate initial term u0(t), the

6
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solution of problem (15) is considered a fixed point of the following functional,

un+1 = un +

∫ t

0

λ(Kun +Mun − v(s))ds. (20)

6. Applying VIM to Fuzzy Differential Equations

Now, consider the following nth order fuzzy differential equation,

u(n) + f(t, u(t), u′(t), u′′(t), u′′′(t), . . . , u(n)(t)) = 0, t ∈ [0, 1], (21)
ũ(i)(0) = (gi(z), ki(z)) i = 0, 1, 2, . . . , n− 1.

The correction functional for equation (21) is

un+1(t, z) = un(t, z) +

∫ t

0

λ
[ dn

dsn
un + f(t, un(s), u

′
n(s), u

′′
n(s), u

′′′
n (s), . . . , u

(n)
n (s))

]
ds,

un+1(t, z) = un(t, z) +

∫ t

0

λ
[ dn

dsn
un + f(t, un(s), u

′
n(s), u

′′
n(s), u

′′′
n (s), . . . , u

(n)
n (s))

]
ds.

The Lagrange multiplier is defined in the following way,

λ(s, t) = λ(s, t) = (−1)n
(s− t)n−1

(n− 1)!
. (22)

The exact value of Lagrange multipliers is obtained if f is a linear operator as defined by the
Euler-Lagrange differential equations.

The Iteration formula is,

un+1(t, z) = un(t, z) +

∫ t

0

(−1)n
(s− t)n−1

(n− 1)!
×
[ dn

dsn
un + f(t, un(s), u

′
n(s), u

′′
n(s), . . . , u

(n)
n (s)

]
ds,

un+1(t, z) = un(t, z) +

∫ t

0

(−1)n
(s− t)n−1

(n− 1)!
×
[ dn

dsn
un + f(t, un(s), u

′
n(s), u

′′
n(s), . . . , u

(n)
n (s)

]
ds.

7. Numerical Applications

Example 7.1.

Consider the second-order linear fuzzy differential equation that follows:

u′′(t)− 4u′(t) + 4u(t) = 0, t ∈ [0, 1]. (23)

Subject to the initial conditions,

ũ(0) = (2 + η, 4− η), ũ′(0) = (5 + η, 7− η).

The exact solution of (23) is,

U(t, η) = (2 + η)e2t + (1− η)te2t,

U(t, η) = (4− η)e2t + (η − 1)te2t.
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Using HPM, we have series to find approximate solutions,

u0(t; η) = (2 + η) + (5 + η)t,

u1(t; η) = 6t2 − 2

3
(5 + η)t3,

u2(t; η) = 8t3 − 2

3
(8 + η)t4 +

2

15
(5 + η)t5,

u3(t; η) = 8t4 − 8

15
(11 + η)t5 +

8

90
(13 + 2η)t6 − 4

315
(5 + η)t7,

...
u0(t; η) = (4− η) + (7− η)t,

u1(t; η) = 6t2 − 2

3
(7− η)t3,

u2(t; η) = 8t3 − 2

3
(10− η)t4 +

2

15
(7− η)t5,

u3(t; η) = 8t4 − 8

15
(13− η)t5 +

4

90
(34− 4η)t6 − 4

315
(7− η)t7,

...

Similarly, u4, u5, u6 . . . , and u4, u5, u6 . . . can be estimated following in this manner, and the ap-
proximate series solutions are obtained as follows:

u(t; η) = (2 + η) + (5 + η)t+ 6t2 − 2

3
(5 + η)t3 + 8t3 − 2

3
(8 + η)t4 +

2

15
(5 + η)t5

+8t4 − 8

15
(11 + η)t5 +

8

90
(13 + 2η)t6 − 4

315
(5 + η)t7 + · · · ,

u(t; η) = (4− η) + (7− η)t+ 6t2 − 2

3
(7− η)t3 + 8t3 − 2

3
(10− η)t4 +

2

15
(7− η)t5

+8t4 − 8

15
(13− η)t5 +

4

90
(34− 4η)t6 − 4

315
(7− η)t7 + · · · .

Using the HPM, this is an approximate solution to a given problem.

In addition, when applying VIM to get an approximate solution, the equation (23) is of the form,

Ku+Mu = 0, Ku+Mu = 0, (24)

where,

Ku =
d2u

dt2
, Ku =

d2u

dt2

Mu = −4
du

dt
+ 4u, Mu = −4

du

dt
+ 4u

It is a linear and non-linear term, respectively. Then, the correction functional for equation (24) is

un+1(t, η) = un(t, η) +
∫ t

0
λ
{

d2

ds2
un +Mun

}
ds

un+1(t, η) = un(t, η) +
∫ t

0
λ
{

d2

ds2
un +Mun

}
ds, n ≥ 0

 . (25)

Considering the variation in the independent variables, un and u,

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [2022], Iss. 3, Art. 15

https://digitalcommons.pvamu.edu/aam/vol17/iss3/15



196 P. Chandru and B. Radhakrishnan

γM(un(0)) = 0, γM(un(0)) = 0

γun+1(t, η) = γun(t, η) + γ

∫ t

0

λ

{
d2

ds2
un +M(un)

}
ds,

γun+1(t, η) = γun(t, η)− λ′γun + λγu′
n +

∫ t

0

{
∂2λ

∂s2

}
γun(s)ds = 0,

γun+1(t, η) = γun(t, η) + γ

∫ t

0

λ

{
d2

ds2
un +M(un)

}
ds,

γun+1(t, η) = γun(t, η)− λ′γun + λγu′
n +

∫ t

0

{
∂2λ

∂s2

}
γun(s)ds = 0.

As a result, the Euler Lagrange equations are obtained,

∂2λ(s, t)

∂s2
= 0,

∂2λ(s, t)

∂s2
= 0. (26)

and the boundary conditions,

1− λ′(s, t) = 0, 1− λ
′
(s, t) = 0,

λ(s, t) = 0, λ(s, t) = 0.

As a result, determine the Lagrange multiplier and substitute it into the functional, which gives

λ(s, t) = (s− t), λ(s, t) = (s− t). (27)

Substituting (27) into (25), then obtain the results in the iteration formulation,

un+1(t, η) = un(t, η) +

∫ t

0

(s− t)
[ d2

ds2
un − 4

d

ds
un + 4un

]
ds

un+1(t, η) = un(t, η) +

∫ t

0

(s− t)
[ d2

ds2
un − 4

d

ds
un + 4un

]
ds, n ≥ 0

 . (28)

Choose,

u0(t, η) = (2 + η) + (5 + η)t

u1(t, η) = (2 + η) + (5 + η)t+ 6t2 −
(
10

3
+

2η

3

)
t3

u2(t, η) = (2 + η) + (5 + η)t+ 6t2 +

(
14

3
− 2η

3

)
t3 −

(
16

3
+

2η

3

)
t4 +

(
2

3
+

2η

15

)
t5

u3(t, η) = (2 + η) + (5 + η)t+ 6t2 +

(
14

3
− 2η

3

)
t3 −

(
16

3
+

2η

3

)
t4 +

(
2

3
+

2η

15

)
t5

...
u0(t, η) = (4− η) + (7− η)t

9
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u1(t, η) = (4− η) + (7− η)t+ 6t2 −
(
14

3
− 2η

3

)
t3

u2(t, η) = (4− η) + (7− η)t+ 6t2 +

(
10

3
+

2η

3

)
t3 −

(
20

3
− 2η

3

)
t4 +

(
14

15
− 2η

15

)
t5

u3(t, η) = (4− η) + (7− η)t+ 6t2 +

(
10

3
+

2η

3

)
t3 −

(
20

3
− 2η

3

)
t4 +

(
14

15
− 2η

15

)
t5

...

Similarly, u4, u5, u6 . . . , and u4, u5, u6 . . . can be estimated following in this manner, and the ap-
proximate series solutions are obtained as follows:

u (t, η) = (2 + η) + (5 + η)t+ 6t2 +

(
14

3
− 2η

3

)
t3 −

(
16

3
+

2η

3

)
t4 +

(
2

3
+

2η

15

)
t5 + · · ·

u (t, η) = (4− η) + (7− η) t+ 6t2 +

(
10

3
+

2η

3

)
t3 −

(
20

3
− 2η

3

)
t4 +

(
14

15
− 2η

15

)
t5 + · · ·

Table 1. Comparison to the exact solutions and the approximate solutions were obtained by HPM & VIM

U U
η EXACT HPM VIM EXACT HPM VIM
0 2.5649 2.5715 2.5641 4.37634 4.7727 4.7627

0.1 2.6748 2.6816 2.6741 4.6534 4.6627 4.6527
0.2 2.7847 2.7917 2.7840 4.5435 4.5526 4.5428
0.3 2.8947 2.9017 2.8939 4.4336 4.4426 4.4329
0.4 3.0046 3.0118 3.0038 4.3237 4.3325 4.3230
0.5 3.1145 3.1218 3.1138 4.2138 4.2224 4.2130
0.6 3.2244 3.2319 3.2237 4.1038 4.1124 4.1031
0.7 3.3344 3.3420 3.3336 4.1038 4.1124 4.1031
0.8 3.4443 3.4520 3.4436 3.8840 3.8923 3.8833
0.9 3.5542 3.5621 3.5535 3.7741 3.7822 3.7733
1.0 3.6641 3.6721 3.6634 3.6641 3.6721 3.6634

Example 7.2.

Consider the fourth-order linear fuzzy differential equation:

u(4)(t)− u(t) = 0, t ∈ [0, 1], (29)

subject to the initial conditions,

ũ(0) = (η − 1, 1− η), ũ′(0) = (η − 1, 1− η), ũ′′(0) = (η − 1, 1− η), ũ′′′(0) = (η − 1, 1− η)

The exact solution of (29) is given by,

U(t; η) = (η − 1)et,

U(t; η) = (1− η)et.
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Figure 1. Comparison of Exact with HPM and VIM

Now, using HPM, we have a series to find the approximate solution,

u0(t; η) = (η − 1)

(
1 + t+

t2

2!
+

t3

3!

)
,

u1(t; η) = (η − 1)

(
t4

4!
+

t5

5!
+

t6

6!
+

t7

7!

)
,

u2(t; η) = (η − 1)

(
t8

8!
+

t9

9!
+

t10

10!
+

t11

11!

)
,

u3(t; η) = (η − 1)

(
t12

12!
+

t13

13!
+

t14

14!
+

t15

15!

)
,

...

u0(t; η) = (1− η)

(
1 + t+

t2

2!
+

t3

3!

)
,

u1(t; η) = (1− η)

(
t4

4!
+

t5

5!
+

t6

6!
+

t7

7!

)
,

u2(t; η) = (1− η)

(
t8

8!
+

t9

9!
+

t10

10!
+

t11

11!

)
,

u3(t; η) = (1− η)

(
t12

12!
+

t13

13!
+

t14

14!
+

t15

15!

)
,

...

Similarly, u4, u5, u6 . . . , and u4, u5, u6 . . . can be estimated following in this manner, and the ap-
proximate series solutions are obtained by HPM as follows:

u(t; η) = (η − 1)et,

u(t; η) = (1− η)et.
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Now, applying VIM to get an approximate solution, the equation (29) is of the form,

Ku+Mu = 0, Ku+Mu = 0, (30)

where,

Ku =
d4u

dt4
− u, Ku =

d4u

dt4
− u

Mu = 0, Mu = 0.

The correction functional for the equation (29) is

un+1(t; η) = un(t; η) +

∫ t

0

λ
[ d4
ds4

un − u
]
ds

un+1(t; η) = un(t; η) +

∫ t

0

λ
[ d4
ds4

un − u
]
ds

 . (31)

Consider the variation in the independent variables, un and u, and finding λ in the VIM. We have,

−λ(s) + λ(4)(s) = 0, −λ(s) + λ
(4)
(s) = 0

1− λ′′′(s) = 0, 1− λ
′′′
(s) = 0

λ′′(s) = 0, λ
′′
(s) = 0

λ′(s) = 0, λ
′
(s) = 0

λ(s) = 0, λ(s) = 0


. (32)

Solving the equation (32) to find the Lagrange multipliers,

λ = λ =
1

2
[sinh(s− t)− sin(s− t)] . (33)

Substitute (33) into (31) to obtain the iteration formulation,

un+1(t, η) = un(t, η) +

∫ t

0

[sinh(s− t)− sin(s− t)]

[
d4un

ds4
− u

]
ds

un+1(t, η) = un(t, η) +

∫ t

0

[sinh(s− t)− sin(s− t)]

[
d4un

ds4
− u

]
ds, n ≥ 0

 . (34)

Choose,

u0(t, η) = (η − 1)

(
1 + t+

t2

2!
+

t3

3!

)
u1(t, η) = (η − 1)

(
1 + t+

t2

2!
+

t3

3!
+ · · ·

)
u2(t, η) = (η − 1)

(
1 + t+

t2

2!
+

t3

3!
+ · · ·

)
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u3(t, η) = (η − 1)

(
1 + t+

t2

2!
+

t3

3!
+ · · ·

)
...

u0(t, η) = (1− η)

(
1 + t+

t2

2!
+

t3

3!

)
u1(t, η) = (1− η)

(
1 + t+

t2

2!
+

t3

3!
+ · · ·

)
u2(t, η) = (1− η)

(
1 + t+

t2

2!
+

t3

3!
+ · · ·

)
u3(t, η) = (1− η)

(
1 + t+

t2

2!
+

t3

3!
+ · · ·

)
...

We started with initial approximation values and derived the approximate solution using the itera-
tion formula (34),

u(t, η) = (η − 1)et,

u(t, η) = (1− η)et.

Table 2. Comparison to the exact solutions and the approximate solutions were obtained by HPM & VIM

U U
η EXACT HPM VIM EXACT HPM VIM
0 -1.1052 -1.1052 -1.1052 1.1052 1.1052 1.1052

0.1 -0.9946 -0.9946 -0.9946 0.9946 0.9946 0.9946
0.2 -0.8841 -0.8841 -0.8841 0.8841 0.8841 0.8841
0.3 -0.7736 -0.7736 -0.7736 0.7736 0.7736 0.7736
0.4 -0.6631 -0.6631 -0.6631 0.6631 0.6631 0.6631
0.5 -0.5526 -0.5526 -0.5526 0.5526 0.5526 0.5526
0.6 -0.4421 -0.4421 -0.4421 0.4421 0.4421 0.4421
0.7 -0.3315 -0.3315 -0.3315 0.3315 0.3315 0.3315
0.8 -0.2210 -0.2210 -0.2210 0.2210 0.2210 0.2210
0.9 -0.1105 -0.1105 -0.1105 0.1105 0.1105 0.1105
1.0 0 0 0 0 0 0

As shown in Figures 1 and 2, the exact values are compared to those of HPM and VIM, respectively.
As a result of the above findings, the proposed method HPM shows excellent agreement with other
existing methods of VIM. According to the analysis, HPM can be a suitable mathematical tool for
solving higher-order fuzzy differential equations.
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Figure 2. Comparison of Exact with HPM and VIM

8. Conclusion

In this paper, the authors described a linear fuzzy differential equations algorithm that was simu-
lated using HPM and VIM, as well as a comparison between exact with HPM and VIM. For deter-
mining approximate solutions to fuzzy differential equations, the previously mentioned techniques
can be employed as an alternative and equivalent method. HPM, like the perturbation method,
does not require any parameters in the equation. This approach is powerful and efficient since it
provides accurate approximations. HPM and VIM produce approximate solutions that are infinite
power series with appropriate initial conditions that can be described in the closed-form of exact
solutions. Finally, when compared to the exact solution, the HPM outperforms the VIM in solving
higher-order fuzzy differential equations. Furthermore, the obtained solution shows that HPM and
VIM results satisfy the properties of triangular shape fuzzy numbers.

Acknowledgment:

The authors would like to convey their sincere thanks and gratitude to the anonymous referees for
their useful and kind suggestions for the improvement of this paper.

REFERENCES

Abbasbandy, S. and Allahviranloo, T. (2002). Numerical solutions of fuzzy differential equations
by Taylor method, Computational Methods in Applied Mathematics, Vol. 2, pp. 113–124.

Ahmadian, A., Salashour, S., Chan, C.S. and Baleanu, D. (2016). Numerical solutions of fuzzy
differential equations by an efficient Runge-Kutta method with generalized differentiability,
Fuzzy Sets and Systems, Vol. 331, pp. 47-67.

14

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [2022], Iss. 3, Art. 15

https://digitalcommons.pvamu.edu/aam/vol17/iss3/15



202 P. Chandru and B. Radhakrishnan

Allahviranloo, T., Ahmady, N. and Ahmady, E. (2009). A method for solving nth order fuzzy linear
differential equations, Comput. Math. Appl, Vol. 86, pp. 730-742.

Bede, B. (2008). Note on numerical solutions of fuzzy differential equations by predictor-corrector
method, Information Sciences, Vol. 178, pp. 1917-1922.

Bota, C. and Caruntu, B. (2017). Approximate analytical solutions of nonlinear differential equa-
tions using the least squares homotopy perturbation method, J. of Math. Anal. Appl., Vol. 448,
pp. 401-408.

Buckley, J.J. and Feuring, T. (2001). Fuzzy initial valve problem for nth−order linear fuzzy differ-
ential equations, Fuzzy Sets and Systems, Vol. 121, pp. 247-255.

Chalco-Cano, Y. and Roman-Flores, H. (2009) Comparison between some approaches to solve
fuzzy differential equations, Fuzzy Sets and Systems, Vol. 160, pp. 1517–1527.

Chang, S.L. and Zadeh, L.A. (1972) On fuzzy mapping and control, IEEE Transaction on Systems
Man and Cybernetics, Vol. 2, pp. 30-34.

Dubois, D. and Prade, H. (1982). Towards fuzzy differential calculus: Part 3, Differentiation, Fuzzy
Sets and Systems, Vol. 8, pp. 225-233.

Esmi, E., Sanchez, D.E., Wasques, V.F. and Carvalho de Barros, L. (2021). Solutions of higher or-
der linear fuzzy differential equations with interactive fuzzy values, Fuzzy Sets and Systems,
Vol. 419, pp. 122-140.

Gasilov, N., Fatullayev, A.G. and Amrahov, S.E. (2018). Solution method for a non-homogeneous
fuzzy linear system of differential equations, Applied Soft Computing, Vol. 70, pp. 225-237.

Ghanbari M. (2009). Numerical solution of fuzzy initial value problems under generalized differ-
entiability by HPM, Int. J. Industrial Mathematics, Vol. 1, pp. 19-39.

He, J.H. (1999a). Homotopy perturbation technique, Computer Methods in Applied Mechanics
and Engineering, Vol. 178, pp. 257-262.

He, J.H. (1999b). Variational iteration method - A kind of non-linear analytical technique: Some
examples, Int. J. Non-Linear Mech. Vol. 34, pp. 699-708.

He, J.H. (2000a). A coupling method of homotopy technique and a perturbation technique for
nonlinear problems, International Journal of Non-linear Mechanics, Vol. 35, pp. 37-43.

He, J.H. (2000b). Variational iteration method for autonomous ordinary differential systems, Appl.
Math. Comput., Vol. 114, pp. 115-123.

He, J.H. (2003). Homotopy perturbation method: A new nonlinear analytical technique, Appl.
Math. Comput, Vol. 135, pp. 73-79.

He, J.H. (2009). An elementary introduction to the homotopy perturbation method, Comput. Maths
with Application, Vol. 57, pp. 410-412.

He, J.H. and Wu, X.H. (2007). Variational iteration method: New development and applications,
Comput. Math. Appl., Vol. 54, pp. 881-894.

Hetmaniok, E., Slota, D., Witula, R. and Zielonka A. (2011). Comparison of the adomian decom-
position method and the variational iteration method in solving the moving boundary problem,
Computers and Mathematics with Applications, Vol. 61, pp. 1931-1934.

Jafari, H. (2014). A comparison between the variational iteration method and the successive ap-
proximations method, Applied Mathematics Letters, Vol. 32, pp. 1-5.

Kaleva, O. (1987). Fuzzy differential equations, Fuzzy Sets and Systems, Vol. 24, pp. 301-317.
Kaleva, O. (1990). The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems,

15

Chandru and Radhakrishnan: (SI10-123) Comparison Between the Homotopy Perturbation Method an

Published by Digital Commons @PVAMU, 2022



AAM: Special Issue No. 10 (October 2022) 203

Vol. 35, pp. 389-396.
Liu, X.M., Jiang, J. and Hong, L. (2020). A numerical method to solve fuzzy differential equation

via differential inclusions, Fuzzy Sets and Systems, Vol. 404, pp. 38-61.
Mansouri, S. and Ahmady, S.N. (2012). A numerical method for solving nth order fuzzy differen-

tial equation by using characterization theorem, Communication in Numerical Analysis, Vol.
2012, pp. 1-12.

Mosleh, M. and Otadi, M. (2015). Approximate solution of fuzzy equations under generalized
differentiability, Applied Mathematical Modelling, Vol. 39, pp. 3003-3015.

Mungkasi, S. (2021). Variational iteration and successive approximation methods for a sir epidemic
model with constant vaccination strategy, Applied Mathematical Modelling, Vol. 90, pp. 1-10.

Paripour, M., Hajilou, E., Hajilou, A. and Heidari, H. (2015). Application of adomain decompo-
sition method to solve hybrid fuzzy differential equations, Journal of Taibah University for
Sciences, Vol. 9, pp. 95-103.

Roul, P. and Meyer, P. (2011). Numerical solutions of systems of nonlinear integro-differential
equations by homotopy perturbation method, Applied Mathematical Modelling, Vol. 35, pp.
4234-4242.

Salahshour, S. and Allahviranloo, T. (2013). Application of fuzzy differential transform method
for solving fuzzy Volterra integral equations, Applied Mathematical Modelling, Vol. 37, pp.
1016-1027.

Wang, X., Xu, Q. and Atluri, S.N. (2020). Combination of the variational iteration method and
numerical algorithms for nonlinear problems, Applied Mathematical Modelling, Vol. 79, pp.
243-259.

16

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [2022], Iss. 3, Art. 15

https://digitalcommons.pvamu.edu/aam/vol17/iss3/15


	(SI10-123) Comparison Between the Homotopy Perturbation Method and Variational Iteration Method for Fuzzy Differential Equations
	Recommended Citation

	tmp.1667250084.pdf.XG72A

