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Abstract

This manuscript investigates a broad class of second-order stochastic differential inclusions con-
sisting of infinite delay and non-instantaneous impulses in a Hilbert space setting. We first for-
mulate a new collection of sufficient conditions that ensure the approximate controllability of the
considered system. Next, to investigate our main findings, we utilize stochastic analysis, the fun-
damental solution, resolvent condition, and Dhage’s fixed point theorem for multi-valued maps.
Finally, an application is presented to demonstrate the effectiveness of the obtained results.
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1. Introduction

Numerous evolution processes in ecology, physics and population dynamics, among others, ex-
perience unexpected changes in their states at precise moments, and these abrupt changes are
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2 S. Yadav and S. Kumar

characterized as impulses (Gao et al. (2006)). Recently, the theory of non-instantaneous impulses
(NIIs) has become a significant area of investigation (see Agarwal et al. (2017), Kumar and Abdal
(2021), Kumar et al. (2017), and the references therein).

Controllability is a qualitative attribute of dynamical systems and its systematic study was ini-
tiated by Kalman et al. (1963). Post this seminal work various controllability results have been
established extensively for both finite and infinite-dimensional spaces. However, Triggiani (1977)
established that a differential equation (DE) is not exactly controllable if the semigroup or the as-
sociated control operator is compact in an infinite-dimensional space. Therefore, the approximate
controllability of DEs has become an attractive area of research (see Kavitha et al. (2020), Mahmu-
dov (2003), and Yan and Lu (2017)). Further, differential systems based on pragmatic principles
in various fields of control theory, biology, finance, and many more, have either discontinuous or
multi-valued maps in their expression. These systems are termed as differential inclusions (DIs).

It is well comprehended that noises or stochastic distresses are omnipresent and cannot be avoided
while modelling real-life phenomena. To capture the dynamics of such systems, stochastic dif-
ferential equations (SDEs) are appropriated. In the last few decades, SDEs involving the Wiener
process have been studied by several researchers (Da Prato and Zabczyk (1992), Dineshkumar et
al. (2021), Vijayakumar et al. (2020), Yan and Lu (2017)). On the other hand, the basic technique
to handle the abstract deterministic second-order DEs, is administered by the theory of strongly
continuous cosine family (Fattorini (1985), Travis and Webb (1978)). The approximate controlla-
bility of second-order delayed systems has been investigated by several researchers using various
approaches, one can refer to Chalishajar (2012), Arora and Sukavanam (2016), Su and Fu (2018),
and the references cited there. However, very little research has been done on delayed second order
SDIs.

Various techniques are employed by the researchers to handle the approximate controllability
of semilinear DEs, such as range condition, and resolvent condition, among others. The range
condition approach was proposed by Naito (1987) and it was operated by numerous authors to
analyze the approximate controllability results (see Muthukumar and Balasubramaniam (2009),
and Palanisamy and Chinnathambi (2015), among others). However, it is strenuous to verify
such a range condition for infinite-delayed DEs. Further, the resolvent approach was proposed
by Bashirov and Mahmudov (1999) and extensively utilized by many other authors (see Arora
and Sukavanam (2016), Su and Fu (2018) and the references cited there). No doubt the resolvent
technique is easier to apply in concrete systems but the prerequisite condition to use this approach
is that the nonlinear terms must be uniformly bounded.

However, in our considered system, the nonlinear functions are partly uniformly bounded and such
systems can be found in various applied areas like heat conduction models with fading memory.
Therefore, the theory of the cosine family together with the resolvent condition is not enough to
prove the results. Thus, to tackle the obstacle, we use the theory of the fundamental solution asso-
ciated with a second-order linear system. Moreover, the theory of fundamental solution has been
used by many researchers (see Kumar and Yadav (2021), Liu (2009), and Su and Fu (2018), among
others). To the best of our knowledge, the approximate controllability for second-order infinite-
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delayed SDIs with non-instantaneous impulses is an untouched topic so far. The primary aim of
this article is to refill this existing crack and we believe it will further open some research questions
for investigation. This fact is the novelty of our work. Also, our findings in this manuscript extend
and generalize existing works of Arora and Sukavanam (2016) and Su and Fu (2018).

2. Main results

The purpose of this manuscript is to establish the solvability and approximate controllability of the
following infinite-delayed second-order SDIs:

dξ′(t) ∈ [Aξ(t) + L(ξt) + f(t, ξt) +Bν(t)] dt+G(t, ξt)dW (t),

t ∈
k⋃

j=0

(pj, qj+1] ⊂ J = [0, a],

ξ(t) = I1
j (t, ξq−j ), ξ

′(t) = I2
j (t, ξq−j ), t ∈

k⋃
j=1

(qj, pj],

ξ0 = Θ ∈ G, ξ′(0) = z0 ∈ E ,

(1)

where ξ(·) is an E -valued stochastic process and E is a separable Hilbert space; the control ν(·) ∈
LF
2(J ,V ) , where V is another Hilbert space; the K -valued Wiener process W (t) is defined on a

probability space (Ω,F, {Ft}t≥0;P), where K is a separable Hilbert space with norm ∥ · ∥K . Let
0 = p0 = q0 < q1 < p1 < q2 < · · · < qk < pk < qk+1 = a < ∞ and L(K ,E ) stand for the
space of all bounded linear operators from K into E . The histories ξt : (−∞, 0] → E , given by
ξt(κ) = ξ(t + κ) for κ ≤ 0, belong to the phase space G, and L : G → E and B : V → E are
bounded linear operators. Suppose A : D(A) ⊂ E → E generates a strongly continuous cosine
family {C(t)}t∈R. The suitable conditions for the mappings f , G, I1

j and I2
j are to be described

later. The F0-adapted process Θ, having finite second moment, is independent of W.

Let the Wiener processW be defined on (Ω,F, {Ft}t≥0;P), having increasing, right continuous fil-
tration {Ft}t≥0, Fa = F and F0 incorporates all P-null sets. Also, W (t) has self-adjoint covariance
operator Q ∈ L(K ), with Tr(Q) < ∞. Further, suppose that there exists a bounded sequence
{λi ≥ 0}i∈N and a complete orthonormal basis {zi}i∈N ⊆ K such that Qzi = λizi for all i ∈ N
and Tr(Q) =

∑∞
i=1 λi. Then, set W (t) =

∑∞
i=1

√
λiαi(t)zi, t ≥ 0, for a collection of mutually

independent Wiener processes {αi(·)}i∈N.

Let LQ ≡ LQ(Q
1/2K ,E ) stand for the space all Q-Hilbert–Schmidt operators from Q1/2K to

E and be a separable Hilbert space equipped with the norm ∥ · ∥LQ
=

∑∞
i=1 ∥

√
λiζzi∥2 < ∞.

Further, let L2(Ω,E ) ≡ L2(Ω,F,P,E ) symbolize the Banach space of all strongly measurable,
square-integrable, E -valued stochastic processes.

In what follows, C(J ,L2(Ω,E )) represents the Banach space of all continuous functions from
J into L2(Ω,E ) with the property that supt∈J E∥ξ(t)∥2 < ∞. Further, let LF

2(J ,E ) denote the
closed subspace of L2(J × Ω,E ) having Ft-adapted processes and L0

2(Ω,G) be a subspace of
L2(Ω,G) comprising F0-measurable functions. Define the set

PC(J ,E ) = {ξ : J → E : ξ ∈ C((qj, qj+1]), ξ(q
−
j ) = ξ(qj) and ξ(q+j ) exist for 0 ≤ j ≤ k}.
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4 S. Yadav and S. Kumar

Clearly, (PC(J ,E ), ∥ · ∥PC) is a Banach space with ∥ξ∥PC = supη∈J (E∥ξ(η)∥2)1/2.

Let G be the linear space of all E -valued F0-measurable functions on (−∞, 0] with seminorm ∥·∥G
and satisfy the below axioms (Hale and Kato (1978), Hino et al. (1991)):

(A1) If ξ : (−∞, γ + λ] → E (γ ≥ 0 and λ > 0) is such that ξ|[γ,γ+λ] ∈ PC([γ, γ + λ],E ) and
ξγ ∈ G, then for every t ∈ [γ, γ + λ], we have

(i) ξt ∈ G;
(ii) for constant K0 ≥ 0, ∥ξ(t)∥ ≤ K0∥ξt∥G;

(iii) ∥ξt∥G ≤ Γ(t − γ) sup{∥ξ(η)∥ : γ ≤ η ≤ t} + M(t − γ)∥ξγ∥G , where Γ and M
map [0,∞) into [0,∞), and all K0, Γ(·), M(·) are independent of ξ(·). Also, Γ(·) is
continuous and M(·) is locally bounded.

(A2) The space G is complete.

Define PCa = {ξ : (−∞, a] → E such that ξ0 = Θ ∈ G and ξ|J ∈ PC(J ,E )}, and the map
∥ · ∥PCa

defined by ∥ξ∥PCa
= ∥Θ∥G + sup0≤η≤a(E∥ξ(η)∥2)

1

2 is a seminorm on PCa.

The following notations are utilized for further development: P(E ) = {U ∈ 2E : U ̸= ∅},
Pcl(E ) = {U ∈ P(E ) : U is closed}, Pcv(E ) = {U ∈ P(E ) : U is convex}, Pbd(E ) = {U ∈
P(E ) : U is bounded}, Pcp(E ) = {U ∈ P(E ) : U is compact}, M∗ = supη∈J M(η) and Γ∗ =
supη∈J Γ(η).

To acquire the desired results, we need the following assumptions:

(R1) Let {S(t)}t∈R ⊂ L(E ) be the sine family associated with {C(t)}t∈R, and for all t ∈ J , there
exist N1, N2 > 0 such that ∥C(t)∥2 ≤ N1 and ∥S(t)∥2 ≤ N2. Also, S(t) is compact for
t > 0.

(R2) For some l0 > 0, ∥L∥2 ≤ l0 and let NB = ∥B∥2.
(R3) The map f : H̃0 × G → E , H̃0 =

⋃k
j=0[pj, qj+1] is measurable and f(t, ·) : G → E is

continuous for all t ∈ H̃0. Also, there exists M1 > 0 such that for t ∈ H̃0 and φ ∈ G,

E∥f(t, φ)∥2 ≤M1(1 + ∥φ∥2G).

(R4) The multi-valued function G : H̃0 × G → Pbd,cl,cv(L(K ,E )) is L2-Carathéodory and it
satisfies the following:

(i) for φ ∈ G, NG,φ = {g ∈ L2(H̃0,L(K ,E )) : g(t) ∈ G(t, φ) for a.e. t ∈ H̃0} ̸= ∅;
(ii) there exist a nondecreasing continuous positive valued map Ξ on [0,∞) and a function

ρg ∈ L2(J ,R+) such that for t ∈ H̃0 and φ ∈ G,

E∥G(t, φ)∥2 = sup{E∥g1∥2 : g1 ∈ G(t, φ)} ≤ ρg(t)Ξ(∥φ∥2G);

(iii) the following inequality holds:∫ ∞

K∗
13

1

η + Ξ(η)
dη = ∞, where K∗

13 is specified later.

4
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(R5) The maps I i
j : Hj × G → E , Hj = [qj, pj] are continuous and there exist Ri

j > 0 such that
for all t ∈ Hj, 1 ≤ j ≤ k, and φ1, φ2 ∈ G, the following hold:

E∥I i
j(t, φ1)− I i

j(t, φ2)∥2 ≤ Ri
j∥φ1 − φ2∥2G, E∥I i

j(t, φ1)∥2 ≤ Ri
j(1 + ∥φ1∥2G), i = 1, 2.

(R6) For 1 ≤ j ≤ k, the functions I1
j : Hj × G → E are completely continuous and there exist

constants R
i

j such that for all φ ∈ G and t ∈ Hj , E∥I i
j(t, φ)∥2 ≤ R

i

j, i = 1, 2.

The fundamental solution Q(·) ∈ L(E ) of the following linear system{
d2

dt2
ξ(t) = Aξ(t) + L(ξt), t > 0,

ξ0 = Θ, ξ′(0) = z0, t ≤ 0,

is an operator valued function and is defined by

Q(t) =

{
S(t) +

∫ t

0
S(t− η)L(Qη)dη, t ≥ 0,

0, t < 0,

where Qt(κ) = Q(t + κ), κ ≤ 0 (see Su and Fu (2020)). Also, for Q(t), t ∈ R, the following
hold (Su and Fu (2020)):

(i) {Q(t)}t∈R ∈ L(E ) is strongly continuous and satisfies that ∥Q(t)∥2 ≤ N∗eθt, t ≥ 0, where
N∗ > 1 and θ ∈ R. Also, there exists N ≥ 1 such that for all t ∈ J , ∥Q(t)∥2 ≤ N.

(ii) If {S(t)}t>0 is compact, then {Q(t)}t>0 is compact.
(iii) For all z ∈ E and t ≥ 0, the map Q(·)z is continuously differentiable. Moreover, forN1 ≥ 1,

∥Q′(t)∥2 ≤ N1 for all t ∈ J .
(iv) Q(t) is uniformly continuous on J .

Definition 2.1.

A stochastic process ξ : (−∞, a]× Ω → E is referred to be a mild solution of the system (1) if

(i) ξ(t,ϖ) is measurable on J × Ω and ξ(t) is Ft-adapted with E∥ξ(t)∥2 <∞;
(ii) for t ∈ J , ξt is G-valued stochastic variable, and ξ|J ∈ PC(J ,E );

(iii) for ν ∈ LF
2(J ,V ), the following equation:

ξ(t) =



Θ(t), t ∈ (−∞, 0],
Q′(t)Θ(0) + Q(t)z0 +

∫ t

0
Q(t− η)

[
L(Θ̃η) + f(η, ξη) +Bν(η)

]
dη

+
∫ t

0
Q(t− η)g(η)dW (η), t ∈ [0, q1],

I1
j (t, ξq−j ), t ∈ (qj, pj+1], 1 ≤ j ≤ k,

Q′(t− pj)I1
j (pj, ξq−j ) + Q(t− pj)I2

j (pj, ξq−j )

+
∫ t

pj
Q(t− η)

[
L(Θ̃η) + f(η, ξη)

]
dη +

∫ t

pj
Q(t− η)Bν(η)dη

+
∫ t

pj
Q(t− η)g(η)dW (η), t ∈ (pj, qj+1], 1 ≤ j ≤ k,

(2)

is satisfied, where g ∈ NG,ξ, and the map Θ̃(·) is given by

Θ̃(τ) =

{
Θ(τ), τ ≤ 0,
0, τ > 0.

5
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6 S. Yadav and S. Kumar

Now, for β > 0 and s ∈ [pj, qj+1), 0 ≤ j ≤ k, define

Υqj+1

s =

∫ qj+1

s

Q(qj+1 − η)BB∗Q∗(qj+1 − η)dη, and R(β,Υqj+1

s ) = (βI +Υqj+1

s )−1,

where Q∗ and B∗ are adjoint operators of Q and B, respectively. Evidently, Υqj+1

s is a positive
operator. Hence, R(β,Υ

qj+1

s ) is well defined.

(R7) The operator βR(β,Υ
qj+1

pj ) → 0 as β → 0+ in the strong operator topology.

Now, for any ξqj+1 ∈ E , β > 0, and t ∈ (pj, qj+1], define the control function

νβξ (t) =B
∗Q∗(qj+1 − t)R(β,Υqj+1

pj
)

×
[
Eξqj+1 − Q′(qj+1 − pj)I1

j (pj, ξq−j )− Q(qj+1 − pj)I2
j (pj, ξq−j )

]
−B∗Q∗(qj+1 − t)

[ ∫ t

pj

R(β,Υqj+1

η )Q(qj+1 − η)
[
L(Θ̃η) + f(η, ξη)

]
dη

+

∫ t

pj

R(β,Υqj+1

η )
[
Q(qj+1 − η)g(η)− ψj(η)

]
dW (η)

]
, 0 ≤ j ≤ k, (3)

where I1
0 (0, ·) = Θ(0), I2

0 (0, ·) = z0, g ∈ NG,ξ and ψj ∈ LF
2(Ω,L2(pj, qj+1,LQ)) such that

ξqj+1 = Eξqj+1 +
∫ qj+1

pj
ψj(η)dW (η), 0 ≤ j ≤ k (Dauer and Mahmudov (2004)).

Theorem 2.1.

Suppose that (R1)-(R5) hold. If Θ ∈ G and z0 ∈ L2(Ω,E ), then there is a mild solution for the
system (1), provided 1− 4Γ2

∗K
∗
10 > 0 and max1≤j≤k{R1

jΓ
2
∗, 2(N1R

1
j +NR2

j )Γ
2
∗} < 1.

Proof:

Define the operator Φ : PCa → 2PCa by Φξ, the collection of all σ ∈ PCa with the property that

σ(t) =



Θ(t), t ∈ (−∞, 0],

Q′(t)Θ(0) + Q(t)z0 +
∫ t

0
Q(t− η)

[
L(Θ̃η) + f(η, ξη) +Bνβξ (η)

]
dη

+
∫ t

0
Q(t− η)g(η)dW (η), t ∈ [0, q1],

I1
j (t, ξq−j ), t ∈ (qj, pj], 1 ≤ j ≤ k,

Q′(t− pj)I1
j (pj, ξq−j ) + Q(t− pj)I2

j (pj, ξq−j ) +
∫ t

pj
Q(t− η)

[
L(Θ̃η) + f(η, ξη)

]
dη

+
∫ t

pj
Q(t− η)Bνβξ (η)dη +

∫ t

pj
Q(t− η)g(η)dW (η), t ∈ (pj, qj+1], 1 ≤ j ≤ k,

where g ∈ NG,ξ and β > 0. Clearly, a fixed point of Φ will be a solution of (1). Further, let
u(·) : (−∞, a] → E be the map given as

u(t) =

{
Q′(t)Θ(0), t ∈ J ,
Θ(t), t ∈ (−∞, 0],

then u ∈ PCa. If ξ(·) is a solution of (1), break ξ(·) as ξ(t) = y(t) + u(t), t ∈ (−∞, a], which

6
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yields that ξt = yt + ut for t ∈ J and

y(t) =



0, t ∈ (−∞, 0],

Q(t)z0 +
∫ t

0
Q(t− η)

[
L(Θ̃η) + f(η, yη + uη) +Bνβy+u(η)

]
dη

+
∫ t

0
Q(t− η)g(η)dW (η), t ∈ [0, q1],

I1
j (t, yq−j + uq−j )− Q′(t)Θ(0), t ∈ (qj, pj], 1 ≤ j ≤ k,

Q′(t− pj)I1
j (pj, yq−j + uq−j ) + Q(t− pj)I2

j (pj, yq−j + uq−j )− Q′(t)Θ(0)

+
∫ t

pj
Q(t− η)L(Θ̃η)dη +

∫ t

pj
Q(t− η)

[
f(η, yη + uη) +Bνβy+u(η)

]
dη

+
∫ t

pj
Q(t− η)g(η)dW (η), t ∈ (pj, qj+1], 1 ≤ j ≤ k.

Consider the space PC0
a = {y ∈ PCa : y0 = 0 ∈ G} endowed with the norm

∥y∥PC0
a
= ∥y0∥G + sup

0≤η≤a
(E∥y(η)∥2)

1

2 = sup
0≤η≤a

(E∥y(η)∥2)
1

2 , y ∈ PC0
a.

Thus, (PC0
a, ∥ · ∥PC0

a
) is a Banach space. For d > 0, let PCB0

d = {y ∈ PC0
a : ∥y∥PC0

a
≤ d}.

For any y ∈ PCB0
d and t ∈ J , we extract

∥yt + ut∥2G ≤ 2
(
∥yt∥2G + ∥ut∥2G

)
≤ 4Γ2

∗(d
2 +N1K

2
0∥Θ∥2G) + 4M2

∗∥Θ∥2G = d1.

Further, define the multi-valued map Π : PC0
a → 2PC0

a given by Πy, the collection of all σ ∈ PC0
a

with the condition that for 1 ≤ j ≤ k,

σ(t) =



0, t ∈ (−∞, 0],

Q(t)z0 +
∫ t

0
Q(t− η)

[
L(Θ̃η) + f(η, yη + uη) +Bνβy+u(η)

]
dη

+
∫ t

0
Q(t− η)g(η)dW (η), t ∈ [0, q1],

I1
j (t, yq−j + uq−j )− Q′(t)Θ(0), t ∈ (qj, pj],

Q′(t− pj)I1
j (pj, yq−j + uq−j ) + Q(t− pj)I2

j (pj, yq−j + uq−j )− Q′(t)Θ(0)

+
∫ t

pj
Q(t− η)L(Θ̃η)dη +

∫ t

pj
Q(t− η)

[
f(η, yη + uη) +Bνβy+u(η)

]
dη

+
∫ t

pj
Q(t− η)g(η)dW (η), t ∈ (pj, qj+1].

Let Π = Π1 +Π2, where the operators Π1 and Π2 are given by

(Π1y)(t) =



0, t ∈ (−∞, 0],
Q(t)z0, t ∈ [0, q1],
I1
j (t, yq−j + uq−j )− Q′(t)Θ(0), t ∈ (qj, pj], 1 ≤ j ≤ k,

Q′(t− pj)I1
j (pj, yq−j + uq−j ) + Q(t− pj)I2

j (pj, yq−j + uq−j )

−Q′(t)Θ(0), t ∈ (pj, qj+1], 1 ≤ j ≤ k,

and Π2y is the collection of all σ ∈ PC0
a with the property that for 1 ≤ j ≤ k,

σ(t) =



0, t ∈ (−∞, 0],∫ t

0
Q(t− η)

[
L(Θ̃η) + f(η, yη + uη) +Bνβy+u(η)

]
dη

+
∫ t

0
Q(t− η)g(η)dW (η), t ∈ [0, q1],

0, t ∈ (qj, pj],∫ t

pj
Q(t− η)L(Θ̃η)dη +

∫ t

pj
Q(t− η)

[
f(η, yη + uη) +Bνβy+u(η)

]
dη

+
∫ t

pj
Q(t− η)g(η)dW (η), t ∈ (pj, qj+1].
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Therefore, the problem of solvability of (1) is reduced to show that Dhage’s fixed point theorem
for multi-valued can be applied for the operators Π1 and Π2.

Step 1. Π1 is a contraction map on PC0
a.

Let y1, y2 ∈ PC0
a. Then, using (R5), it follows that

∥Π1y
1 − Π1y

2∥2PC0
a
≤ R0∥y1 − y2∥2PC0

a
,

where R0 = max
1≤j≤k

{R1
jΓ

2
∗, 2(N1R

1
j +NR2

j )Γ
2
∗} < 1. Hence, Π1 is a contraction.

Step 2. For σ1, σ2 ∈ Π2y, ϱ ∈ [0, 1] and t ∈ (pj, qj+1], 0 ≤ j ≤ k, we extract

ϱσ1(t) + (1− ϱ)σ2(t)

=

∫ t

pj

Q(t− η)
[
L(Θ̃η) + f(η, yη + uη)

]
dη +

∫ t

pj

Q(t− η)(ϱg1(η) + (1− ϱ)g2(η))dW (η)

+

∫ t

pj

Q(t− η)BB∗Q∗(qj+1 − η)

[
R(β,Υqj+1

pj
)
[
Eξqj+1 − Q′(qj+1 − pj)I1

j (pj, yq−j + uq−j )

− Q(qj+1 − pj)I2
j (pj, yq−j + uq−j )

]
+

∫ η

pj

R(β,Υqj+1

τ )ψj(τ)dW (τ)−
∫ η

pj

R(β,Υqj+1

τ )Q(qj+1 − τ)
[
L(Θ̃τ ) + f(τ, yτ + uτ )

]
dτ

−
∫ η

pj

R(β,Υqj+1

τ )Q(qj+1 − τ)(ϱg1(τ) + (1− ϱ)g2(τ))dW (τ)

]
dη,

where I1
0 (0, ·) = Θ(0), I2

0 (0, ·) = z0 and g1, g2 ∈ NG,y+u. Evidently, convexity of the set NG,y+u

entails that the set Π2y is convex for each y ∈ PC0
a.

Step 3. For every PCB0
d ⊂ PC0

a, the set Π2PCB0
d is bounded.

Indeed, it is ample to prove that for each σ ∈ Π2y and y ∈ PCB0
d, ∥σ∥2PC0

a
≤ K for some K > 0.

First, for t ∈ [0, q1], we compute

E∥νβy+u(t)∥2 ≤
7NBN

β2

{
∥Eξq1∥2 +K2

0N1∥Θ∥2G +NE∥z0∥2 +
∫ q1

0

E∥ψ0(η)∥2LQ
dη

+ l0q
2
1NM

2
∗∥Θ∥2G + q21NM1(1 + d1) +N sup

τ∈[0,d1]

Ξ(τ 2)

∫ q1

0

ρg(η)dη

}
=Mν1 .

If σ ∈ Π2y, then for t ∈ [0, q1], we have

E∥σ(t)∥2 ≤4l0q
2
1NM

2
∗∥Θ∥2G + 4q21NM1(1 + d1) + 4q21NNBMν1

+ 4N sup
τ∈[0,d1]

Ξ(τ 2)

∫ q1

0

ρg(η)dη = K1.

Similarly, for t ∈ (pj, qj+1], 1 ≤ j ≤ k, we extract

E∥νβy+u(t)∥2 ≤
7NBN

β2

{
∥Eξqj+1∥2 +N1R

1
j (1 + d1) +NR2

j (1 + d1) +

∫ qj+1

pj

E∥ψj(η)∥2LQ
dη

+ l0q
2
j+1NM

2
∗∥Θ∥2G + q2j+1NM1(1 + d1) +N sup

τ∈[0,d1]

Ξ(τ 2)

∫ qj+1

pj

ρg(η)dη

}
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=Mνj+1 ,

and

E∥σ(t)∥2 ≤4l0q
2
j+1NM

2
∗∥Θ∥2G + 4q2j+1NM1(1 + d1) + 4q2j+1NNBMνj+1

+ 4N sup
τ∈[0,d1]

Ξ(τ 2)

∫ qj+1

pj

ρg(η)dη = Kj+1.

Take K = max
0≤j≤k

Kj+1. Thus, ∥σ∥2PC0
a
≤ K for all σ ∈ Π2y and y ∈ PCB0

d.

Step 4. The set {Π2y : y ∈ PCB0
d} is equicontinuous in PC0

a.
For y ∈ PCB0

d and σ ∈ Π2y, there is g ∈ NG,y+u such that for t ∈ (pj, qj+1], 0 ≤ j ≤ k,

σ(t) =

∫ t

pj

Q(t− η)
[
L(Θ̃η) + f(η, yη + uη) +Bνβy+u(η)

]
dη +

∫ t

pj

Q(t− η)g(η)dW (η).

Thus, for ϵ > 0 and pj < t1 < t2 ≤ qj+1, we have

E∥σ(t2)− σ(t1)∥2

≤12l0qj+1M
2
∗∥Θ∥2G

∫ t1−ϵ

pj

E∥Q(t2 − η)− Q(t1 − η)∥2dη + 12ϵl0M
2
∗∥Θ∥2G

∫ t1

t1−ϵ

E∥Q(t2 − η)

− Q(t1 − η)∥2dη + 12l0(t2 − t1)
2NM2

∗∥Θ∥2G + 12qj+1M1(1 + d1)

∫ t1−ϵ

pj

E∥Q(t2 − η)

− Q(t1 − η)∥2dη + 12ϵM1(1 + d1)

∫ t1

t1−ϵ

E∥Q(t2 − η)− Q(t1 − η)∥2dη

+ 12(t2 − t1)
2NM1(1 + d1) + 12qj+1NBMνj+1

∫ t1−ϵ

pj

E∥Q(t2 − η)− Q(t1 − η)∥2dη

+ 12ϵNBMνj+1

∫ t1

t1−ϵ

E∥Q(t2 − η)− Q(t1 − η)∥2dη + 12(t2 − t1)
2NNBMνj+1

+ 12

∫ t1−ϵ

pj

E∥Q(t2 − η)− Q(t1 − η)∥2∥g(η)∥2LQ
dη + 12

∫ t1

t1−ϵ

E∥Q(t2 − η)

− Q(t1 − η)∥2∥g(η)∥2LQ
dη + 12N

(
sup

τ∈[0,d1]

Ξ(τ 2)
)(∫ t2

t1

ρg(η)dη

)
. (4)

The uniform continuity of Q(·) implies that the right hand side of (4) tends to zero as t2 → t1 for
sufficiently small ϵ > 0. Consequently, the family {Π2y : y ∈ PCB0

d} is equicontinuous.

Step 5. Π2 is a compact map.
From Steps 3 and 4, and by the Arzela–Ascoli theorem, it is sufficient to establish that for each
t ∈ J , Z(t) = {(Π2y)(t) : y ∈ PCB0

d} is relatively compact. Evidently for t = 0, the result is
true. Let for j ≥ 0, t ∈ (pj, qj+1] be fixed. If σ ∈ Π2y and y ∈ PCB0

d, then there exists g ∈ NG,y+u

such that

σ(t) =

∫ t

pj

Q(t− η)
[
L(Θ̃η) + f(η, yη + uη) +Bνβy+u(η)

]
dη +

∫ t

pj

Q(t− η)g(η)dW (η).
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By using the compactness of {Q(t)}t>0 and given assumptions, it yields that the set Z(t) is rela-
tively compact for t ∈ (pj, qj+1]. Therefore, the map Π2 is completely continuous.

Step 6. Π2 has the closed graph.
Let ym → y0 and σm → σ0 as m → ∞, where σm ∈ Π2y

m. To achieve the desired outcome, it is
sufficient to prove that σ0 ∈ Π2y

0. Now, σm ∈ Π2y
m means that there is a gm ∈ NG,ym+u with the

property that for any t ∈ (pj, qj+1],

σm(t) =

∫ t

pj

Q(t− η)
[
L(Θ̃η) + f(η, ymη + uη)

]
dη +

∫ t

pj

Q(t− η)gm(η)dW (η)

+

∫ t

pj

Q(t− η)BB∗Q∗(qj+1 − η)

[
R(β,Υqj+1

pj
)
[
Eξqj+1

− Q′(qj+1 − pj)I1
j (pj, y

m
q−j

+ uq−j )− Q(qj+1 − pj)I2
j (pj, y

m
q−j

+ uq−j )
]

+

∫ η

pj

R(β,Υqj+1

τ )ψj(τ)dW (τ)−
∫ η

pj

R(β,Υqj+1

τ )Q(qj+1 − τ)

×
[
L(Θ̃τ ) + f(τ, ymτ + uτ )

]
dτ −

∫ η

pj

R(β,Υqj+1

τ )Q(qj+1 − τ)gm(τ)dW (τ)

]
dη.

Further, we must show that there is a g0 ∈ NG,y0+u with the condition that for t ∈ (pj, qj+1],

σ0(t) =

∫ t

pj

Q(t− η)
[
L(Θ̃η) + f(η, y0η + uη)

]
dη +

∫ t

pj

Q(t− η)g0(η)dW (η)

+

∫ t

pj

Q(t− η)BB∗Q∗(qj+1 − η)

[
R(β,Υqj+1

pj
)
[
Eξqj+1

− Q′(qj+1 − pj)I1
j (pj, y

0
q−j

+ uq−j )− Q(qj+1 − pj)I2
j (pj, y

0
q−j

+ uq−j )
]

+

∫ η

pj

R(β,Υqj+1

τ )ψj(τ)dW (τ)−
∫ η

pj

R(β,Υqj+1

τ )Q(qj+1 − τ)

×
[
L(Θ̃τ ) + f(τ, y0τ + uτ )

]
dτ −

∫ η

pj

R(β,Υqj+1

τ )Q(qj+1 − τ)g0(τ)dW (τ)

]
dη.

For 1 ≤ j ≤ k, define the linear continuous operator Γ : L2((pj, qj+1],E ) → C((pj, qj+1],E ) by

Γ(g)(t) =−
∫ t

pj

Q(t− η)BB∗Q∗(qj+1 − η)

(∫ η

pj

R(β,Υqj+1

τ )Q(qj+1 − τ)g(τ)dW (τ)

)
dη

+

∫ t

pj

Q(t− η)g(η)dW (η).

It is deduced that Γ◦NG is a closed graph function (Lasota and Opial (1965)). Also, using definition
of Γ and the fact that ym → y0, we conclude that σ0 ∈ Π2y

0.

Step 7. We shall demonstrate that ∇ = {y ∈ PC0
a : y ∈ γΠ1y + γΠ2y, for some γ ∈ (0, 1)} is

bounded. Let y ∈ ∇ and if we specified

K∗
1 =

7NBN

β2

{
∥Eξq1∥2 +K2

0N1∥Θ∥2G +NE∥z0∥2 +
∫ q1

0

E∥ψ0(η)∥2LQ
dη + l0q

2
1NM

2
∗∥Θ∥2G
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+ q21NM1

}
,

K∗
2 =5NE∥z0∥2 + 5l0q

2
1NM

2
∗∥Θ∥2G + 5q21NM1 + 5q21NNBK

∗
1 ,

K∗
3 =5q1NM1 +

35q31N
3
N2

BM1

β2
, K∗

4 = 5N +
35q21N

3
N2

B

β2
,

K∗
5 = max

1≤j≤k

7NBN
2

β2

{
∥Eξqj+1∥2 + (N1R

1
j +NR2

j )(1 + 2Γ2
∗E∥y(qj)∥2 + 4M2

∗∥Θ∥2G

+ 4Γ2
∗K

2
0N1∥Θ∥2G) +

∫ qj+1

pj

E∥ψj(η)∥2LQ
dη + l0q

2
j+1NM

2
∗∥Θ∥2G + q2j+1NM1

}
,

K∗
6 = max

1≤j≤k
{7(N1R

1
j +NR2

j )(1 + 2Γ2
∗E∥y(qj)∥2 + 4M2

∗∥Θ∥2G + 4Γ2
∗K

2
0N1∥Θ∥2G)

+ 7K2
0N1∥Θ∥2G + 7l0q

2
j+1NM

2
∗∥Θ∥2G + 7q2j+1NM1 + 7q2j+1NNBK

∗
5},

K∗
7 =7aNM1 +

49a3N
3
N2

BM1

β2
, K∗

8 = 7N +
49a2N

3
N2

B

β2
,

R1
∗ =max{2R1

j : 1 ≤ j ≤ k}+ 2N1K
2
0∥Θ∥2G,

and follow the calculations of Step 3, we can deduce that for any t ∈ J ,

E∥y(t)∥2 ≤K∗
9 +K∗

10∥yt + ut∥2G +K∗
11

∫ t

0

∥yη + uη∥2Gdη +K∗
12

∫ t

0

ρg(η)Ξ(∥yη + uη∥2G)dη,

where K∗
9 = max{K∗

2 , K
∗
6 , R

1
∗}, K∗

10 = max
1≤j≤k

{2R1
j}, K∗

11 = max{K∗
3 , K

∗
7}, and K∗

12 =

max{K∗
4 , K

∗
8}. Further, for any t ∈ J , it follows that

∥yt + ut∥2G ≤ 2
(
∥yt∥2G + ∥ut∥2G

)
≤ 4

(
Γ2
∗ sup
0≤η≤t

E∥y(η)∥2 +M2
∗∥Θ∥2G + Γ2

∗K
2
0N1∥Θ∥2G

)
.

Consider the function given by

ζ(t) = 4
(
Γ2
∗ sup
0≤η≤t

E∥y(η)∥2 +M2
∗∥Θ∥2G + Γ2

∗K
2
0N1∥Θ∥2G

)
, t ∈ J . (5)

Then ζ(·) is a nondecreasing function on J and for all t ∈ J , we have

E∥y(t)∥2 ≤ K∗
9 +K∗

10ζ(t) +K∗
11

∫ t

0

ζ(η)dη +K∗
12

∫ t

0

ρg(η)Ξ(ζ(η))dη. (6)

From (5) and (6), we deduce

ζ(t) ≤K∗
13 +K∗

14

∫ t

0

ζ(η)dη +K∗
15

∫ t

0

ρg(η)Ξ(ζ(η))dη,

where K∗
13 =

4Γ2
∗K

∗
9+4M2

∗∥Θ∥2
G+4Γ2

∗K
2
0N1∥Θ∥2

G
1−4Γ2

∗K
∗
10

, K∗
14 =

4Γ2
∗K

∗
11

1−4Γ2
∗K

∗
10

and K∗
15 =

4Γ2
∗K

∗
12

1−4Γ2
∗K

∗
10

.

Let ϑ(t) = K∗
13 +K∗

14

∫ t

0
ζ(η)dη +K∗

15

∫ t

0
ρg(η)Ξ(ζ(η))dη, for t ∈ J . Then ζ(t) ≤ ϑ(t) and

ϑ′(t) = K∗
14ζ(t) +K∗

15ρg(t)Ξ(ζ(t)) ≤ max{K∗
14, K

∗
15ρg(t)}(ϑ(t) + Ξ(ϑ(t))), for all t ∈ J .

Further, ∫ ϑ(t)

K∗
13

dη

η + Ξ(η)
≤

∫ a

0

max{K∗
14, K

∗
15ρg(η)}dη <∞.
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From the above inequality and assumption (R4)(iii), we infer that ϑ(t) ≤ C̃, for some C̃ > 0.
Consequently, the set ∇ is bounded and by the fixed point theorem of Dhage (2006), it follows that
Π1 +Π2 has a fixed point y∗ ∈ PC0

a. Then ξ∗(t) = y∗(t) + u(t), t ∈ (−∞, a] is a mild solution of
the system (1). ■

Theorem 2.2.

Suppose that all hypotheses in Theorem 2.1, and (R6)-(R7) hold. If f and G are uniformly
bounded, then the system (1) is approximately controllable on J .

Proof:

For β > 0, let ξβ(·) be a mild solution of the system (1) on (−∞, a] under the control function
νβξ (·) given by (3). By substituting t = qj+1 in (2) and using the fact that I − Υ

qj+1

η R(β,Υ
qj+1

η ) =
βR(β,Υ

qj+1

η ), we obtain

ξβ(qj+1) =ξ
qj+1

− βR(β,Υqj+1

pj
)
[
Eξqj+1 − Q′(qj+1 − pj)I1

j (pj, ξ
β

q−j
)− Q(qj+1 − pj)I2

j (pj, ξ
β

q−j
)
]

+

∫ qj+1

pj

βR(β,Υqj+1

η )Q(qj+1 − η)
[
L(Θ̃η) + f(η, ξβη )

]
dη

+

∫ qj+1

pj

βR(β,Υqj+1

η )Q(qj+1 − η)gβ(η)dW (η)

−
∫ qj+1

pj

βR(β,Υqj+1

η )ψj(η)dW (η).

Now, the uniform boundedness of f and G yield that there is a subsequence, still named by
{f(·, ξβη (·)), gβ(·)}, converging weakly to, say, {f(·), g(·)} in E × LQ. Also, the compactness
property of Q(·) implies that as β → 0+, we have

∥Q(qj+1 − η)
(
f(η, ξβη )− f(η)

)
∥2 → 0,

∥Q(qj+1 − η)
(
gβ(η)− g(η)

)
∥2LQ

→ 0.

Further, (R6) yields that for each 1 ≤ j ≤ k, there is a subsequence, represented by
{I1

j (·, ξ
β

q−j
), I2

j (·, ξ
β

q−j
)}, converging weakly to say {I1

j (·), I2
j (·)} in E ×E . Therefore, E∥ξβ(qj+1)−

ξqj+1∥2 → 0 as β → 0+ for 0 ≤ j ≤ k. Hence, the system (1) is approximately controllable on
J . ■
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3. An Application

Consider the following stochastic differential inclusions having non-instantaneous impulses:

∂

(
∂u(t,z)

∂t

)
∈
(

∂2u(t,z)
∂z2 +

∫ t−1

−∞

∫ π

0
ẽ1(η − t, z, x)u(η, x)dxdη +

∫ t

−∞w1(t, η)f̃(η, u(η, z))dη

+Bν(t, z)

)
dt+

∫ t

−∞w2(t, η)D(η, u(η, z))dη dα(t), (t, z) ∈
k⋃

j=0

(pj, qj+1]× [0, π],

u(t, z) =
∫ t

−∞ c1j(η − t, z)u(q−j , z)dη, (t, z) ∈
k⋃

j=1

(qj, pj]× [0, π],

∂u(t,z)
∂t

=
∫ t

−∞ c2j(η − t, z)u(q−j , z)dη, (t, z) ∈
k⋃

j=1

(qj, pj]× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ J , a > 1,
u(κ, z) = Θ(κ, z), κ ≤ 0, 0 ≤ z ≤ π,
∂u(0,z)

∂t
= z0 ∈ E ,

(7)
where Θ(·, ·) is F0-measurable, α(t) denotes standard Brownian motion and functions cij(·, ·),
D(·, ·), ẽ1(·, ·, ·), f̃(·, ·), w1(·, ·) and w2(·, ·) are to be described later.

Let E = L2([0, π]), K = L2([0, π]), U(·)(·) = u(·, ·) and Θ(·)(·) = Θ(·, ·). Let
A : D(A) ⊂ E → E be given by Au = u′′ with domain D(A) =

{
u(·) ∈ E :

u and u′ are absolutely continuous, u′′ ∈ E and u(0) = u(π) = 0
}
. Then, A generates a compact

semigroup {T (t)}t>0, which is strongly continuous and self-adjoint. Further, the eigenvalues of A

are −m2, m ∈ N with the corresponding normalised eigenvectors ζm(z) =
√

2
π
sin(mz). Addi-

tionally, the cosine family {C(t)}t≥0 generated by A is defined by C(t)u =
∞∑

m=1

cos(mt)⟨u, ζm⟩ζm

and the corresponding sine family {S(t)}t≥0 is given as S(t)u =
∞∑

m=1

sin(mt)
m

⟨u, ζm⟩ζm, for all t ∈

R. Moreover, the family {S(t)}t>0 is compact and self-adjoint.

Consider the phase space G = PC0 × L2(ℏ,E ) (where ℏ : (−∞, 0] → R+) with the semi-norm

∥φ∥G = ∥φ(0)∥+
(∫ 0

−∞
ℏ(η)∥φ(η)∥2dη

) 1

2

,

where ℏ and ℏ∥φ∥2 are Lebesgue integrable on (−∞, 0), and φ(·) is continuous at 0 (see Hino et
al. (1991)).

We now consider the following hypotheses for the system (7):

(i) For η ≤ 0, the map ẽ1(η, ·, ·) ∈ C([0, π]× [0, π]) and ẽ1(η, 0, ·) = ẽ1(η, π, ·) = 0. Let

l0 =

∫ π

0

∫ −1

−∞

1

ℏ(η)

∫ π

0

|ẽ1(η, z, x)|2dxdηdz <∞.

(ii) The function f̃ : R× E → R is continuous, and Lipschitz continuous in the second variable
with Lipschitz constant M̃1 > 0. Also, f̃ is uniformly bounded.

13

Yadav and Kumar: (SI10-083) Approximate Controllability of Infinite-delayed Second

Published by Digital Commons @PVAMU, 2022



14 S. Yadav and S. Kumar

(iii) The function wj : H̃0 ×R→ R, j = 1, 2, is continuous with |wj(t, t+ η)| < λ(η) and∫ 0

−∞

|λ(η)|2

ℏ(η)
dη <∞.

(iv) There exists a continuous map c̃ : R→ [0,∞) such that the continuous function D : R×E →
R satisfies ∥D(t, z)∥ ≤ c̃(t)∥z∥, for (t, z) ∈ R× E . Also, D is uniformly bounded.

(v) There are continuous functions dj : R→ [0,∞) with the condition that the continuous maps
cij : R × [0, π] → R, satisfy ∥cij(t, η)∥ ≤ dj(t), for (t, η) ∈ R × [0, π], j ≥ 1 and i = 1, 2
with

Rcij =

∫ 0

−∞

(dj(η))
2

ℏ(η)
dη <∞.

(vi) The function Θ(·, ·) belongs to L0
2(Ω,G).

Define L : G → E , f̃ : H̃0 × G → E , G : H̃0 × G → R and I i
j : Hj × G → E , respectively, as

L(φ)(z) =

∫ −1

−∞

∫ π

0

ẽ1(η, z, x)φ(η, x)dxdη, f(t, φ)(z) =

∫ 0

−∞
w1(t, t+ η)f̃(t+ η, φ(η, z))dη,

G(t, φ)(z) =

∫ 0

−∞
w2(t, t+ η)D(t+ η, φ(η, z))dη, I i

j(t, φ)(z) =

∫ 0

−∞
cij(η, z)φ(η, z)dη,

for φ ∈ G, j ≥ 1 and i = 1, 2.
Under the above assumptions, the system (7) can be transformed to the system (1). Further, as-
sumptions (R1), (R3), (R4)(i), (R4)(ii) and (R5) are satisfied, and ∥L∥2 ≤ l0.

Consider the real Hilbert space V =

{
ν =

∞∑
m=2

νmζm :
∞∑

m=2

ν2m <∞
}
, with ∥ν∥ =

(
∞∑

m=2

ν2m

) 1

2

.

DefineBν = 2ν2ζ1(z)+
∞∑

m=2

νmζm(z), for ν =
∞∑

m=2

νmζm ∈ V . Clearly,B ∈ L(V ,E ) and adjoint

of B is given by B∗µ = (2µ1 + µ2)ζ2(z) +
∞∑

m=3

µmζm(z), for µ =
∞∑

m=1

µmζm(z) ∈ E . Evidently,

if for all t ∈ J , B∗Q∗(t)µ = 0 then µ = 0 and which further implies that (R7) is satisfied
(see Su and Fu (2018)). Hence, if assumptions of Theorem 2.1 and (R6) hold, then by virtue of
Theorem 2.2, the system (7) is approximately controllable on J .

4. Conclusion

In this manuscript, approximate controllability for a class of second-order semilinear SDIs having
unbounded delay and non-instantaneous impulses has been investigated. We utilized Dhage’s fixed
point theorem for the multi-valued maps to establish the solvability of the system. Finally, the
obtained results are verified through an example. In the future, we will extend the results of this
paper for the systems with state-dependent delay and random impulses as well as for the systems
with delay in control and Poisson jumps.
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