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Abstract

If a graph G admits integer cordial labeling, it is called an integer cordial graph. In this pa-
per we prove that Alternate m-triangular Snake graph, Quadrilateral Snake graph, Alternate m-
quadrilateral Snake graph, Pentagonal Snake graph, Alternate m-pentagonal Snake graph, Irregular
triangular Snake graph, Irregular quadrilateral Snake graph, and Irregular pentagonal Snake graphs
are integer cordial graphs.

Keywords: Integer cordial labelling; Alternate m-triangular snake graph; Irregular triangular
snake graph

MSC 2010 No.: 05C76, 05C78

1. Introduction

In the present work, we contemplate a finite graph which is connected and undirected. We refer
to a dynamic survey of graph labeling by Gallian (2020) for detailed survey on graph labeling.
Cahit (1987) introduced the concept of cordial labeling and he proved that any graceful tree, any
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harmonius tree, ladder graph, or fan graph are cordial graphs. There are so many different labelings
like product cordial labeling, graceful labeling, harmonious labeling, integer cordial labeling, etc.

Nicholas and Maya (2016) introduced the concept of integer cordial labeling. They have investi-
gated that Cycle graph, Wheel graph, Star graph, Helm graph, and Closed Helm graphs are integer
cordial graphs; Complete bipartite graph with n vertices if and only if n is even; Complete graph
with n vertices is not integer cordial graph (Nicholas and Maya (2016)). Shah and Parmar (2019,
2020) have reported that Triangular snake graph, Double Triangular snake graph, Alternate triangu-
lar snake graph, m-Triangular snake graph, Quadrilateral snake graph, Double quadrilateral snake
graph, m-Quadrilateral snake graph, Pentagonal snake graph, Double pentagonal snake graph, m-
Pentagonal snake graph are integer cordial graph.

Sundaram et al. (2004) introduced product cordial labeling. A cycle graph with n vertices is product
cordial if and only if n is odd; a complete graph with n vertices is not product cordial if n is greater
than or equal to 4. All trees are product cordial graphs (Sundaram et al. (2004)). Sahaya Rani et
al. (2018) introduced the concept of product integer cordial labeling. Star graph, and path graph
are product integer cordial; Cycle graph with n vertices is product integer cordial if and only if n
is odd (Sahaya Rani et al. (2018)).

2. Main Results

Theorem 2.1.

The m-Alternate triangular snake graph mATn is integer cordial graph for m ≥ 2 & n ≥ 3.

Proof:

Consider u1, u2, . . . , un are n vertices of the path Pn and joining u2i−1 and u2i via new vertex v
(k)
i ,

for 1 ≤ i ≤
⌈
n−1
2

⌉
& 1 ≤ k ≤ m. So, the total number of vertices in mATn = p = m

⌈
n−1
2

⌉
+ n.

There are six different types related to the values of m and n.

Type 1: If m is even and n is odd, p is odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
= i− n+1

2
; 1 ≤ i ≤ n,

f
(
v
(k)
i

)
= i+ (n−1)(k+1)

4
; 1 ≤ i ≤ n−1

2
& 1 ≤ k ≤ m, where k is odd,

f
(
v
(k+1)
i

)
= −

[
i+ (n−1)(k+1)

4

]
; 1 ≤ i ≤ n−1

2
& 1 ≤ k ≤ m, where k is odd.

Type 2: If m and n both are even, p is even.
We introduce the function f : V →

[
−p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

2
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f
(
v
(k)
i

)
= i+ n(k+1)

4
; 1 ≤ i ≤ n

2
& 1 ≤ k ≤ m, where k is odd,

f
(
v
(k+1)
i

)
= −

[
i+ n(k+1)

4

]
; 1 ≤ i ≤ n

2
& 1 ≤ k ≤ m, where k is odd.

Type 3: If m is odd and n = 4t− 1, t ∈ N then p is even.
We introduce the function f : V →

[
−p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+1

2
; 1 ≤ i ≤ n−1

2
,

i− n−1
2

; n−1
2

< i ≤ n,

f
(
v
(1)
i

)
=

{
i− 3(n+1)

4
; 1 ≤ i ≤ n+1

4
,

i+ n+1
4

; n+1
4

< i ≤ n−1
2
,

f
(
v
(k)
i

)
= −

[
i+ (n−1)(k+1)+2

4

]
; 1 ≤ i ≤ n−1

2
& 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ (n−1)(k+1)+2

4
; 1 ≤ i ≤ n−1

2
& 1 ≤ k ≤ m, where k is even.

Type 4: If m is odd and n = 4t, t ∈ N then p is even.
We introduce the function f : V →

[
−p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

f
(
v
(1)
i

)
=

{
i− 3n+4

4
; 1 ≤ i ≤ n

4
,

i+ n
4

; n
4
< i ≤ n

2
,

f
(
v
(k)
i

)
= −

[
i+ n(k+1)

4

]
; 1 ≤ i ≤ n

2
& 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ n(k+1)

4
; 1 ≤ i ≤ n

2
& 1 ≤ k ≤ m, where k is even.

Type 5: If m is odd and n = 4t+ 1, t ∈ N then p is odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
= i− n+1

2
; 1 ≤ i ≤ n,

f
(
v
(1)
i

)
=

{
i− 3n+1

4
; 1 ≤ i ≤ n−1

4
,

i+ n−1
4

; n−1
4

< i ≤ n−1
2
,

f
(
v
(k)
i

)
= −

[
i+ (n−1)(k+1)

4

]
; 1 ≤ i ≤ n−1

2
& 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ (n−1)(k+1)

4
; 1 ≤ i ≤ n−1

2
& 1 ≤ k ≤ m, where k is even.

Type 6: If m is odd and n = 4t+ 2, t ∈ N then p is odd.
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We introduce the function f : V →
[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

f
(
v
(1)
i

)
=


i− 3n+2

4
; 1 ≤ i < n+2

4
,

0 ; i = n+2
4
,

i+ n−2
4

; n+2
4

< i ≤ n
2
,

f
(
v
(k)
i

)
= −

[
i+ n(k+1)−2

4

]
; 1 ≤ i ≤ n

2
& 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ n(k+1)−2

4
; 1 ≤ i ≤ n

2
& 1 ≤ k ≤ m, where k is even.

Table 1. Edge condition for mATn

Sr. No. m n p Edge condition
1

m is even
n is odd p is odd ef

(
0
)
= (m+1)(n−1)

2
; ef

(
1
)
= (m+1)(n−1)

2

2 n is even p is even ef
(
0
)
=

⌊n(m+1)−1
2

⌋
; ef

(
1
)
=

⌈n(m+1)−1
2

⌉
3

m is odd

n = 4t− 1, t ∈ N p is even
ef
(
0
)
= (m+1)(n−1)

2
; ef

(
1
)
= (m+1)(n−1)

24 n = 4t+ 1, t ∈ N p is odd
5 n = 4t, t ∈ N p is even

ef
(
0
)
=
⌊n(m+1)−1

2

⌋
; ef

(
1
)
=
⌈n(m+1)−1

2

⌉
6 n = 4t+ 2, t ∈ N p is odd

So, we get
∣∣ef (0)− ef (1)

∣∣ ≤ 1 in each case.

Hence, m-Alternate triangular snake graph mATn is integer cordial. ■

Theorem 2.2.

An alternate quadrilateral snake graph AQn is integer cordial graph, for n ≥ 3.

Proof:

Consider u1, u2, . . . , un are n vertices of the path Pn and joining u2i−1 and u2i via new vertices
v
(1)
2i−1 and v

(1)
2i , for 1 ≤ i ≤

⌊
n
2

⌋
. So, the total number of vertices in AQn = p = 2n− 1 or 2n, if n

is odd or n is even, respectively.

There are two different types related to the values of n.

Type 1: If n is odd, p is also odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
= i− n+1

2
; 1 ≤ i ≤ n,

4
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f
(
v
(1)
i

)
=

{
i− n ; 1 ≤ i ≤ n−1

2
,

i ; n−1
2

< i ≤ (n− 1).

Type 2: If n is even, p is also even.
We introduce the function f : V →

[
−p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i ; 1 ≤ i ≤ n

2
,

i− (n+ 1) ; n
2
< i ≤ n,

f
(
v
(1)
i

)
=

{
−i+ (n+ 1) ; 1 ≤ i ≤ n

2
,

i− 3n+2
2

; n
2
< i ≤ n.

Table 2. Edge condition for AQn

Sr. No. n p Edge condition
1 n is odd p is odd ef

(
0
)
=

⌊5(n−1)
4

⌋
; ef

(
1
)
=

⌈
5(n−1)

4

⌉
2 n is even p is even ef

(
0
)
=

⌊
5n−2

4

⌋
; ef

(
1
)
=

⌈
5n−2

4

⌉
So, we get

∣∣ef (0)− ef (1)
∣∣ ≤ 1 in each case.

Hence, Alternate quadrilateral snake graph AQn is integer cordial. ■

Theorem 2.3.

The m-Alternate quadrilateral snake graph mAQn is integer cordial graph, for m ≥ 2 & n ≥ 3.

Proof:

Consider u1, u2, . . . , un are n vertices of the path Pn and joining u2i−1 and u2i via new vertices
v
(k)
2i−1 and v

(k)
2i , for 1 ≤ i ≤

⌊
n
2

⌋
& 1 ≤ k ≤ m. So, the total number of vertices in mAQn = p =

n(m+ 1)−m or n(m+ 1), if n is odd or n is even, respectively.

There are four different types related to the values of m and n.

Type 1: If m is even and n is odd, p is odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
= i− n+1

2
; 1 ≤ i ≤ n,

f
(
v
(k)
i

)
= i+ k(n−1)

2
; 1 ≤ i ≤ (n− 1) & 1 ≤ k ≤ m, where k is odd,

f
(
v
(k+1)
i

)
= −

[
i+ k(n−1)

2

]
; 1 ≤ i ≤ (n− 1) & 1 ≤ k ≤ m, where k is odd.

Type 2: If m and n both are even, p is even.
We introduce the function f : V →

[
−p

2
, ..., p

2

]∗ as follows:

5
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f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

f
(
v
(k)
i

)
= i+ kn

2
; 1 ≤ i ≤ n & 1 ≤ k ≤ m, where k is odd,

f
(
v
(k+1)
i

)
= −

[
i+ kn

2

]
; 1 ≤ i ≤ n & 1 ≤ k ≤ m, where k is odd.

Type 3: If m and n are odd, p is odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
= i− n+1

2
; 1 ≤ i ≤ n,

f
(
v
(1)
i

)
=

{
i− n ; 1 ≤ i ≤ n−1

2
,

i ; n−1
2

< i ≤ (n− 1),

f
(
v
(k)
i

)
= −

[
i+ k(n−1)

2

]
; 1 ≤ i ≤ (n− 1) & 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ k(n−1)

2
; 1 ≤ i ≤ (n− 1) & 1 ≤ k ≤ m, where k is even.

Type 4: If m is odd and n is even, p is even.
We introduce the function f : V →

[
−p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i ; 1 ≤ i ≤ n

2
,

i− (n+ 1) ; n
2
< i ≤ n,

f
(
v
(1)
i

)
=

{
−i+ (n+ 1) ; 1 ≤ i ≤ n

2
,

i− 3n+2
2

; n
2
< i ≤ n,

f
(
v
(k)
i

)
= −

[
i+ kn

2

]
; 1 ≤ i ≤ n & 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ kn

2
; 1 ≤ i ≤ n & 1 ≤ k ≤ m, where k is even.

Table 3. Edge condition for mAQn

Sr. No. m n p Edge condition
1

m ∈ N & m ≥ 2
n is odd p is odd ef

(
0
)
=

⌊ (n−1)(3m+2)
4

⌋
; ef

(
1
)
=

⌈ (n−1)(3m+2)
4

⌉
2 n is even p is even ef

(
0
)
=

⌊n(3m+2)−2
4

⌋
; ef

(
1
)
=

⌈n(3m+2)−2
4

⌉
So, we get

∣∣ef (0)− ef (1)
∣∣ ≤ 1 in each case.

Hence, m-Alternate quadrilateral snake graph mAQn is integer cordial. ■

6
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Theorem 2.4.

An alternate pentagonal snake graph APSn is integer cordial graph, for n ≥ 3.

Proof:

Consider u1, u2, . . . , un are n vertices of the path Pn and joining u2i−1 and u2i to new vertices
v
(1)
3i−2, v

(1)
3i−1 and v

(1)
3i , for 1 ≤ i ≤

⌊
n
2

⌋
. So, the total number of vertices in APSn = p = 5n−3

2
or 5n

2
,

if n is odd or n is even, respectively.

There are four different types related to the values of n.

Type 1: If n = 4t− 1, t ∈ N then p is even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+3

2
; 1 ≤ i ≤ n+1

2
,

i− n+1
2

; n+1
2

< i ≤ n,

f
(
v
(1)
i

)
=

{
i− 5n+1

4
; 1 ≤ i < 3n−1

4
,

i− n−3
4

; 3n−1
4

≤ i ≤ 3(n−1)
2

.

Type 2: If n = 4t+ 1, t ∈ N then p is odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
= i− n+1

2
; 1 ≤ i ≤ n,

f
(
v
(1)
i

)
=

{
i− 5n−1

4
; 1 ≤ i ≤ 3(n−1)

4
,

i− n−1
4

; 3(n−1)
4

< i ≤ 3(n−1)
2

.

Type 3: If n = 4t, t ∈ N then p is even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

f
(
v
(1)
i

)
=

{
i− 5n+4

4
; 1 ≤ i ≤ 3n

4
,

i− n
4

; 3n
4
< i ≤ 3n

2
.

Type 4: If n = 4t+ 2, t ∈ N then p is odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

7
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f
(
v
(1)
i

)
=


i− 5n+2

4
; 1 ≤ i < 3n+2

4
,

0 ; i = 3n+2
4

,

i− n+2
4

; 3n+2
4

< i ≤ 3n
2
.

Table 4. Edge condition for APSn

Sr. No. n p Edge condition
1 n = 4t− 1, t ∈ N p is even

ef
(
0
)
= 3(n−1)

2
; ef

(
1
)
= 3(n−1)

22 n = 4t+ 1, t ∈ N p is odd
3 n = 4t, t ∈ N p is even

ef
(
0
)
=

⌊
3n−1

2

⌋
; ef

(
1
)
=

⌈
3n−1

2

⌉
4 n = 4t+ 2, t ∈ N p is odd

So, we get
∣∣ef (0)− ef (1)

∣∣ ≤ 1 in each case.

Hence, Alternate pentagonal snake graph APSn is integer cordial. ■

Theorem 2.5.

The m-Alternate pentagonal snake graph mAPSn is integer cordial graph, for m ≥ 2 & n ≥ 3.

Proof:

Consider u1, u2, . . . , un are n vertices of the path Pn and joining u2i−1 and u2i to new vertices
v
(k)
3i−2, v

(k)
3i−1 and v

(k)
3i , for 1 ≤ i ≤

⌊
n
2

⌋
& 1 ≤ k ≤ m. So, the total number of vertices in mAPSn =

p = (n−1)(3m+2)+2
2

or n(3m+2)
2

, if n is odd or n is even, respectively.

There are six different types related to the values of m & n.

Type 1: If m is even and n is odd, p is odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
= i− n+1

2
; 1 ≤ i ≤ n,

f
(
v
(k)
i

)
= i+ (n−1)(3k−1)

4
; 1 ≤ i ≤ 3(n−1)

2
& 1 ≤ k ≤ m, where k is odd,

f
(
v
(k+1)
i

)
= −

[
i+ (n−1)(3k−1)

4

]
; 1 ≤ i ≤ 3(n−1)

2
& 1 ≤ k ≤ m, where k is odd.

Type 2: If m and n both are even, p is also even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

f
(
v
(k)
i

)
= i+ n(3k−1)

4
; 1 ≤ i ≤ 3n

2
& 1 ≤ k ≤ m, where k is odd,

f
(
v
(k+1)
i

)
= −

[
i+ n(3k−1)

4

]
; 1 ≤ i ≤ 3n

2
& 1 ≤ k ≤ m, where k is odd.

8
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Type 3: If m is odd and n = 4t− 1, t ∈ N, p is even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+3

2
; 1 ≤ i ≤ n+1

2
,

i− n+1
2

; n+1
2

< i ≤ n,

f
(
v
(1)
i

)
=

{
i− 5n+1

4
; 1 ≤ i ≤ 3n−5

4
,

i− n−3
4

; 3n−5
4

< i ≤ 3(n−1)
2

,

f
(
v
(k)
i

)
= −

[
i+ (n−1)(3k−1)+2

4

]
; 1 ≤ i ≤ 3(n−1)

2
& 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ (n−1)(3k−1)+2

4
; 1 ≤ i ≤ 3(n−1)

2
& 1 ≤ k ≤ m, where k is even.

Type 4: If m is odd and n = 4t, t ∈ N, p is even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

f
(
v
(1)
i

)
=

{
i− 5n+4

4
; 1 ≤ i ≤ 3n

4
,

i− n
4

; 3n
4
< i ≤ 3n

2
,

f
(
v
(k)
i

)
= −

[
i+ n(3k−1)

4

]
; 1 ≤ i ≤ 3n

2
& 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ n(3k−1)

4
; 1 ≤ i ≤ 3n

2
& 1 ≤ k ≤ m, where k is even.

Type 5: If m is odd and n = 4t+ 1, t ∈ N, p is odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
= i− n+1

2
; 1 ≤ i ≤ n,

f
(
v
(1)
i

)
=

{
i− 5n−1

4
; 1 ≤ i ≤ 3(n−1)

4
,

i− n−1
4

; 3(n−1)
4

< i ≤ 3(n−1)
2

,

f
(
v
(k)
i

)
= −

[
i+ (n−1)(3k−1)

4

]
; 1 ≤ i ≤ 3(n−1)

2
& 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ (n−1)(3k−1)

4
; 1 ≤ i ≤ 3(n−1)

2
& 1 ≤ k ≤ m, where k is even.

Type 6: If m is odd and n = 4t+ 2, t ∈ N, p is odd.
We introduce the function f : V →

[
−
⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,
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f
(
v
(1)
i

)
=


i− 5n+2

4
; 1 ≤ i < 3n+2

4
,

0 ; i = 3n+2
4

,

i− n+2
4

; 3n+2
4

< i ≤ 3n
2
,

f
(
v
(k)
i

)
= −

[
i+ n(3k−1)−2

4

]
; 1 ≤ i ≤ 3n

2
& 1 ≤ k ≤ m, where k is even,

f
(
v
(k+1)
i

)
= i+ n(3k−1)−2

4
; 1 ≤ i ≤ 3n

2
& 1 ≤ k ≤ m, where k is even.

Table 5. Edge condition for mAPSn

Sr. No. m n p Edge condition
1

m is even
n is odd p is odd ef

(
0
)
= (2m+1)(n−1)

2
; ef

(
1
)
= (2m+1)(n−1)

2

2 n is even p is even ef
(
0
)
=

⌊n(2m+1)−1
2

⌋
; ef

(
1
)
=

⌈n(2m+1)−1
2

⌉
3

m is odd

n = 4t− 1, t ∈ N p is even
ef
(
0
)
= (2m+1)(n−1)

2
; ef

(
1
)
= (2m+1)(n−1)

24 n = 4t+ 1, t ∈ N p is odd
5 n = 4t, t ∈ N p is even

ef
(
0
)
=

⌊ (2m+1)(n−1)
2

⌋
; ef

(
1
)
=

⌈ (2m+1)(n−1)
2

⌉
6 n = 4t+ 2, t ∈ N p is odd

So, we get
∣∣ef (0)− ef (1)

∣∣ ≤ 1 in each case.

Hence, m-Alternate pentagonal snake graph mAPSn is integer cordial. ■

Theorem 2.6.

Irregular triangular snake graph ITn is integer cordial graph, for n ≥ 4.

Proof:

Consider u1, u2, . . . , un are the n vertices of the path Pn and joining ui and ui+2 to a new vertex
v
(1)
i , for 1 ≤ i ≤ (n− 2). So, the total number of vertices in ITn = p = 2(n− 1).

There are two different types for the values of n.

Type 1: If n is odd, p is even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
−i ; 1 ≤ i ≤ n+1

2
,

i− n+1
2

; n+1
2

< i ≤ n,

f
(
v
(1)
i

)
=

{
−[i+ n+1

2
] ; 1 ≤ i ≤ n−3

2
,

i+ 1 ; n−3
2

< i ≤ (n− 2).

Type 2: If n is even, p is also even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

10
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f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

f
(
v
(1)
i

)
=

{
i− n ; 1 ≤ i ≤ n−2

2
,

i+ 1 ; n−2
2

< i ≤ (n− 2).

Table 6. Edge condition for ITn

Sr. No. n p Edge condition
1 n is odd

p is even ef
(
0
)
=

⌊
3n−5

2

⌋
; ef

(
1
)
=

⌈
3n−5

2

⌉
2 n is even

So, we get
∣∣ef (0)− ef (1)

∣∣ ≤ 1 in each case.

Hence, Irregular triangular snake graph ITn is integer cordial. ■

Theorem 2.7.

Irregular quadrilateral snake graph IQn is integer cordial graph, for n ≥ 4.

Proof:

Consider u1, u2, . . . , un are the n vertices of the path Pn and joining ui and ui+2 to a new vertices
v
(1)
2i−1 and v

(1)
2i , for 1 ≤ i ≤ (n− 2). So, the total number of vertices in IQn = p = 3n− 4.

There are two different types for the values of n.

Type 1: If n is odd, p is also odd.
We introduce the function f : V →

[
−

⌊
p
2

⌋
, ...,

⌊
p
2

⌋]
as follows:

f
(
ui

)
= i− n+1

2
; 1 ≤ i ≤ n,

f
(
v
(1)
i

)
=

{
i− 3(n−1)

2
; 1 ≤ i ≤ (n− 2),

i− n−3
2

; (n− 2) < i ≤ 2(n− 2).

Type 2: If n is even, p is also even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

f
(
v
(1)
i

)
=

{
i− 3n−2

2
; 1 ≤ i ≤ (n− 2),

i− n−4
2

; (n− 2) < i ≤ 2(n− 2).

So, we get
∣∣ef (0)− ef (1)

∣∣ ≤ 1 in each case.
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Table 7. Edge condition for IQn

Sr. No. n p Edge condition
1 n is odd p is odd

ef
(
0
)
=

⌊
4n−7

2

⌋
; ef

(
1
)
=

⌈
4n−7

2

⌉
2 n is even p is even

Hence, Irregular quadrilateral snake graph IQn is integer cordial. ■

Theorem 2.8.

Irregular pentagonal snake graph IPSn is integer cordial graph, for n ≥ 4.

Proof:

Consider u1, u2, . . . , un are the n vertices of the path Pn and joining ui and ui+2 to the new vertices
v
(1)
3i−2, v

(1)
3i−1 and v

(1)
3i , for 1 ≤ i ≤ (n− 2). So, the total number of vertices in IPSn = p =

2(2n− 3).

There are two different types for the values of n.

Type 1: If n is odd, p is even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+3

2
; 1 ≤ i ≤ n+1

2
,

i− n+1
2

; n+1
2

< i ≤ n,

f
(
v
(1)
i

)
=

{
−
[
i+ n+1

2

]
; 1 ≤ i ≤ 3n−7

2
,

i− (n− 3) ; 3n−7
2

< i ≤ 3(n− 2).

Type 2: If n is even, p is also even.
We introduce the function f : V →

[
− p

2
, ..., p

2

]∗ as follows:

f
(
ui

)
=

{
i− n+2

2
; 1 ≤ i ≤ n

2
,

i− n
2

; n
2
< i ≤ n,

f
(
v
(1)
i

)
=

{
−[i+ n

2
] ; 1 ≤ i ≤ 3(n−2)

2
,

i− (n− 3) ; 3(n−2)
2

< i ≤ 3(n− 2).

Table 8. Edge condition for IPSn

Sr. No. n p Edge condition
1 n is odd

p is even ef
(
0
)
=

⌊
5n−9

2

⌋
; ef

(
1
)
=

⌈
5n−9

2

⌉
2 n is even

So, we get
∣∣ef (0)− ef (1)

∣∣ ≤ 1 in each case.

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 17 [2022], Iss. 3, Art. 5

https://digitalcommons.pvamu.edu/aam/vol17/iss3/5



AAM: Special Issue No. 10 (October 2022) 71

Hence, Irregular pentagonal snake graph IPSn is integer cordial. ■

3. Conclusion

This paper concluded that m-Alternate triangular snake graph, Alternate quadrilateral snake graph,
m-Alternate quadrilateral snake graph, Alternate pentagonal snake graph, m-Alternate pentagonal
snake graph, Irregular triangular snake graph, Irregular quadrilateral snake graph, and Irregular
pentagonal snake graph are integer cordial graphs.
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