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1 | INTRODUCTION

Alfalfa (alias lucerne, Medicago sativa L. subsp. sativa) is
the most grown perennial forage legume in temperate and
Mediterranean-climate regions (Annicchiarico, Barrett, et al.,
2015). It can provide higher protein yield per unit area than
any other forage or grain legume (Julier et al., 2017), thereby
representing a key asset for securing the farm and regional
self-sufficiency of feed proteins under increasing scarcity of
this resource in international markets (Pilorgé & Muel, 2016).
Rotations including alfalfa tend to display greater resilience
across erratic climatic conditions than rotations excluding this
crop (Sanford et al., 2021). In addition, alfalfa may provide
important environmental services, including up to 200 kg
ha~! of N available for the following crop (with associated
energy and climate change mitigation advantages), limitation
of soil salinity build-up by means of deep-water absorption
by its roots, and reduction of soil erosion (Fernandez et al.,
2019; Julier et al., 2017). However, the economic sustainabil-
ity of alfalfa is threatened by its increasing yield gap relative
to major cereal crops, which descends from very low rates of
genetic yield progress (Annicchiarico, Barrett, et al., 2015).
Indeed, alfalfa yield gains derived mainly from improved
tolerance to biotic stresses (Lamb et al., 2006). The crop
yield progress is limited by several factors that also apply
to other outbred perennial forages, such as small breeding
investment, long selection cycles, impossibility to select real
hybrids or pure lines, and large genotype X environment inter-
action (GEI) (Annicchiarico, Barrett, et al., 2015). In addition,
the yield progress is constrained by a high extent of non-
additive genetic variance due to complementary alleles in the
repulsion phase at different loci and intra-locus allelic inter-
actions allowed for by autotetraploidy (Bingham et al., 1994;
Woodfield & Bingham, 1995).

Alfalfa breeding is challenged by the urgent need for
more drought-tolerant cultivars in several growing regions
worldwide to cope with lower rainfall and raising evapotran-
spiration caused by the changing climate and the progressive
reduction of irrigation water due to growing water demand
for non-agricultural uses (del Pozo et al., 2019; Polade et al.,

at least 37,969 SNP markers) exceeded 0.20 for moderate MS (representing Italian
stress-prone sites) and the sites of Algeria and Argentina while being quite low for the
Tunisian site and intense MS. Predictions of GS were complicated by rapid linkage
disequilibrium decay. The weighted GBLUP model, GEI incorporation into GS mod-
els, and SNP calling based on a mock reference genome exhibited a predictive ability
advantage for some environments. Our results support the specific breeding for each
target region and suggest a positive role for GS in most regions when considering the

challenges associated with phenotypic selection.

2017). A drastic shift from traditional irrigated cropping
to rain-fed cropping or cropping with summer-suspended
or modest supplemental irrigation seems feasible in various
regions of North Africa and South America by exploiting
exotic genetic resources (Annicchiarico et al., 2011; del Pozo
et al., 2017). Salt-tolerant germplasm is also needed in some
regions because of the growing use of saline irrigation water
caused by a paucity of good-quality water and climate change
(Paranychianakis & Chartzoulakis, 2005). Cultivars with
moderately wide adaptation would be desirable to cope with
the wide year-to-year climatic variation and the geographic
variation for quality and amount of irrigation water. However,
commercial alfalfa cultivars and landraces tested across coun-
tries of the western Mediterranean basin displayed large GEI
for biomass yield that suggested the separate, specific selec-
tion for each of three groups of environments definable as
severely drought prone, salinity prone, and relatively mois-
ture favorable (Annicchiarico et al., 2011). Indeed, specific
germplasm selection for irrigated and rain-fed environments
of Italy produced over two-fold greater actual yield gains than
breeding for wide adaptation (Annicchiarico, 2021).

Modest genetic gains and long selection cycle emphasize
the practical importance of exploring selection procedures for
alfalfa biomass yield that exploit marker information. Pio-
neer studies (Musial et al., 2006; Robins et al., 2007) detected
quantitative trait loci using 150-200 markers of various types
on the limited genetic base represented by F; progenies of a bi-
parental population, which, along with the expected absence
of individual markers with high yield effect, limited the prac-
ticality of marker-assisted selection. The occurrence of a large
marker X environment interaction for biomass yield was man-
ifest in Robins et al.’s (2007) study. The availability of larger
marker numbers enlarged the opportunity to identify quan-
titative trait loci (QTL) for biomass yield in wider genetic
bases, as in Li et al. (2011), McCord et al. (2014), and Ray
et al. (2015). The latter study confirmed the complex genetic
control of biomass yield under severe drought, based on its
association with 25 QTL whose estimated phenotypic effect
ranged between 3 and 6%. Likewise, several markers located
in different chromosomes were associated with a drought

95UB017 SUOLILLIOD SAIIERID 3ol jdde 8Ly Aq peusenob ae Sapilie YO '9SN J0 S9INJ 10} Akeidi]8UIUO AS|IM U (SUONIPUGD-PUR-SLLIBY WD A | 1M Aleiq 1 Bu1|UO//SANY) SUONIPUOD pue SIS | 8U1 89S *[z202/0T/2T] uo Akeiqi suluo (1M ‘etrendedoby eiBojouyoe | ap uoeN Ul VNI Aq #9202 26d1/200T 0T/I0p/wod A8 im Akeiq iUl juo'Ssssde//Sdny W) pepeo|umoq ‘0 '22EE0v6T



ANNICCHIARICO ET AL.

The Plant Genome .0 30f20

resistance index in a pot experiment by Zhang et al. (2015).
The complexity of the drought tolerance trait and the occur-
rence of large marker X environment interaction for biomass
yield were further confirmed in a 1-yr experiment by Yu
(2017), who reported 22 genetic loci associated with yield
under drought, of which just a few were also associated with
yield under moisture-favorable conditions. A recent study
by Singh et al. (2022) showed the ability of marker-assisted
selection based on 10 QTL to increase biomass yield under
deficit irrigation, especially within genetic bases that are
genetically similar to those in which the QTL were previously
identified.

Genomic selection (GS) combines phenotyping and geno-
typing data of a genotype sample (training population)
representing a target genetic base (breeding population) into
a statistical model for prediction of breeding values in future
plant selection (Heffner et al., 2009; Meuwissen et al., 2001).
This selection strategy is receiving increasing attention for
crop yield improvement in alfalfa (Annicchiarico et al., 2021;
Hawkins & Yu, 2018) and other crops. It can be more effective
than marker-assisted selection for complex polygenic traits
because of the possible high number of genomic regions
hosting relevant QTL and the small individual QTL effects
(Bernardo & Yu, 2007). Its first applications to alfalfa biomass
yield profited from the development of high-throughput geno-
typing techniques, such as genotyping-by-sequencing (GBS)
(Elshire et al., 2011), which can generate thousands of single-
nucleotide polymorphism (SNP) data for a low cost in alfalfa
(Li, Wei, et al., 2014) and other crops. Adopting Apekl as the
restriction enzyme according to Elshire et al.’s (2011) proto-
col would be supported by the fact that ~56% of the alfalfa
genome includes repetitive DNA sequences (Long et al.,
2022), which this enzyme tends to skip. The potential of GS
for alfalfa biomass yield has been investigated based on phe-
notyping data collected in specific cropping environments. Li
et al. (2015) reported a prediction ability (as Pearson’s cor-
relation between predicted and observed values) around 0.40
for predictions in a next selection cycle of material selected
from parents phenotyped as individual cloned plants under
moisture-favorable conditions. A preliminary assessment of
this GS model in terms of actual selection gains was positive
for divergent selection of higher- and lower-yielding synthetic
populations, and the high-yield selection produced similar
yield gains as the phenotypic selection (Brummer et al., 2019).
Jia et al. (2018) reported a prediction ability around 0.25 for
biomass yield of replicated clonal material evaluated in China.
Medina et al. (2020) reported prediction abilities ranging from
0.27 to 0.30 for annual biomass yield of replicated clonal
material evaluated under salt stress. Annicchiarico, Nazzicari,
etal. (2015) reported prediction abilities of 0.35 for a Mediter-
ranean breeding population and 0.32 for a Northern-Italian
population evaluated under moisture-favorable conditions in
Italy for genotyped individuals whose breeding value was

Core Ideas

e Alfalfa breeding for stress-prone regions faces
large genotype X environment interaction.

* Genomic selection for specific stress-prone regions
may be useful despite low predictive ability.

* Weighted G-BLUP showed somewhat greater pre-
dictive ability than other genomic selection mod-
els.

assessed on their half-sib progenies phenotyped under rela-
tively dense sward conditions. Such phenotyping conditions
had the advantages of (a) predicting additive genetic effects
(i.e., the relevant effects for synthetic variety breeding) and
(b) representing more faithfully the plant density conditions
of actual production environments (Annicchiarico, Barrett,
et al., 2015). Andrade et al. (2022) observed a prediction
ability for multi-harvest biomass yield ranging from 0.21 to
0.30. Medina et al. (2020) and Andrade et al. (2022) imputed
allele dosage information of this tetraploid species in the
GS model, whereas the other studies adopted a diploid SNP
calling by pooling the three possible heterozygote classes
Aaaa, AAaa, and AAAa into a unique class marked as Aa
because of an expectedly insufficient number of reads for
attribution to allelic classes for many markers. The study by
Annicchiarico, Nazzicari, et al. (2015) suggested distinctly
greater predicted yield gains per unit time for GS relative to
phenotypic selection based on progeny testing.

There is no report so far on the GS predictive ability
for alfalfa biomass yield in severely drought-prone environ-
ments or across several contrasting cropping environments.
Genomic selection models trained on phenotyping data from
different test environments can take account of GEI effects
and may display better environment-specific predictions than
models based only on data of the single environments
(Crossa et al., 2017). Whereas some GEIl-incorporating sta-
tistical models represent an extension of models used for
data from single environments, other models were proposed
specifically for the GEI context to decompose the effect
of each marker into a general effect and an environment-
specific effect (Cuevas et al., 2017; Lopez-Cruz et al., 2015).
The adopted GS statistical model among the several ones
available (Crossa et al., 2017; Montesinos Lopez et al.,
2022; Wang et al., 2018) may affect the model predictive
ability for alfalfa biomass yield (Annicchiarico, Nazzicari,
et al., 2015; Hawkins & Yu, 2018). In a recent study,
a weighted genomic best linear unbiased prediction (WG-
BLUP) GS model exploiting genome-wide association study
results to assign a weight to SNP markers exhibited a sharp
prediction accuracy advantage over other popular statistical
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models (Medina et al., 2021). Another relevant factor that may
influence genome-enabled predictions in alfalfa is the SNP
calling procedure for GBS-generated markers, which may rely
on (a) the genome of the model species Medicago truncatula
(Li, Wei et al., 2014), (b) a mock reference genome based on
the linkage disequilibrium of SNP markers observed in a small
subset of test genotypes (Puritz et al., 2014), or (c) the alfalfa
genome recently sequenced by Chen et al. (2020). Single-
nucleotide polymorphism calling on the alfalfa genome has
obvious interest for genome-wide association studies, but
there is little and inconsistent information on its ability to
improve the predictive ability of GS models (Annicchiarico
et al., 2021). One more factor that may affect GS predic-
tions is the performance of tetraploid or diploid allele dosage
(Lara et al., 2019). The former may rely on a statistical crite-
rion for attribution to one of the five classes (AAAA, AAAa,
AAaa, Aaaa, aaaa) or may be approximated by computing an
A/(A+a) allele ratio that allows for the continuous variation
for allele dosage regardless of a definite statistical threshold
(de Bem Oliveira et al., 2019).

The main objective of this study was to provide an unprece-
dented assessment of the ability of GS to predict alfalfa
breeding values for biomass yield in agricultural environ-
ments of the western Mediterranean basin and Argentina and
managed-stress (MS) environments of Italy. These environ-
ments featured a different pattern and extent of drought or,
in one environment, irrigation with moderately saline water.
The germplasm sample represented a Mediterranean breeding
population originated from intercrossing elite, geographically
contrasting cultivars selected from material evaluated across
several agricultural environments of the western Mediter-
ranean basin (Annicchiarico et al., 2011). Additional aims
of the study were to investigate GEI patterns for half-sib
progeny material and their implications for regional selection
strategies and to assess the effect on genome-enabled predic-
tions of different SNP calling procedures, 12 statistical models
excluding or incorporating GEI, and the adoption of a diploid
allele dosage or a tetraploid allele dosage based on a statistical
criterion or the allele ratio.

2 | MATERIALS AND METHODS

2.1 | Plant material

The Mediterranean breeding population originated from three
elite cultivars that exhibited different adaptation patterns in
the study by Annicchiarico et al. (2011): (a) the drought-
tolerant Sardinian landrace Mamuntanas, (b) the moderately
salt-tolerant Moroccan landrace Erfoud 1, and (c) the Aus-
tralian cultivar SARDI 10, featuring wide adaptation across
moisture-favorable and drought-prone sites. The autumn dor-
mancy rating of these cultivars ranged from 7 to 10. The

cultivars were intercrossed in isolation for two generations
as described in Annicchiarico, Nazzicari, et al. (2015). The
first intercrossing generation included 70 randomly chosen
genotypes from each population. One seed per parent plant
was grown to establish the second intercrossing generation.
This study included 127 genotypes randomly sorted out of the
breeding population, which were genotyped and underwent
phenotyping based on their half-sib progenies in four agri-
cultural environments and in two MS environments. One MS
environment hosted the half-sib progenies of 23 additional
genotyped individuals, thereby phenotyping 150 genotypes.
These genotypes represented a subset of the 154 genotypes
evaluated by Annicchiarico, Nazzicari, et al. (2015) in a
short-term, moisture-favorable experiment. The current study
included the genotypes for which sufficient half-sib progeny
seed was available for establishing replicated trials of densely
planted plots in the current experiments. Half-seed progeny
seed was produced in three large isolation cages pollinated by
bumble bee (Bombus terrestris L.) families, each including
three complete crossing blocks of randomized cloned geno-
types, pooling the seed harvested over the nine clones of each
genotype.

Three test sites that hosted the earlier evaluation of culti-
vars by Annicchiarico et al. (2011)—Alger, Médenine, and
Oued Tessaout—included also the three cultivars that origi-
nated the breeding population (Erfoud 1, Mamuntanas, and
SARDI 10) besides the half-sib progenies to verify whether
the site-specific cultivar adaptive responses that emerged in
the earlier study could faithfully be reproduced in the current
evaluation.

2.2 | Phenotyping

Phenotyping for biomass dry matter yield was performed in
six test environments described in Table 1. Two MS envi-
ronments that involved intense and moderate summer drought
stress, respectively, were set up in Lodi, Northern Italy, using
phenotyping platforms that proved capable of reproducing the
alfalfa cultivar adaptive responses observed in agricultural
environments with contrasting level of drought stress (Annic-
chiarico & Piano, 2005). Each platform was composed of four
large (24.0 m by 1.6 m by 0.8 m deep) bottomless contain-
ers in concrete filled with local sandy-loam soil, covered by
a rainout shelter and equipped with a double-rail irrigation
boom. Both MS environments provided, on average, 240 mm
of water (split equally into four irrigation) over the period
January—April and 90 mm (split into two irrigations) over
the period October-December. Moderate MS, whose water
available aimed to represent the climatically unfavorable rain-
fed environments of Italy, also received 120 mm (split into
two irrigations) from May to mid-June and 60 mm (in one
irrigation) soon after mid-September, whereas intense MS
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TABLE 1

Acronym, major climatic characteristics, experimental layout, biomass dry matter yield assessment procedures, and mean value and

coefficient of variation (CV) of additive genetic variance and experimental error for average annual dry matter yield, for six managed-stress (MS) or

agricultural test environments of alfalfa half-sib progenies

MS
Intense Moderate Alger Oued Tessaout Santiago del Estero Médenine
Item drought drought (Algeria) (Morocco)? (Argentina) (Tunisia)?
Environment acronym MI MM Al Ot Se Me
Latitude 45°19'N 45°19'N 36°45'N 31°49'N 28°02’S 33°20'N
Longitude 9°30'E 9°30'E 3°3'E 7°16'W 64°23'W 10°29'E
USDA soil texture class sandy loam sandy loam clay loam clay loam silt loam sandy loam
Average annual water available, 330 510 546 739 692 1,900
mm
Average daily mean 14.7 13.7 19.7 18.9 219
temperature, °C
Average daily maximum 29.7 32.5 32.8 45.7 354 36.4
temperature, July—-Aug., °C
Experiment establishment Apr. 2013 Apr. 2012 Dec. 2014 Oct. 2013 Sept. 2015 May 2014
Test half-sib progenies, n 150° 127 127 127 127
Replicates of the randomized 4 3 4 5 4 4
complete block design, n
Total plants/harvest plants per 36/28 36/28 72/42 72/42 72/42 72/42
plot
Plant density at establishment, 156 156 100 100 100
no. m-!
Total no. of test harvests 6 7 13 12 16
Mean no. of test harvests over 24 3.7 6.6 6.2 9.0 7.4
12 mo
Harvest assessment period Nov. 2013— July 2012- Dec. 2015 Oct. 2014— Dec. 2015 Sept. 2015-
Apr. 2016 May 2014 June 2018 Oct. 2016 Mar. 2017 Oct. 2017
Average annual yield, t ha='¢ 5.66 8.33 7.17 12.53 12.82 18.74
Additive genetic variance CV, % 21.9 26.8 13.8 19.1 20.5
Experiment error CV, % 30.1 19.5 27.0 15.0 15.0 19.1

a Average irrigation amounts were 587 mm for Oued Tessaout (with 3-mo suspended irrigation during summer) and 1,785 mm of moderately saline water (9.37 dS m~')

for Médenine.

>Of which 127 were common to all other test environments. The reported yield and CV values refer to the common set of 127 half-sib progenies.

“Least-significant difference at P < .05 for row mean comparison = 1.58.

received no water from May to the end of September. There
were three drought-prone agricultural test sites: the rain-fed
sites of Alger (Algeria) and Santiago del Estero (North-
ern Argentina) and the site of Oued Tessaout (Morocco),
which was flood-irrigated with water withholding over the
three summer months (which were nearly dry). The dry sea-
son occurred in winter in the Argentinian site (unlike the
Mediterranean climate, North African sites, and the MS envi-
ronments). The agricultural site of Médenine (Tunisia) was
flood-irrigated during the whole cropping season by water
with 9.37 dS m~! electrical conductivity, a value close to
the upper bound of the electrical conductivity range of 2—10
dS m~! that defines moderately saline water (Rhoades et al.,
1992) but is expected to produce a modest yield depression in

a relatively salt-tolerant crop such as alfalfa (Cornacchione &
Suarez, 2015). Geographical, climatic, and soil information is
reported in Table 1 for each environment. Mineral fertilization
was incorporated into the seed bed prior to transplanting at the
rates of 48 kg ha=! of N and 144 kg ha™! of P,O5 and K,O in
both MS experiments; 40 kg ha=! of N, 120 kg ha=! of P,0s,
and 100 kg ha=! of K,O in Oued Tessaout; and 150 kg ha™!
of P,O5 and K,O in Médenine. No mineral fertilization was
provided in Alger and Santiago del Estero.

In all experiments, the plant material (half-sib families
and possible cultivars) was sown in plug trays and then
transplanted after 5-6 wk in densely planted microplots.
Details of the experiments are reported in Table 1. Compared
with agricultural environments, MS environments adopted
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smaller plot size, fewer plants per plot, and greater plant den-
sity that derived from between- and within-row plant spacing
at 0.08 m instead of 0.10 m owing to less room available for
plant material.

Biomass dry matter yield was measured on a plot basis after
oven-drying at 60 °C for 4 d. It was recorded over at least
six harvests that were performed over a period of 16-34 m
(Table 1). The harvest assessment period excluded one har-
vest that preceded the occurrence of serious drought in the
MS experiments and Santiago del Estero, all harvests that pre-
ceded the first summer drought in Alger and Oued Tessaout,
and the first harvest in Médenine.

2.3 | Analysis of phenotyping data

Because biomass yield was recorded over periods of differ-
ent length in the test environments, plot data were expressed
as average annual yield Y, (in t ha™!) prior to statistical
analyses by dividing the total yield over harvests Y1 by the
harvest assessment period reported in Table 1 expressed in
months Ap, through the formula Y, =12 Y;/Ap. For the com-
mon set of 127 half-sib progenies in each experiment, we
(a) verified the presence of genetic variation among half-sib
progenies by ANOVA, (b) estimated components of variance
relative to half-sib progeny (ng) and experimental error (s,”)
by a restricted maximum likelihood (REML) method, (c) esti-
mated the additive genetic variance by the formula s,* = 4s,>
(Posselt, 2010), and (d) expressed this variance and the exper-
imental error variance as CV through division of their square
root values by the environment mean. Other ANOVAs ver-
ified the presence of genetic variation (a) for the whole set
of 150 half-sib progenies in the intense MS environment and
(b) among the cultivars Erfoud 1, Mamuntanas, and Sardi 10
in the environments of Alger, Médenine, and Oued Tessaout.
A combined ANOVA including the factors genotype (here
“cultivar”), environment, and block within environment
assessed the occurrence of GEI for the three cultivars across
these sites.

The following analyses investigated biomass yield
responses of 127 half-sib progenies across the six envi-
ronments. A combined ANOVA including the fixed factor
environment and the random factors half-sib progeny and
block within environment was carried out to compare
environments for mean yield and to estimate the variance
among half-sib progenies across environments (ng) and the
half-sib progeny X environment interaction variance (sgez)
by REML analysis. These variance component values were
used to estimate the size of the additive genetic variance
across environments s,> and the additive genetic variance
X environment interaction s,,> by the formulas s,> = 4sg2
and s5,,> = 4sgc2 (Wricke & Weber, 1986). The similarity of
environments for GEI pattern was investigated by pattern

analysis in its ordination mode as described by Mungomery
et al. (1974) and recommended by DeLacy et al. (1996) for
GEI investigations aimed to define selection strategies across
a target region. Pattern analysis is a principal components
analysis (PCA) performed on a genotype—environment matrix
of environment-standardized yield data (DeLacy et al., 1996).
We assessed the extent of GEI for half-sib progeny yield
responses across pairs of environments in terms of genetic
correlation according to Yamada (1962), testing each corre-
lation for statistical difference to unity (which was indicative
of inconsistent response across environments) and to zero on
the ground of confidence intervals computed by multiplying
standard errors according to Robertson (1959) by relevant ¢
values.

Genome-enabled predictions were assessed on the ground
of yield data of 127 half-sib progenies for all test environments
as well as yield data of 150 half-sib progenies in the intense
MS environment. Best linear unbiased prediction (BLUP)
yield values of the half-sib progenies computed for each envi-
ronment as described in DeLacy et al. (1996) were standard-
ized to zero mean and unit standard deviation prior to genomic
selection modeling of site-specific adaptive responses, as
described by Cuevas et al. (2017) for models accounting for
GEI effects. Standardizing the data was beneficial also for
modeling genotype mean responses across environments to
eliminate the greater effect of higher-yielding environments
on genotype means due to the positive relationship between
environment mean yield and within-environment phenotypic
variance (Fox & Rosielle, 1982).

All analyses were performed using SAS (SAS Institute,
2008) statistical software.

2.4 | DNA isolation, GBS library
construction, and sequencing

Procedures for DNA extraction and GBS were described in
Annicchiarico, Nazzicari, et al. (2015). Briefly, DNA was iso-
lated from fresh leaf tissues of 127 plant samples (150 in the
case of the intense MS environment) by the Wizard Genomic
DNA Purification Kit (Promega, A1125) and quantified with
a Quant-iT PicoGreen dsDNA assay kit (P7589, Life Tech-
nologies). A library was constructed according to Elshire et al.
(2011) using 100 ng of each DNA digested with ApeKI (NEB,
R0643L) and then ligated to a unique barcoded adapter and a
common adapter. An equal volume of the ligated product was
pooled and cleaned up with QIAquick PCR purification kit
(QIAGEN, 28104) for PCR amplification, mixing 50 ng tem-
plate DNA with 5 nmol each of the primers and NEB 2X Taq
Master Mix (NEB cat. no. M0270S) in a 50-p1 total volume.
Amplification was carried out on a thermocycler for 18 cycles
with 10 s of denaturation at 98 °C, followed by 30 s of anneal-
ing at 65 °C and finally 30 s extension at 72 °C. The library
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was sequenced in two lanes on Illumina HiSeq 2000 at the
Genomic Sequencing and Analysis Facility at the University
of Texas at Austin.

2.5 | Genotype SNP calling procedures, data
filtering, and imputation strategies

Single-nucleotide polymorphism calling for the diploid allele
dosage was performed using the dDocent pipeline (Puritz
et al., 2014), aligning the raw reads on the following three
reference genomes: (a) the diploid M. truncatula reference
genome, version MedtrAl17_4.0 (Tang et al., 2014); (b)
the reference genome for autotetraploid alfalfa issued from
the genome assembly by Chen et al. (2020), for which
we selected the longest copy of each chromosome, thereby
collating a 685 Mbp sequence out of the original 2,738
Mbp sequence available; and (c) the mock reference genome
assembled using dDocent tools, for which we selected the
30 samples with the largest read count to be used as a base
for genome assembly and used dDocent ReferenceOpt.sh and
RefMapOpt.sh tools to select the following configuration:
SIM = 0.92, K1 = 4, K2 = 4. This resulted in a 14.52 Mbp
reference FASTA file comprising 152,790 contigs. Single-
nucleotide polymorphism calling was performed on each of
the three genomes. The resulting vcf files were filtered for
quality using vcftools (Danecek et al., 2011) with options
“—remove-indels —minQ 30 —non-ref-af 0.001 —max-non-ref-
af 0.9999 —max-missing 0.3.” The resulting filtered files
were transformed in 0/1/2 SNP matrices and further filtered
for minor allele frequency (MAF) >5% and three levels of
maximum missing rate per marker (1, 3, and 5%) while sat-
isfying the maximum missing rate threshold per genotype of
10%. Markers with heterozygosity ratio >95% were discarded
as well. Missing data points in the resulting SNP matrices
were imputed according to the k-nearest neighbors imputa-
tion method (Nazzicari et al., 2016). A PCA performed on
53,169 polymorphic SNP markers of the 127 parent genotypes
confirmed that the 30 parents selected as founding samples
for the dDocent-mock reference genome represented well the
molecular variation of the whole set of parents (Supplemental
Figure S1). This analysis and a subsequent analysis of linkage
disequilibrium (LD) was performed on markers issued by the
diploid SNP calling on the M. sativa genome that were filtered
for maximum missing rate per marker (3%) and minimum
MAF (5%).

We envisaged two thresholds of minimum reads per marker
for allele ratios i.e., 20 and 6. These ratios were lower than
those recommended by some authors (e.g., de Bem Oliveira
et al., 2019) to limit the disadvantage of low marker num-
ber expected from the low sequencing effort of our study.
However, Lara et al. (2019) indicated 25 reads per marker
as a suitable threshold for GS predictions, and Ferrfo et al.

(2021) reported negligible differences in GS prediction abil-
ity between allele ratios based on minimum reads per marker
of 6 and 60 in studies on other tetraploid species.

Single-nucleotide polymorphism calling for allele ratios
and tetraploid genotypes was performed on the M. sativa
genome starting from the reads already trimmed and aligned
by dDocent pipeline. Read counts and quality were obtained
using the freeBayes software (Garrison & Marth, 2012)
using the “naive” configuration, as per software manual,
using options ‘“~haplotype-length 0 —min-alternate-count
1 —min-alternate-fraction 0 —pooled-continuous -report-
monomorphic -m 5 -q 5.” We then used bcftools software
(Danecek et al., 2021) to subset the variants to biallelic SNPs
only using options “view -m2 -M2 —types snps.” We obtained
two matrices for counts of reference allele and total depth (ref-
erence plus alternate alleles) through a custom R script. In
the same step, we filtered on minimum depth thresholds (6
and 20). At this stage it was already possible to obtain the
ratio matrices (i.e., two matrices; one per read depth thresh-
old) containing for each SNP and DNA sample the ratio of
reference alleles over the total alleles (or a missing point
in case of insufficient read depth). To obtain the properly
called “genotypes,” we input the count matrices filtered for
minimum depth equal to six to updog function from R pack-
age updog (Gerard et al., 2018) with ploidy either set to
four (tetraploid) or two (diploid). We then filtered on call-
ing quality removing the calls with an estimated proportion
of individuals misclassified in the SNP above 0.05 (i.e., the
prop_mis value returned by the updog function). The four
genotype matrices thus obtained (allele ratios with minimum
depth of 6 or 20; tetraploid and diploid called genotypes with
minimum depth equal to six) were then filtered for minimum
MAF at 5% and for maximum missing rate per marker equal
to 1, 3, and 5% to reproduce the same filtering steps used
for dDocent genotypes. With reference to genotypes called
using updog, the diploid markers were strictly a superset of the
tetraploid ones. We subset the set of diploid markers obtained
using updog so that they contained the same set of mark-
ers. Finally, missing data points were input using the Random
Forest Imputation algorithm from the R package missForest
(Stekhoven & Buehlmann, 2012).

2.6 | Analysis of linkage disequilibrium

Square root values of Pearson’s correlation (r%) between pairs
of markers were collected on a chromosome basis. Follow-
ing Vos et al. (2017), we estimated LD decay focusing on
short-range LD within a 100-kb window. Collected values
were fitted a polynomial curve as described in Marroni et al.
(2011). We measured the distance at which the curve crossed
three threshold values (i.e., P=1,r=2andrP = LDy,.q0)-
The latter, computed as half of the 90% percentile of 7> values
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at short range, is a LD decay estimator more robust toward the
percentage of haplotype-specific SNPs (Vos et al., 2017).

2.7 | Assessment of population structure

We investigated the need for imputation of population struc-
ture in GS models by a discriminant PCA (Yendle & MacFie,
1989). We used the k-means clustering algorithm iteratively
for growing values of k genotype groups from 1 to 10 and
found the optimal number of clusters according to the local
minimum of the Bayesian information criterion. The analy-
ses were performed on the output of a PCA performed on
SNP data to benefit from its dimensionality reduction. We
considered nine scenarios given by the combination of three
genomes (dDocent mock reference genome, M. sativa, M.
truncatula) by three levels of maximum missing rate per
sample (1, 3, and 5%). For each scenario, we performed a
PCA keeping all principal components (PCs), thereby obtain-
ing nine square 127 X 127 matrices. These matrices were
then clustered via k-means for various levels of k, assess-
ing the corresponding Bayesian information criterion values.
The analysis was implemented using R package Adegenet
(Jombart & Ahmed, 2011) using the functions find.clusters()
and dapc().

2.8 | Construction and assessment of
genomic selection models

We tested several whole-genome regression models, explor-
ing two distinct scenarios: (a) single-environment models and
(b) GEI-incorporating models. Predictive ability was always
computed as Pearson’s correlation between observed and pre-
dicted phenotypic values using a 10-fold cross-validation
scheme, repeating the whole process 10 times for numerical
stability and reporting results averaged across repetitions.

We tested five single-environment models: ridge regression
BLUP (RR-BLUP), genomic BLUP (G-BLUP), BayesCn
and Bayesian reproducing kernel Hilbert space (RKHS) as
described by Wang et al. (2018) and Montesinos Lopez et al.
(2022), and WG-BLUP (Medina et al., 2021). Ridge regres-
sion BLUP assumes a linear mixed additive model where each
marker is assigned an effect as a solution of the following
equation:

y=1lp+Zu+e

where y is the vector of observed phenotypes, p is the mean
of y, Z is the genotype matrix (e.g., {0,1,2} for biallelic
SNPs), u ~ N (0, Icszu) is the vector of marker effects,
and e is the vector of residuals. The model is solved in a
maximum likelihood context estimating the ridge parame-
ter A = 6°,/c°, representing the ratio between residual and

markers variance. The model was solved using the function
phenoRegressor.rrBLUP from R package GROAN (Nazzi-
cari & Biscarini, 2018) feeding the SNP matrix as genotypes
parameter.

BayesCr is somewhat similar to RR-BLUP, but the
equation is solved in a Bayesian context, whereas weights u
are sampled from a distribution with two component mixture
prior with a point of mass at zero and a Gaussian slab. The
model was solved using the function phenoRegressor.BGLR
from R package GROAN with parameters type = ‘BayesC’,
nlter = 10000, and burnln = 1000.

Genomic BLUP uses genomic relationships to estimate the
genetic value of an individual. The model uses a realized kin-
ship additive matrix as covariance between individuals, as
follows:

y=lp+g+e

with the same notation as RR-BLUP and g~N(O,G62g),
where G is the covariance (additive kinship) matrix com-
puted according to Astle and Balding (2009). The G-BLUP
model has been solved in a maximum likelihood context using
the phenoRegressor.rrBLUP function from GROAN package
feeding the kinship matrix to covariances parameter or in a
Bayesian context using function phenoRegressor. BGLR with
parameters type = ‘RKHS’, nlter = 10000, burnln = 1000. In
the latter case we refer to the model as RKHS hereafter.

Weighted G-BLUP (Medina et al., 2021) is similar to G-
BLUP, but the kinship matrix is computed weighing SNP
markers by the P values resulting from an association study.
The association scores were computed programmatically
inside each cross-validation cycle on the training set using
statgenGWAS R package (van Rossum & Kruijer, 2020).
Once the scores were obtained, the G* matrix was computed
according to Medina et al. (2021) as:

G*=2pZ'/ {2[=p, (1-p;)]}

where Z is an identity matrix for the markers, D is a diago-
nal matrix where each element of the diagonal corresponds
to SNP weights, and p; is the observed MAF of all geno-
typed individuals. The G* matrix should be used instead of
G in the G-BLUP model. Given that at the time of writing no
implementation of WG-BLUP was freely available, we imple-
mented a phenoRegressor. WGBLUP function to be used in
the GROAN framework. Internally, the function computes G*
and solves the model using a RKHS Bayesian approach.

We considered seven GEI-incorporating models. Four were
extensions of G-BLUP, BayesCrn, RKHS, and WG-BLUP
single-environment models as mixed linear models in which
location was modeled as a fixed factor via an incidence matrix,
and GEI was modeled as a random factor via the Kronecker
product of the location matrix and the genetic kinship matrix
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(for G-BLUP, RKHS, and WG-BLUP) or the SNP matrix (for
BayesCr). The remaining three models were decomposition
methods, namely the LCD model proposed by Lopez-Cruz
et al. (2015) and the CD_u and CD_uf models proposed by
Cuevas et al. (2017). The LCD model (called “MxE GBLUP
model” in the original paper) is an extension of G-BLUP with
the following:

y=1lp+g0+gl+e

with g0~N(0,G(6? ) and g1~N(0,G,6%,). In this context
Gy is equivalent to the standard G kinship matrix from G-
BLUP, and G, is a block diagonal matrix representing the
interaction between the genotypes and each environment. In
this model, the main effect (g0) allows borrowing information
between environments (through the off-diagonal blocks of
Gy), and gl captures environment-specific effects. Oper-
atively, we implemented the decomposition following the
instruction in the Box 3a of Supplemental File S4 of the
original paper.

The CD_u model considers genetic effects (u) that can be
assessed by the Kronecker product of variance—covariance
matrices of genetic correlations between environments and
genomic kernels (same as in G-BLUP). The CD_uf model has
the same genetic component as the first one plus an extra com-
ponent, f, that captures random effects between environments.
Operatively, we implemented the models following the scripts
reported in APPENDIX A and B of the original paper.

Single-environment 10-fold cross-validation was straight-
forward. Multi-environment 10-fold cross-validation was
implemented in two steps. First, a 10% of the lines were
randomly selected, and all the data from those lines were
removed from the training set (i.e., all the phenotypic data for
all environments were removed). The GEI models were then
trained on the remaining 90% of the data, and the predictions
were done for each environment separately. The usual rotation
between 10-fold cross-validations was implemented.

Genomic selection predictions relative to single-
environment models were initially assessed for each
environment using 127 genotype samples to compare the
tetraploid allele dosage or its approximations provided by
allele ratios with the diploid allele dosage. The comparison
included the diploid SNP calling restricted to the same
markers used for the tetraploid dosage to verify the intrin-
sic advantage of the latter dosage (otherwise potentially
handicapped by low marker number). Predictions were
averaged across environments with respect to two scenarios:
(a) the best single model adopted consistently across all
environments and (b) the best environment-specific models.
The results of this comparison supported the subsequent
assessment of single-environment and GElI-incorporating
models based on the diploid SNP calling of data from the
three genomes. For the intense MS environment, which

included 23 extra genotypes, we assessed prediction ability
values for single-environment models also for the scenario
with 150 parent plants.

3 | RESULTS

3.1 | Multi-environment phenotyping

The ANOVA comparison of environments for average annual
yield of 127 half-sib progenies revealed four groups that
reflected the environment differences in average annual water
available: (a) the continuously irrigated site of Médenine with
outstanding production, (b) Santiago del Estero and Oued Tes-
saout with moderate yield, (c) Alger and moderate MS with
fairly low yield, and (d) intense MS with low yield (Table 1).
Within-environment half-sib variation was always significant
(P < .01) and, when expressed as additive genetic variance
CV, tended to be particularly large in the moderate MS envi-
ronment (26.8%) and low in Oued Tessaout (13.8%) (Table 1).
Relatively higher values of the experimental error CV were
displayed by the three lowest-yielding sites as well as by the
top-yielding site of Médenine (Table 1). Significant (P < .01)
genetic variation emerged also for the set of 150 half-sib
progenies in the intense MS environment.

The combined ANOVA of three cultivars indicated sig-
nificant GEI (P < .01) across the three sites of Northern
Africa. Mamuntanas was the top-yielding cultivar in the
severely drought-prone site of Alger (P < .05), no difference
among cultivars emerged in the moderately stressed site of
Oued Tessaout, and SARDI 10 out-yielded the other culti-
vars in the moisture-favorable site of Médenine (P < .05)
(Supplemental Table S1). These responses agreed with those
expected on the ground of prior experiments and the model-
ing of cultivar responses as a function of site rainfall amounts
(Annicchiarico et al., 2011).

Both the variance among 127 half-sib progenies across
environments and the half-sib progeny X environment inter-
action variance were different from zero (P < .01), but the
latter was much larger than the former in the REML analy-
sis (Supplemental Table S2). The additive genetic variance
X environment interaction exhibited over 27-fold larger vari-
ance than the additive genetic variance across environments
[5.176 vs. 0.188 (t ha~!)?], revealing very large GEI for
genetic effects relevant to synthetic variety breeding. This
result was confirmed by genetic correlations between pairs
of environments for half-sib progeny yield responses that are
reported in Table 2, which were mostly low and occasion-
ally negative. Inconsistent half-sib family responses occurred
across all pairs of environments on the ground of r, values
always different from unity at P < .01. The three drought-
prone agricultural sites of Alger, Oued Tessaout, and Santiago
del Estero exhibited no correlation (P > .10), whereas the
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TABLE 2

agricultural test environments

Genetic correlation for annual biomass dry matter yield of 127 alfalfa half-sib progenies across six managed-stress (MS) or

MS
Oued Tessaout Santiago del Estero Médenine Moderate Intense
Environment (Morocco) (Argentina) (Tunisia) drought drought
Alger (Algeria) —.19NS .00 NS 23 NS —.06 NS —.06 NS
Oued Tessaout (Morocco) - —.22 NS —.35% —.29% —.10 NS
Santiago del Estero (Argentina) - .14 NS 39%* .10 NS
Médenine (Tunisia) - 44%* 327
MS, moderate drought - A1#*
Note. NS, not significant. All correlations are different from unity at P < .01.
*Significant at the .05 probability level. **Significant at the .01 probability level. FSignificant at the .10 probability level.
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FIGURE 1 Pattern analysis ordination of six managed-stress or agricultural test environments as a function of their score on the first three

principal component (PC) axes for environment-standardized average annual biomass dry matter yield of 127 alfalfa half-sib progenies. Al, Alger;

Me, Médenine; MI, intense drought managed stress; MM, moderate drought managed stress; Ot, Oued Tessaout; Se, Santiago del Estero

moisture-favorable site of Médenine was correlated nega-
tively with Oued Tessaout (P < .05). The ability of MS
environments to predict yield responses in distant agricultural
environments was nil for intense MS and fairly modest for
moderate MS, which displayed positive genetic correlation
(P < .01) only with the moisture-favorable site of Médenine
(ry = .44) and the moderately stressed site of Santiago del
Estero (rg = .39). Intense and moderate MS exhibited fairly
low genetic correlation (rg = .41; P < .01).

Pattern analysis results reflected this complex GEI pattern,
with the first three PC axes accounting for 25, 19, and 17%,
respectively, of the overall GEI variation for half-sib progeny
adaptive responses (Figure 1). Recalling that the inner product
between two environment vectors in a two-dimensional space
(as determined by vector lengths and angle between them)
is proportional to the phenotypic correlation between envi-
ronments for half-sib progeny yield responses (DeLacy et al.,
1996), Oued Tessaout, Alger, and Médenine emerged as quite

distinct environments for GEI pattern in the space of PCl
and PC2, whereas PC3 tended to separate mainly Santiago
del Estero and intense MS (with opposite sign) from the other
environments. On the whole, the results of genetic correlation
and pattern analysis revealed the high specificity of breed-
ing values for regions of Morocco, Algeria, Argentina, and
Italy, as represented by the respective test environments (with
Italy represented mainly by moderate MS), which emphasized
the investigation of genomic selection opportunities for each
individual environment.

3.2 | Genomic data and genome-enabled
predictions

Next-generation sequencing produced, on average, 3.0 M
reads per genotype sample. The SNP calling for the diploid
allele dosage based on the dDocent-mock reference genome
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TABLE 3 Short-range linkage disequilibrium (LD) decay within a 100-kb window
LD decay
Chromosome Median r? LDy, r’=.1 rr=2 r? =LD,,,
chrl .4 019 0.127 302 103 216
chr2.4 .021 0.131 331 113 225
chr3.4 .020 0.131 297 101 203
chr4.2 .020 0.134 306 104 202
chr5.2 021 0.132 295 101 198
chr6.2 .020 0.132 273 93 184
chr7.4 .020 0.132 267 91 180
chr8.1 .020 0.133 274 93 182
Average .020 0.131 293 100 199

Note. Statistics were computed on a chromosome basis. LD decay is reported as the distance in bp where the fitted LD decay polynomial curve crosses the three reported
thresholds, rounded to the closest integer. LD, o is half of the 90% percentile of 1 at short range.

issued more polymorphic markers than the SNP calling on
the M. sativa genome, which, in turn, produced more mark-
ers than using the M. truncatula genome, for all thresholds
of SNP missing rate per marker (Supplemental Figure S2A).
The least stringent threshold of SNP missing data (5%) pro-
duced in all cases at least 50,000 polymorphic SNP markers
(Supplemental Figure S2A). The least-favorable configura-
tion in terms of marker number (M. truncatula genome with
1% missing data threshold) provided 37,969 markers. The
SNP distribution of markers along M. truncatula and M.
sativa genomes is reported in Supplemental Figure S3. In con-
trast, the SNP calling for the tetraploid allele dosage based on
the M. sativa genome issued 728 polymorphic SNP markers,
whereas allele ratios made available 1,791 and 101 polymor-
phic SNP markers for the thresholds of 6 and 20 minimum
reads per marker, respectively, at the least stringent threshold
of 5% SNP missing data (Supplemental Figure S2B).

The measured LD values and the fitted polynomial curve
of LD decay are reported in Supplemental Figure S4, and
LD decay statistics are reported in Table 3. We observed
a quick decay of LD, which crossed all selected thresholds
within a few hundred bases. Results were substantially con-
sistent across chromosomes. In particular, LD decayed to 2
= .1 within ~300 bp (with a range of 267 bp for chromo-
some 7.4 to 331 bp for chromosome 2.4) and to > = .2 within
~100 bp (Table 3). The LD,, o) value was ~0.13, with a range
of variation from 0.127 to 0.134 (Table 3).

The results of the discriminant PCA indicated no need
to account for population structure in GS models based on
Bayesian information criterion values, which exhibited the
lowest value in the absence of genotype clusters (k = 1) for
all SNP calling genomes and SNP missing data thresholds
(Supplemental Table S3).

The preliminary comparison of GS models that neglected
or accounted for the tetraploid allele dosage indicated a trend
toward higher predictive ability of models based on a diploid

allele dosage (Table 4), which was selected for following
analyses. This result emerged more sharply for values aver-
aged across environments that were relative to the best single
model adopted across all environments (Table 4). An intrin-
sic advantage of accounting for allele dosage was revealed by
the comparison of diploid vs. tetraploid allele dosage based
on same number of markers, which revealed at least twofold
greater predictive ability of the latter, albeit with low absolute
values (Table 4). Predictions based on the tetraploid dosage
or its approximation represented by an allele ratio were max-
imized by the allele ratio based on markers with at least
six reads (Table 4), which also maximized the number of
polymorphic markers (Supplemental Figure S2B).

The top-performing single-environment and GElI-incor-
porating GS models for each test environment using a diploid
SNP calling are summarized in Table 5. Only the moder-
ate MS environment featured at least one model exceeding
0.25 predictive ability. Best predictions exceeded the values
of 0.20 for Alger and Santiago del Estero and 0.10 for Oued
Tessaout while being extremely low (<0.10) for Médenine
(Table 5). The predictive ability for the intense MS envi-
ronment was extremely low when considering the common
set of 127 genotypes but exceeded 0.10 when considering
150 genotypes (Table 5). We found an advantage of top-
performing GEl-incorporating models over top-performing
single-environment models for Alger and Santiago del Estero
(with a predictive ability increase >0.035) and a negligi-
ble advantage of top-performing single-environment mod-
els for the other environments (with a predictive ability
increase <0.02) (Table 5). Top-performing GS models were
based on the WG-BLUP statistical model or 1% SNP miss-
ing rate per marker in 7 cases out of 13 while showing no
predominant SNP calling procedure (Table 5).

The effects of the diploid SNP calling genome and the
statistical model on the maximum predictive ability of
single-environment and GEl-incorporating GS models are
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TABLE 4  Average predictive ability of top-performing single-environment genomic selection models implying a tetraploid or a diploid allele
dosage across six managed-stress (MS) or agricultural test environments. Predictive ability relative to the best single model adopted consistently
across all environments (PA-across) or best environment-specific models (PA-specific)

Allele dosage  Allele dosage criterion Genome PA-across® Model” PA-specific®
Tetraploid Statistical® Medicago sativa 0.033 RR-BLUP/0.01 0.091
Tetraploid Allele ratio, minimum six reads Medicago sativa 0.060 RKHS/0.03 0.110
Tetraploid Allele ratio, minimum 20 reads Medicago sativa 0.039 RR-BLUP/0.01 0.082
Diploid Statistical®/markers common to Medicago sativa 0.010 RR-BLUP/0.01 0.045
tetraploid dosage
Diploid Statistical® Medicago sativa 0.088 RKHS/0.05 0.108
Diploid Statistical? Medicago truncatula 0.112 WG-BLUP/0.03 0.128
Diploid Statistical dDocent-mock reference genome 0.100 WG-BLUP/0.05 0.116

2As Pearson’s correlation between predicted and observed phenotypes in a 10-fold cross-validation scheme.

bStatistical model: Bayes, Bayes Cr; G-BLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert space; RR-BLUP, ridge regression best linear
unbiased prediction; WG-BLUP, weighted genomic best linear unbiased prediction. Thresholds of single nucleotide polymorphism missing rate per marker: 0.01, 0.03, or
0.05.

“Pipeline for statistical testing: updog.

dPipeline for statistical testing: dDocent.

TABLE 5 Predictive ability (PA) of top-performing single-environment and genotype X environment interaction (GEI)-incorporating genomic

selection models for six managed-stress or agricultural test environments

Single-environment model GElI-incorporating model

Environment No. of genotypes PA? Model” PA? Model”

Alger (Algeria) 127 0.178 MG/Bayes/0.01 0.224 MG/LC/0.01

Oued Tessaout (Morocco) 127 0.122 MS/WG-BLUP/0.03 0.118 MS/RKHS/0.05
Santiago del Estero (Argentina) 127 0.192 MG/WG-BLUP/0.01 0.228 MS/WG-BLUP/0.01
Médenine (Tunisia) 127 0.033 MT/WG-BLUP/0.01 0.016 MT/CD_uf/0.01
Moderate drought managed stress 127 0.277 MT/WG-BLUP/0.01 0.266 MG/WG-BLUP/0.05
Intense drought managed stress 127 0.030 MT/WG-BLUP/0.03 0.024 MT/G-BLUP/0.03
Intense drought managed stress 150 0.122 MG/Bayes/0.03 - -

2As Pearson’s correlation between predicted and observed phenotypes in a 10-fold cross-validation scheme.

"Diploid SNP calling genome: MG, dDocent-mock reference genome; MS, Medicago sativa; MT, Medicago truncatula. Statistical model: Bayes, Bayes Crt; CD_u, Cuevas
etal.’s (2017) decomposition, model u; CD_uf, Cuevas et al.’s (2017) decomposition, model uf; G-BLUP, genomic best linear unbiased prediction; LC, Lopez-Cruz et al.’s
(2015) decomposition; RKHS, reproducing kernel Hilbert space; RR-BLUP, ridge regression best linear unbiased prediction; WG-BLUP, weighted genomic best linear
unbiased prediction. Thresholds of SNP missing rate per marker: 0.01, 0.03, or 0.05.

summarized in Table 6, where the predictive ability of the
top-performing models for each combination of SNP call-
ing genome and statistical model are averaged across the
six test environments. On average, the best predictions were
obtained by the WG-BLUP model in single-environment
models using M. truncatula—issued SNP markers and, aver-
aged across genomes, by the WG-BLUP model in single-
environment models. However, single-environment models
and GEl-incorporating Bayesian models performed similarly,
based on predictions averaged across models and genomes.
The SNP calling genomes ranked in the following order: mock
reference genome > M. truncatula > M. sativa (Table 6).
In contrast, top-performing models averaged across statis-
tical models and test environments indicated no definite

advantage of any threshold of SNP missing rate per marker
(Supplemental Figure S5).

The predictive ability of GS models for genotype mean
yield of environment-standardized yield data was very low,
achieving only 0.066 (using mock genome-derived SNP data
and the RR-BLUP model).

4 | DISCUSSION

Large GEI for biomass yield emerged for alfalfa cultivars
across agricultural environments of different countries within
the Western Mediterranean basin (Annicchiarico et al., 2011),
MS environments with contrasting level of summer drought
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TABLE 6

Effect of the diploid single nucleotide polymorphism (SNP) calling genome and the statistical model on the predictive ability of

top-performing single-environment and genotype X environment interaction (GEI)-incorporating genomic selection models

SNP calling genome
dDocent-mock reference
Statistical model” genome
Single-environment models
Ridge regression best linear unbiased 0.102
prediction
Genomic best linear unbiased prediction 0.098
Bayes Cn 0.097
Reproducing kernel Hilbert space 0.095
Weighted GBLUP 0.111
Average 0.101
GEl-incorporating Bayesian models
Genomic best linear unbiased prediction 0.104
Bayes Cn 0.111
Reproducing kernel Hilbert space 0.100
Weighted GBLUP 0.097
Average 0.103
Other GEl-incorporating models
Cuevas et al.’s (2017) decomposition, 0.091
model u
Cuevas et al.’s (2017) decomposition, 0.103
mode] uf
Lopez-Cruz et al.’s (2015) 0.096
decomposition
Average 0.097

Note. Results averaged across six managed-stress or agricultural test environments.

Medicago sativa Medicago truncatula Average
0.086 0.090 0.093
0.091 0.093 0.094
0.097 0.094 0.096
0.084 0.090 0.089
0.081 0.127 0.107
0.088 0.099 0.096
0.098 0.091 0.098
0.088 0.097 0.099
0.098 0.086 0.095
0.076 0.097 0.090
0.090 0.093 0.095
0.079 0.093 0.088
0.088 0.091 0.094
0.089 0.087 0.091
0.086 0.090 0.091

*Top-performing model based on predictive ability as Pearson’s correlation between predicted and observed phenotypes in a 10-fold cross-validation scheme, using 0.01,

0.03, or 0.05 SNP missing rate per marker. Predictions for 127 common genotypes.

(Annicchiarico & Piano, 2005), irrigated and rain-fed envi-
ronments of Italy (Annicchiarico, 1992, 2021), and even
environments of relatively small target regions such as Tas-
mania (Pembleton et al., 2010) and the Czech Republic (Hakl
et al., 2019). However, the GEI size in the current evaluation
of half-sib progenies, as expressed by 27-fold greater addi-
tive genetic variance X environment interaction relative to
the additive genetic variance across environments, was much
larger compared with earlier estimates obtained on cultivars.
As a relevant comparison, we re-analyzed the biomass yield
data in Annicchiarico et al. (2011) relative to 12 cultivars
(including the three parent cultivars of the current breeding
population) grown in 10 environments of Algeria, Morocco,
Italy, and Tunisia, observing a similar size of cultivar main
effects and cultivar X environment interaction components of
variance [2.62 vs. 2.54 (t ha—!)?]. The occurrence of much
greater GEI among individual genotypes (as represented
by their half-sib progenies) than among cultivars has great
practical importance because genotypes represent the selec-
tion unit of breeding programs. This finding may partly be

explained by the fact that cultivar variation excludes the vari-
ation for adaptation pattern among individuals within cultivar,
which proved large when it was evaluated (Annicchiarico,
2007). Large GEI was confirmed by genetic correlations
for half-sib progeny yield responses close to zero not only
between the site irrigated with saline water (Médenine) and
each of the drought-prone agricultural sites (Alger, Oued
Tessaout, Santiago del Estero) but even between pairs of
drought-prone sites. Although no MS environment of Italy
exhibited half-sib progeny responses very similar to those
in agricultural environments of Algeria, Argentina, Morocco,
or Tunisia, the fairly low genetic correlation between mod-
erate MS and intense MS environments revealed high GEI
even across two levels of drought intensity. The large GEI
size supports specific GS or phenotypic selection for each
region represented by one test environment (where the mod-
erate MS environment would be representative of rain-fed
Italian environments). The consistency of the current site-
specific ranking of the three parent cultivars in Médenine,
Alger, and Oued Tessaout with that observed in a prior study
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(Annicchiarico et al., 2011) indicates the good repeatability
of the cultivar adaptive responses that is a prerequisite for the
reliability of GEI analysis results and the selection for specific
regions. Alfalfa cultivar GEI patterns proved repeatable also
across different Italian environments (Annicchiarico, 2021).

Information on alfalfa adaptive traits that may explain the
magnitude of the GEI observed in this study is extremely lim-
ited. Although various eco-physiological studies shed light
on mechanisms that contribute to the specific adaptation of
alfalfa to severely drought-prone or moisture-favorable envi-
ronments (Annicchiarico et al., 2013; Avice et al., 1997; Kang
et al., 2011, 2022; Wissuwa & Smith, 1997) or environ-
ments irrigated with saline water (Cornacchione & Suarez,
2015), we are aware of no study that has investigated adap-
tive traits in relation to different drought stress patterns or
different combinations of drought and heat stress. Drought
tolerance under summer water deficit after flood irrigation
in Oued Tessaout may have resulted from a deep root sys-
tem that was able to access the stored water. In contrast, a
relatively shallow root system may suffice for adaptation to
a rainfed Mediterranean-climate environment such as that of
Alger (Ludlow & Muchow, 1990), as confirmed for alfalfa
in rainfed Algerian environments by results in Annicchiarico
et al. (2013). In addition, Oued Tessaout featured much
higher summer temperatures than Alger, whereas Santiago del
Estero underwent drought stress in the cool season. Moder-
ate genetic variation for tolerance to high temperatures was
reported by Zaka et al. (2016) across the temperature range
of 5-35 °C that was distinctly lower than the average daily
maximum temperature in summer months at Oued Tessaout
(Table 1).

The LD decay within 300 bp for the threshold 2 = .1
and within 100 bp for the threshold 7> = .2 could be consid-
ered quite rapid when compared with values reported in other
alfalfa studies. For example, Sakiroglu et al. (2012) observed
a value of 500 bp for the threshold > = .1 in a collection of
diploid genotypes belonging to subspecies caerulea, falcata,
or hemicycla. On average, LD decayed within 26 Kbp in dif-
ferent alfalfa subpopulations studied by Li, Han, et al. (2014)
and within 433 Kbp for a population originated by a facto-
rial mating design among 33 alfalfa genotypes in Andrade
et al. (2022) for the threshold #> = .2. Our LD results con-
firm indirectly that our reference population originated from
three geographically contrasting populations was character-
ized by large genetic diversity, as planned in order to develop
GS models of large potential interest for breeding programs.
However, the rapid LD decay may complicate GS predic-
tions, which would need large marker numbers to saturate
the genome. This condition was hardly satisfied by any SNP
calling procedure aimed to account for the tetraploid allele
dosage, of which the polymorphic marker number was always
below 1,800, when considering that at least 1,000 SNP mark-
ers were deemed as necessary for proper genome saturation of

alfalfa populations featuring only moderate genetic variation
(Lietal., 2011). Greater marker number may have contributed
crucially to the predictive ability advantage of the allele ratio
based on at least six reads over the other two procedures that
took account of the allele dosage. It should be noted that
different pipelines and procedures adopted for diploid and
tetraploid allele dosages probably contributed to the distinctly
greater number of polymorphic markers made available for
the diploid dosage. Although insufficient read depth caused
by modest sequencing effort limited the exploitation of allele
dosage information in the current, genetically broad refer-
ence population, one may expect to conveniently exploit the
tetraploid allele dosage when adopting greater sequencing
effort or reference populations featuring lower genetic diver-
sity. Our comparison of diploid vs. tetraploid allele dosage
based on the same set of markers made available by the sta-
tistically based attribution of allelic classes confirmed the
ability of the latter dosage to improve genome-enabled pre-
dictions, as reported for alfalfa (Medina et al., 2020) and other
tetraploid crops (e.g., Lara et al., 2019).

The observed lack of population structure was expected
according to the way the reference population was constructed
(i.e., the repeated intercrossing of many genotypes from the
three populations of origin). This result agrees with earlier
findings relative to the same population and to a semi-dormant
reference population obtained by stratified mass selection
within a number of Italian landraces and commercial cultivars
(Annicchiarico, Nazzicari, et al., 2015).

Even in most favorable situations, the predictive ability of
top-performing GS models was lower than the value of 0.35
reported in Annicchiarico, Nazzicari, et al. (2015) for 154
genotypes sorted out of the same breeding population that
were phenotyped for biomass yield under moisture-favorable
conditions in a MS environment. The larger training popu-
lation sample may have contributed to the greater predictive
ability in that single-environment study, when considering the
increase of predictive ability observed for the intense MS
environment when analyzing 150 instead of 127 genotypes
(0.12 vs. 0.03). High phenotyping costs for this multi-year,
multi-harvest species prevented the adoption of a larger
training population in this multi-environment study, an eval-
uation scenario likely to be encountered by any moderately
sized breeding program. Higher experimental error and/or
lower additive genetic variance may also have contributed
to generally lower predictive ability values in this study.
We investigated the relationship of drought stress severity
with genetic and experimental error variation by estimat-
ing their CV under moisture-favorable conditions in the MS
experiment in Annicchiarico, Nazzicari, et al. (2015) with
respect to the 127 genotypes that were common to the cur-
rent study and comparing them with those for moderate MS
and intense MS experiments, considering the similarity of
these experiments for all aspects (plant density, plot size,
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phenotyping platform) other than the applied drought stress
level. The progressive decrease of predictive ability pass-
ing from moisture-favorable (0.35) to moderate (0.26) and
intense managed stress (0.03) was paralleled by a progressive
increase of experimental error CV (12.6 vs. 19.5 vs. 30.1%)
in the presence of fairly similar additive genetic variance CV
(21.8 vs.26.8 vs. 21.9%). Experimental error CV values in the
agricultural environments (Table 1) were always higher than
that in the moisture-favorable MS environment. This find-
ing, and the range of experimental error CV that we found
in drought-prone environments, agree with results for alfalfa
in drought-stress conditions by Singh et al. (2022). Our results
suggest that high experimental error, which is a key reason for
poor genome-enabled prediction of crop yield (Montesinos-
Lépez et al., 2022), may hinder the definition of accurate
GS models for alfalfa biomass yield for stress environments.
However, high experimental error also constrains phenotypic
selection for such environments (Blum, 1985).

The observed predictive ability values ranged from mod-
erately low to very low. However, the occurrence of three
environments with predictive ability above 0.20 (Alger, San-
tiago del Estero, and moderate MS) does not compare
unfavorably with the values in the range of 0.21 to 0.30
reported by Andrade et al. (2022) for the less challenging case
of multi-harvest biomass yield of alfalfa in a moderately favor-
able environment in the presence of much slower LD decay,
larger training set (177 families), and greater marker num-
ber. The actual usefulness of predictive ability values for GS
targeted to alfalfa biomass yield depends on the challenges
faced by phenotypic selection for this trait as determined by
narrow-sense heritability (th) and duration of each selection
cycle. The reported values of k> for alfalfa biomass yield
were in the range of 0.21 to 0.30 (Acharya et al., 2020; Annic-
chiarico, 2015; Riday & Brummer, 2005), whereas one cycle
of half-sib progeny-based phenotypic selection may span over
5 yr (inclusive of half-sib production and first generation of
recombination), compared with 1 yr for GS. Based on these
premises and assuming /%> = 0.25 and estimated evaluation
costs per genotype (inclusive of VAT) of €68 for GBS-based
GS and €170 for progeny-based selection, Annicchiarico et al.
(2021) identified the predictive ability value of 0.13 as the
efficiency threshold for GS relative to phenotypic selection
according to predicted yield gains per unit time with same
evaluation costs. Such a threshold may actually be somewhat
lower for stress-prone environments, where &y values are
expected to be decreased by greater experimental error. The
0.13 threshold was exceeded by top-performing GS models
for the moderate MS environment, Alger, and Santiago del
Estero, whereas the top-performing models for Oued Tes-
saout and intense MS (when based on 150 test genotypes)
were not much below. Only Médenine featured predictive
ability values of no value for GS. Such a negative result
could not be attributed to intrinsically low additive genetic

variance or high experimental error, given the intermediate
values of their respective CV (Table 1). Our breeding popula-
tion was not expected to include large variation for tolerance
to saline water because Erfoud 1 (the most tolerant of the
three contributing cultivars) was characterized by only mod-
erate salt tolerance (Pecetti et al., 2013). The low predictive
ability observed for genotype mean yield of environment-
standardized yield data had limited practical importance in
our study, given the lack of interest of biomass yield selection
for wide adaptation.

Our study confirmed the greater predictive ability of the
WG-BLUP model over other statistical models as put forward
for alfalfa biomass yield by Medina et al. (2021), although its
current advantage over other models was not as large as that
reported by these authors. Our extension of the WG-BLUP
model to incorporate GEI effects confirmed the advantage of
this model over other models even under this scenario. Opera-
tionally, the adoption of WG-BLUP is somewhat complicated
by the need for a prior association study used to assign SNP
marker weights, which has to be performed independently for
each cross-validation run.

We observed a predictive ability advantage of the top-
performing GEI-incorporating model over the top-performing
single-environment model only for Alger and Santiago del
Estero (with 19-26% relative advantage of the former model;
Table 5). The advantage of GEI-incorporating models over
single-environment models was in the 10-40% range in a
set of studies reviewed by Crossa et al. (2017), but these
authors anticipated that a sizeable advantage is unlikely to
occur for sets of environments featuring very low or negative
genetic correlation, such as the current ones. No advantage of
GEI incorporation in GS models was reported for other con-
texts featuring complex GEI patterns (Dawson et al., 2013;
Juliana et al., 2020). Our cross-validation assessment for
GEl-incorporating models hypothesized the prediction of new
genotypes in all new locations (wherein validation genotypes
are eliminated by all training sets). This scenario is more
challenging but seemingly closer to most GS contexts than
the alternative scenario wherein validation genotypes for a
given environment may be part of a training set in another
environment.

The higher number of polymorphic markers provided
by the SNP calling based on the dDocent-mock reference
genome probably contributed to its predictive ability advan-
tage over the SNP calling based on M. truncatula and
M. sativa genomes that emerged for results averaged across
all statistical models. However, mock reference genome-
based and M. truncatula genome-based SNP callings showed
similar value when considering only the best-performing
single-environment or GEI-incorporating GS model for each
environment (Table 5). A prior comparison of the three SNP
calling procedures based on biomass yield under moisture-
favorable conditions and two forage quality traits suggested

95UB017 SUOLILLIOD SAIIERID 3ol jdde 8Ly Aq peusenob ae Sapilie YO '9SN J0 S9INJ 10} Akeidi]8UIUO AS|IM U (SUONIPUGD-PUR-SLLIBY WD A | 1M Aleiq 1 Bu1|UO//SANY) SUONIPUOD pue SIS | 8U1 89S *[z202/0T/2T] uo Akeiqi suluo (1M ‘etrendedoby eiBojouyoe | ap uoeN Ul VNI Aq #9202 26d1/200T 0T/I0p/wod A8 im Akeiq iUl juo'Ssssde//Sdny W) pepeo|umoq ‘0 '22EE0v6T



16 of 20 The Plant Genome .0

ANNICCHIARICO ET AL.

the similar value for SNP calling of mock reference and
M. truncatula genomes (Annicchiarico et al., 2021). Single
nucleotide polymorphism calling based on the sequenced M.
sativa genome could exploit only one sequenced genotype so
far (Chen et al., 2020), suggesting that greater allelic varia-
tion could be captured and exploited once the genome of other
genotypes becomes available.

S | CONCLUSIONS

This study highlighted the challenge of improving alfalfa
biomass yield in stress-prone growing regions due to large
GEI and high experimental errors. The large GEI compels the
breeder to select for specific regions, prevents the exploitation
of evaluation data from MS or agricultural environments from
other regions, and limits the predictive ability gain deriving
from GElI-incorporating GS models over single-environment
models. Genomic selection based on region-specific mod-
els was hindered by low predictive ability values associated
with necessarily low training population size and high exper-
imental errors, and it was complicated by rapid LD decay
associated with selection within a reference population fea-
turing large genetic diversity. Even under this challenging
scenario, GS may be more efficient than phenotypic selec-
tion in terms of genetic gain per unit time and unit cost in
most of our target regions. The poor efficiency of phenotypic
selection for alfalfa biomass yield is supported, inter alia,
by the negligible yield improvement observed in the United
States in recent decades (Brummer & Casler, 2014). Suit-
able plant material for comparing GS vs. phenotypic selection
in terms of actual yield gains is under generation for all the
drought-prone regions targeted by this study. Even if GS and
phenotypic selection displayed similar selection efficiency,
GS has the additional potential advantage of allowing to select
for other GS-predictable traits at nearly no extra cost. This can
be the case for two key forage quality traits, namely, neutral
detergent fiber digestibility and crude protein content, which
displayed predictive ability values up to 0.36 and low GEI in
this reference population (Annicchiarico et al., 2021; Biazzi
et al., 2017). The former trait exhibited moderate predictive
ability also in the study by Jia et al. (2018). Greater geno-
typing effort could increase GS prediction ability by properly
exploiting allele dosage information, albeit at a greater geno-
typing cost (whose impact on the relative efficiency of GS is
under verification on other germplasm sets grown in severely
drought-prone environments). The exploitation of more pre-
dictive GS models, such as WG-BLUP in this study, and
the perspective availability of greater SNP polymorphism
derived from additional sequenced alfalfa genomes, could
alleviate the challenge of alfalfa breeding for drought-prone
regions.
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