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Abstract

The study discusses the numerical solution for a time fractional Burgers’ equation using explicit
(scheme 1) and implicit scheme (scheme 2), respectively. The approximation of the differential
equation is discretized using the finite difference method (FDM). A non-linear term present in the
Burgers’ equation is approximated using the time-averaged values. The Von-Neumann analysis
shows that the Scheme 1 is conditionally stable and Scheme 2 is unconditionally stable. The nu-
merical solutions are compared with the exact solutions and are good in agreement. Also, the error
is estimated between exact and numerical solutions.

Keywords: Time fractional derivatives; Burgers’ equation; Caputo fractional derivative; finite
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1. Introduction

Burgers’ equations serve as a mathematical model for a wide variety of physical phenomena in-
cluding turbulence, shock wave, and gas dynamics (Burgers (1948), Cole (1951), Hopf (1950)).
Fractional calculus is a field of applied mathematics and engineering that deals with the integration
and derivation of arbitrary orders. The application of fractional calculus to explain a real system
better as compared to the use of integer order operators (Podlubny (1998)). Fractional calculus
problems have gained importance and popularity mainly due to their applications in science and
engineering. Thus, the research on fractional derivative based equations are increasing and this
study takes the opportunity to derive the numerical solutions to time fractional Burgers’ equation.
Such a equation helpful in further understanding the flow phenomenon during fluid flow, advection
diffusion, oscillation, etc. (Hilfer (2000), Machado et al. (2010), Valerio et al. (2014)).

There are number of numerical techniques available to solve the partial differential equations, and
these can be directly or indirectly used to solve the fractional-based differential equations. For
instance, the explicit and implicit based FDM is used for achieving the solutions to fractional
advection diffusion equation and it is found that the scheme is convergent and stable. In addition, it
is noted that the explicit FDM is conditionally stable and the implicit FDM is unconditionally stable
(Rehim (2015), Liu et al. (2007)). Jiwari et al. (2012, 2013) implemented the quadrature method
for cracking the numerical solutions for a transient Burgers’ equation. Mukundan and Awasthi
(2016) proposed a numerical scheme based on Method of Line-Implicit FDM (MOL-IFDM) to
solve the classical Burgers’ equation. The proposed scheme is linear with unconditionally stable.
Jiwari (2015) introduced a hybrid scheme based on uniform Haar wavelet approximation to solve
the non-linear Burgers’ equation and which is found to be efficient in overall costs. Li et al. (2016)
presented the linear FDM based method for solving the TFBE and found it to be computationally
fast. Yokus and Kaya (2017) and Yokus (2018) discussed the extended FDM solutions for the
TFBE (Caputo) and Space-TFBE (shifted Caputo) and compared them against the exact solution.
Mohebbi (2018) presented the implicit Spectral-FDM scheme to solve the TFBE. Jiwari et al.
(2019) developed a meshless method based on the quadrature method to solve the Burgers’ and
coupled Burgers’ equations. These meshless method are used to capture the behavior of shock
and generate a smooth solution. Onal and Esen (2020) worked on Crank-Nicolson-based (C-N)
FDM to approximate the solutions for TFBE. The study discusses the efficiency of a C-N FDM
and is examined with the exact solution. Akram et al. (2020) extended the FDM with the cubic
B-spline to enrich the efficiency of an FDM solver for the TFBE. Abdi et al. (2021) examined the
explicit decoupled scheme (C-N based scheme) for solving TFBE. It is noticed that the explicitly
decoupled scheme is efficient than the classical C-N scheme. Recently, Doley et al. (2022) obtained
a numerical solutions to the space fractional Burgers’ equation using the Lax-Friedrichs-implicit
scheme. The solution is good comparable with the exact solution and the scheme is found to be
unconditionally stable.

The various numerical schemes available to solve the TFBE and classical Burgers’ equation are
discussed in the above literature. The present study takes a gap to discuss the IFDM (implict-FDM)
and EFDM (explicit-FDM) based on time averaged discretization of a non-linear term. Since the
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number of calculations involved in C-N based methods is more, authors consider the implicit based
approximations. The paper is structured as follows. Section 2 explores the fractional order Burgers’
equation and describes the explicit and implicit schemes applied to the time fractional Burgers’
equations. Section 3 discusses the numerical results, and Section 4 gives the conclusion.

2. Discretization of Time Fractional Burgers’ Equation

The fractional order Burgers’ equation is achieved when we replace the order of differential term
of the equation with fractional order. With respect to that, we can generate the Burgers’ equation
with time fractional order as follows:

∂αu(x, t)

∂tα
+ u

∂u(x, t)

∂x
= µ

∂2u(x, t)

∂x2
, (x, t) ∈ [a, b]× (0, Tmax], (1)

with initial values,

u(x, 0) = u0(x), (2)

and boundary values

u (0, t)=B1, u(1,t) =B2. (3)

Here, u0(x), B1 and B2 are known functions. u(x) with respect to time is unknown functional.
Equation (1) is known as the time-fractional viscous Burgers’ equation (TFBE). When we drop the
viscous term from Equation (1), then we will get the inviscid Burgers’ equation (Towers (2020)).

The fractional calculus is mostly defined as the expansion of differential and integral with non-
integer orders. It can be written in the conservative form as follows:

∂αu(x, t)

∂tα
+

∂f(u)

∂x
= µ

∂2u(x, t)

∂x2
, (4)

where f(u) is called flux function with f(u) = u2

2
and µ is a viscous term, which is related to the

Reynold number R(= 1
µ
). R is the Reynolds number, which reflects the intensity of the viscosity.

We can rewrite the above equation as given below:

∂αu(x, t)

∂tα
+ A

∂u(x, t)

∂x
= µ

∂2u(x, t)

∂x2
, (5)

where A =
df

du
= u.

Also, the term ∂αu(x,t)
∂tα

denotes the αth order Caputo fractional derivative of a function, which is
defined as,
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∂αu(x, t)

∂tα
=

1

Γ(n− α)

∫ t

0

d

ds
f(s)(t− s)−αds, (6)

where Γ(.) is a Gamma function. The time-fractional derivatives can be approximated using finite
difference technique/method (FDM) and is written as,

∂αu(xi, tn+1)

∂tα
=

(∆t)−α

Γ(2− α)

[ n∑
k=0

(
un+1−k
i − un−k

i

)
δαn,k

]
+O(∆t)2−α. (7)

The higher order factors are very small and thus O(∆t)2−α is neglected,

∂αu(xi, tn+1)

∂tα
=

∆t−α

Γ(2− α)

[ n∑
k=0

(
un+1−k
i − un−k

i

)
δαn,k

]
, (8)

where δαn,k = (k + 1)1−α − (k)1−α.

Here the parameter δαn,k satisfy,
1. δαn,k > 0, k =, 1, 2, ...;
2. δαn,k > δαn,k+1,k = 0, 1, 2, 3, ...

The numerical solution to the proposed TFBE are derived using the implicit and explicit scheme
based on FDM. Applying the Caputo fractional derivatives in a time term of the TFBE. A non-
linear term as time averaged FDM and central differences for the spatial derivatives. For the nu-
merical solution of the time fractional Burgers’ equation (1), we introduce a uniform grid mesh of
points of coordinates (xi, tn) with xi = i∆x, i = 0, 1, 2, 3, ..m and tn = n∆t , n = 0, 1, 2, 3, . . .N.

2.1. Formulation of implicit time fractional Burgers’ equation

By applying implicit approximation to the TFBE and using the average values n and n + 1 time
steps represents the current and next time steps. Then, we can get as follows:

A = un
i =

un
i + un+1

i

2
. (9)

After applying Equation (9) in Equation (5), we get

∂αu(x, t)

∂tα
+
(un

i + un+1
i

2

)∂u(x, t)
∂x

= µ
∂2u(x, t)

∂x2
. (10)

Apply Caputo fractional derivative in the time direction (8) and central difference along space
direction to the above equation (10). Eventually, the discretized form of TFBE is given by,
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(∆t)−α

Γ(2− α)

[ n∑
k=0

(
un+1−k
i − un−k

i

)
δαn,k

]
+
(un

i + un+1
i

2

)(un
i+1 − un

i−1

2∆x

)
= µ

(un+1
i−1 − 2un+1

i + un+1
i+1 )

∆x2
.

(11)

Final discretization after rearranging Equation (11),

−µ
(∆t)αΓ(2− α)

∆x2
un+1
i−1 +

[
1 +

(∆t)αΓ(2− α)

4∆x
(un

i+1 − un
i−1) + 2µ

(∆t)αΓ(2− α)

∆x2

]
un+1
i

= un
i −

(∆t)αΓ(2− α)

4∆x
(un

i+1 − un
i−1)u

n
i −

[ n∑
k=1

(
un+1−k
i − un−k

i

)
δαn,k

]
,

(12)

where R = µ (∆t)αΓ(2−α)
∆x2 and S = (∆t)αΓ(2−α)

4∆x
.

Then, we rewrite the above Equation (12) as,

−Run+1
i−1 +

[
1 + S(un

i+1 − un
i−1) + 2R

]
un+1
i = un

i − S(un
i+1 − un

i−1)u
n
i

−
[ n∑

k=1

(
un+1−k
i − un−k

i

)
δαn,k

]
.

(13)

2.2. Formulation of time fractional explicit scheme

A well-known method, namely the explicit scheme, will be employed to handle specific nonlin-
ear time fractional Burgers’ equation. By using Caputo fractional derivative in time and central
difference in space direction in Equation (1), we arrive as follows:

(∆t)−α

Γ(2− α)

[ n∑
k=0

(
un+1−k
i − un−k

i

)
δαn,k

]
+
(un

i + un+1
i

2

)(un
i+1 − un

i−1

2∆x

)
= µ

(un
i−1 − 2un

i + un
i+1)

∆x2

(14)

=⇒ un+1
i = un

i

(
1− 2µ

(∆t)αΓ(2− α)

∆x2

)
+
(µ(∆t)αΓ(2− α)

∆x2

+
(∆t)αΓ(2− α)

2∆x

(un
i + un+1

i

2

))
un
i−1 +

(µ(∆t)αΓ(2− α)

∆x2

−(∆t)αΓ(2− α)

2∆x

(un
i + un+1

i

2

))
un
i+1 −

[ n∑
k=1

(
un+1−k
i − un−k

i

)
δαn,k

]
.

(15)
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After rearranging the equation (15), we obtain,

un+1
i = un

i (1− 2R) + (R + S(un
i + un+1

i ))un
i−1 + (R− S(un

i + un+1
i ))un

i+1

−
[ n∑

k=1

(
un+1−k
i − un−k

i

)
δαn,k

]
.

(16)

3. Stability Analysis

3.1. Stability of implicit time fractional Burgers’ equation

This section investigate the stability of implicit-FDM based numerical scheme to the time fractional
Burgers’ equation. We introduce un

j = ξneikj∆x where k is the wave number and the corresponding
amplification factor is ξ = ξ(k). We investigate the above proposed scheme in Equation (13) and
make un

j = ξneikj∆x.

From above Equation (13), we get

ξn+1

ξn
=

1− S(2i sin θ)ξn −
∑n

k=1(ξ
1−k − ξ−k)δαn,k

1 + S(2i sin θ)ξn + 2R− 2R cos θ
. (17)

When the system will stable then it must be
∣∣∣ ξn+1

ξn

∣∣∣ ≤ 1,

∣∣∣ξn+1

ξn

∣∣∣ = ∣∣∣1− S(2i sin θ)ξn −
∑n

k=1(ξ
1−k − ξ−k)δαn,k

1 + S(2i sin θ)ξn + 2R− 2R cos θ

∣∣∣ ≤ 1, (18)

where
∣∣∣1− S(2i sin θ)ξn −

∑n
k=1(ξ

1−k − ξ−k)δαn,k

∣∣∣ ≤ ∣∣∣1 + S(2i sin θ)ξn + 2R− 2R cos θ
∣∣∣.

It is obviously, ∣∣∣1− S(2i sin θ)ξn −
n∑

k=1

(ξ1−k − ξ−k)δαn,k|
∣∣∣ ≤ 1, (19)

and ∣∣∣1 + S(2i sin θ)ξn + 2R− 2R cos θ
∣∣∣ ≥ 1, (20)

for all α, n and θ.

Because the denominator of the given equation (18) is always bigger than the numerator. That
means, the absolute value of

∣∣ ξn+1

ξn

∣∣ is much smaller than 1, i.e., thus the method (13) is uncondi-
tionally stable.
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3.2. Stability analysis of explicit time fractional Burgers’ equation

In this section, the stability of a proposed fractional numerical scheme Equation (16) is investigated
by Von-Neumann method as defined by un

j = ξneikj∆x. Thus, the obtained equation with respect
to explicit scheme for TFBE is,

ξn+1

ξn
=

[
1− 2R + 2Rcos(θ)− 2i

(
S(ξn + ξn+1

)
sin(θ)−

n∑
k=1

(
ξ1−k − ξ−k

)
δαn,k

]
. (21)

From Equation (21), while θ = 0,

∣∣∣ξn+1

ξn

∣∣∣ = ∣∣∣[1− n∑
k=1

(
ξ1−k − ξ−k

)
δαn,k

]∣∣∣ ≤ 1. (22)

It follows that, when n = 0,
∣∣∣ ξ1ξ0 ∣∣∣ ≤ 1

=⇒
∣∣∣ξ1∣∣∣ ≤ ∣∣∣ξ0∣∣∣. (23)

And, for n = 1,

∣∣ξ2∣∣∣ ≤ ∣∣∣1− (ξ0 − ξ−0)δαn,1

∣∣∣ξ1. (24)

Thus, ∣∣∣ξ(n+1)
∣∣∣ ≤ ∣∣∣[1− n∑

k=1

(ξ1−k − ξ−k)δαn,k]
∣∣∣ξn, (25)

while θ = π. It will ∣∣∣ξn+1

ξn

∣∣∣ = ∣∣∣[(1− 4R)−
n∑

k=1

(
ξ1−k − ξ−k

)
δαn,k

]∣∣∣ ≤ 1. (26)

Hence, we can observe that the above Equation (22)-(26) that the proposed scheme is conditionally
stable.

4. Numerical Results

This section illustrates the implementation of the proposed IFDM to solve the TFBE because of its
unconditionally stable solutions. However, the explicit based FDM is conditionally stable.
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Example 4.1.

Initially, the numerical implicit scheme is compared with the classical Burgers’ equation (i.e.,
α = 1). The results are compared with the MOL-IFDM scheme proposed by Mukundan and
Awasthi (2016). The TFBE (α = 1) at the homogeneous boundary condition,

u(0, t) = u(1, t) = 0, (27)

and initial condition,

u(x, 0) = sin(πx), (28)

are considered. The comparison of the results are given in Table 1.

Table 1. Comparison of the numerical results at t = 0.01, ∆t = 0.001 and µ = 0.02.

x = 0.2 x = 0.4 x = 0.6 x = 0.8

MOL-IFDM (Mukundan and Awasthi 2016) 0.57208 0.93970 0.95801 0.60175

Proposed IFDM 0.57201 0.93801 0.95782 0.60169

Example 4.2.

This example is to demonstrate the accuracy and stability of the proposed implicit method. We use
absolute and maximum errors (difference between exact and numerical solution) as follows:

L∞ =∥ U(x, t)− u(x, t) ∥∞= Max{|U(xi, tn)− u(xi, tn)|}, i = 0, 1, 2, 3, ...,m. (29)

Consider the fractional problem (1) with source term the following exact solution which is given
by Onal and Esen (2020),

u(x, t) = ext2, (30)

with initial condition,

u(x, 0) = 0, 0 ≤ x ≤ 1, (31)

and boundary condition,

u(0, t) = t2;u(1, t) = et2, t ≥ 0. (32)

Moreover, the source term is given as,

f(x, t) =
2

Γ(3− α)
ex + t4e2x − t2ex, (33)

Figure 1 represents the exact solution (left side) and the numerical solution (Proposed IFDM at the
right side) for the TFBE for α = 0.5. Both the solutions are well comparable to each other. Also,
Table 2 describes the numerical error between both the solutions (numerical and exact solution). It
is noted that the L∞ decreases by reducing the space grid size (∆x) at ∆t = 0.025.
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(a) (b)

Figure 1. Comparison (a). Exact and (b) Numerical solution

Table 2. Maximum error between the exact and numerical solution for t = 0.1

∆x L∞
1/20 1.78306000E − 04

1/40 1.76959031E − 04

1/60 1.76541798E − 04

1/80 1.76320449E − 04

1/100 1.76252412E − 04

1/120 1.76071713E − 04

5. Conclusion

The study takes the discussion of numerical solution to the time fractional Burgers’ equation. To
achieve the simple and accurate solution, the explicit and implicit schemes in conjunction with the
finite difference method has been proposed. In addition, the non-linear term in the TFBE is time
averaged for the better accuracy.

Initially, both the schemes are checked for the stability and convergence. It is found that the
explicit-based scheme is stable under certain condition. However, the implicit-based scheme is
stable under all the conditions. Further, it is noted that both the schemes are convergent.

To check the accuracy of the scheme, the numerical solution which is achieved using implicit
solution compared with the exact solution. The comparison shows the better agreement and the
maximum error illustrates the same. In addition, it is observed that the decrease in space grid size
reduces the numerical error.

9
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