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A Dirichlet problem in the strip ∗

Eugenio Montefusco

Abstract

In this paper we investigate a Dirichlet problem in a strip and, using

the sliding method, we prove monotonicity for positive and bounded so-

lutions. We obtain uniqueness of the solution and show that this solution

is a function of only one variable. From these qualitative properties we

deduce existence of a classical solution for this problem.

1 Introduction

In 1979 B. Gidas, W. M. Ni and L. Nirenberg studied the problem:

{

−∆u = f(u) in B(0, r)
u ≡ 0 on ∂B(0, r)

(1)

where f is a locally Lipschitz function. In [GNN] they showed that the solution
of (1) is a radial function, therefore this solution reflects the symmetry of the
domain. The proof of this result is based on the moving plane method and the
maximum Principle.

In the last years the interest in qualitative properties of solutions of nonlinear
elliptic equations has increased. H. Berestycki and L. Nirenberg [BN2] have
simplified the moving plane method and proved the symmetry of solutions of
elliptic equations in nonsmooth domains. In the same paper H. Berestycki and
L. Nirenberg have also simplified the sliding method, which is a technique for
proving monotonicity of solutions of nonlinear elliptic equations.

At the same time some mathematicians are interested in qualitative prop-
erties of solutions of elliptic equations in unbounded domains. H. Berestycki
and L. Nirenberg have studied the flame propagation in cylindrical domains
[BN1]. C. Li investigated elliptic equations in various unbounded domains [L].
H. Berestycki, M. Grossi and F. Pacella showed (using the moving plane method)
that an equation with critical growth does not admit a solution in the half space
[BGP].
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In 1993, H. Berestycki, L. A. Caffarelli and L. Nirenberg considered a Dirich-
let problem in the half space, they showed that the solution is a function of only
one variable (under suitable hypotheses) using the sliding method [BCN].

With the same technique we want to prove a similar result in the strip. In
fact, using the sliding method, we show that problem (4) has a unique classical
solution depending on one variable only. As a matter of fact, the problem is
reduced to an ODE.

This paper is organized as follows. In section 2, we study the qualitative
properties of the solution to (4). In section 3 we show some simple corollaries
to the qualitative study.

In this paper we use frequently the following two theorems.

Theorem 1.1 Let Ω be an arbitrary bounded domain of R
N which is convex in

the x1-direction. Let u ∈ W 2,N
loc (Ω) ∩ C

(

Ω
)

be a solution of:

{

∆u + f(u) = 0 in Ω ,
u ≡ ϕ on ∂Ω .

(2)

The function f is assumed to be Lipschitz continuous. Here we assume that
for any three points x′ = (x′1, y) , x = (x, y) , x′′ = (x′′1 , y) lying on a segment
parallel to the x1-axis, x′1 < x1 < x′′1 , with x′, x′′ ∈ ∂Ω, the following holds

ϕ(x′) < u(x) < ϕ(x′′) if x ∈ Ω,
ϕ(x′) ≤ ϕ(x) ≤ ϕ(x′′) if x ∈ ∂Ω.

(3)

Then u is monotone with respect to x1 in Ω:

u(x1 + τ, y) > u(x1, y) for (x1, y) , (x1 + τ, y) ∈ Ω and τ > 0.

Furthermore, if f is differentiable, then ux1
> 0 in Ω. Finally, u is the unique

solution of (2) in W 2,N

loc
(Ω) ∩ C

(

Ω
)

satisfying (3).

Proof. See Theorem 1.4 of [BN2].

Theorem 1.2 Let Ω be a bounded domain and suppose u1 ∈ H1 (Ω) is a subso-
lution while u2 ∈ H1 (Ω) is a supersolution to problem (2), let be f ∈ C(R) and
assume that with constants c1 , c2 ∈ R there holds −∞ < c1 ≤ u1 ≤ u2 ≤ c2 <
−∞, almost everywhere in Ω. Then there exists a weak solution u ∈ H1 (Ω) of
(2), satisfying the condition u1 ≤ u ≤ u2 almost everywhere in Ω.

Proof. See Theorem 2.4 in chapter I of [S].
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2 Statements and proofs

Theorem 2.1 Let u be a classical solution of














−∆u = f(u) in S
0 < u < M in S

u ≡ 0 on {x1 = 0}
u ≡ M on {x1 = h}

(4)

where S := {x ∈ R
N such that 0 < x1 < h}. Let f be a locally Lipschitz

function with f(0) ≥ 0 and f(M) ≤ 0. Then u ≡ u(x1) and ux1
> 0 in S.

Moreover, u is the unique solution of (4).

The proof of Theorem 2.1 relies on the following propositions:

Proposition 2.2 There exists w(t), a solution of














w′′(t) + f(w(t)) = 0 in (0, h)
0 < w < M in (0, h)
w(0) = 0

w(h) = M

(5)

such that u(x) ≤ w(x1) in S.

Proposition 2.3 There exists ρ(t), a solution of (5), such that u(x) ≥ ρ(x1)
in S.

Proof of Theorem 2.1 By Theorem 1.1 problem (5) has a unique solution
such that 0 < w < M ; indeed, we have that ρ(t) ≡ w(t) in (0, h).

Then Theorem 2.1 is proved, since we have that ρ(x1) ≤ u(x) ≤ w(x1) ≡
ρ(x1), so u is a function of only x1; furthermore , Theorem 1.1 shows that
ux1

> 0 in S and u is the unique solution of (4).
Now we must prove Propositions 2.2 and 2.3, which are more difficult than

Theorem 2.1.

Proof of Proposition 2.2

Since the function u is a classical solution of (4), by the Schauder estimates we
can say that |∇u| ≤ K in the strip, with K depending only on max[0,h] f(s),
(see Theorem 8.33 in [GT]).

For ε ∈ (0, min [1/K, h/M ]), consider the function on R
+:

σε(t) =

{

t
ε in [0, εM ]

M in [εM, h].

Set ΩR :=
{

x ∈ S :
(

x2
2 + . . . + x2

N

)1/2
< R

}

, the cylinder in S of radius R.
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We note that there is a unique function wε such that:







−∆wε = f(wε) in ΩR

u < wε < M in ΩR

wε ≡ σε(x1) on ∂ΩR .

In fact, u is a subsolution of this problem (on the boundary u takes values less
than w because u cannot increases faster, since |∇u| ≤ K), and the constant
function M is a supersolution. By the theorem of sub and supersolution (see
Theorem 1.2), there exists a solution.

This solution is smooth by the classical regularity results (recall that f is
locally Lipschitz, and we can apply Lemma B.3 of [S]); therefore, by Theorem
1.1 the function wε is unique and strictly increasing in x1 (note that u < wε < M
holds by the strong maximum Principle).

If we slide u vertically (i.e. without changing x1), we find that similarly to
the proof of the first Lemma 6 in [BCN]:

u(x1, x
′ + a) < wε in ΩR, ∀a ∈ R

N−1.

Now let ε → 0 through a sequence. The sequence wε is bounded in C2(ΩR) by
Theorem 8.33 in [GT], indeed it is compact in C1(A), where A is a compact
subset of ΩR \ {(0, x′) : |x′| = R}.

Then wε converges to a function wR satisfying:























−∆wR = f(wR) in ΩR

w(0, x′) ≡ 0 for |x′| < R
w ≡ M on ∂ΩR \ {x1 = 0}

w is increasing in x1

u(x1, x
′ + a) < wR < M in ΩR, ∀a ∈ R

N−1.

(6)

Now we want to prove that wR is the unique solution of (6). In order to
prove the uniqueness we cannot use Theorem 1.1, since wR is not continuous
on ΩR ,but in [BCN] (section 2, p. 34-35) this fact is proved, using the sliding
method and a little bit of care.

Now we can consider R′ > R. For a ∈ R
N−1, such that |a| < R′ − R, and

for δ ∈ (0, h), we slide ΩR so that its center is at
(

a, δ − h
2

)

. For δ small, by
continuity, the translated wR is greater than wR′ in the overlapped region with
ΩR′ . Moving the displaced ΩR up, and using the sliding method as above, we
conclude that

wR(x) > wR′(x1, x
′ + a) ∀a ∈ R

N−1, with |a| < R′ −R. (7)

It follows that wR is a decreasing sequence in R. We let R → ∞, through a
sequence, and we find that the sequence converges to a function w which satisfies
problem (4).



EJDE–1996/10 Eugenio Montefusco 5

From (7) we find that

w(x) ≥ w(x1, x
′ + a) ∀a ∈ R

N−1 .

Then it follows that w is independent of x′, since a is an arbitrary vector in
R

N−1. We also have
u(x) ≤ w(x1) ≤ M,

(it follows from the formulation of problem (6) and letting R →∞).
Then the function w satisfies problem (5) and is greater than u

Proof of Proposition 2.3

We wish to prove Proposition 2.3 following the proof of Proposition 2.2; this
is possible because we are in the strip and we can build a suitable boundary
condition for the problem in the cylinder. In [BCN] this is not possible, since
the only condition at the boundary that we can consider is the constant 0, and
with this condition we cannot apply the Maximum Principle.

For ε ∈ (0, min [1/K, h/M ]), define the function

γ(t) =

{

0 in [0, h− εM ]
(t− h)/ε + M in [h− εM, h].

As above, there exists a unique function ρε such that:






−∆ρε = f(ρε) in ΩR

0 < ρε < u in ΩR

ρε ≡ γ(x1) on ∂ΩR .

In this case, u is a supersolution of the problem (on the boundary u takes
values greater than ρε), and the constant 0 is a subsolution (as f(0) ≥ 0). By
the theorem of sub and supersolution, there is a solution of the equation.

By regularity theory, the function ρε is smooth; indeed, by the sliding method
(Theorem 1.14), ρε is unique and strictly increasing in x1 (note that 0 < ρε < u
is true by the strong maximum Principle). As for the function wε we find, by
the sliding method, that

0 < ρε < u(x1, x
′ + a) in ΩR, ∀a ∈ R

N−1.

Now let ε → 0 through a sequence. The sequence ρε is bounded in C2(ΩR)
by the Schauder theory, then by the Ascoli-Arzelà Theorem, it is compact in
C1(A), where A is a compact subset of ΩR \ {(h, x′) : |x′| = R}. Then ρε

converges to a function ρR satisfying:






















−∆ρR = f(ρR) in ΩR

ρR ≡ 0 on ∂ΩR \ {x1 = h}
ρR(h, x′) for |x′| < R

ρR is increasing in x1

0 < ρR < u(x1, x
′ + a) in ΩR, ∀a ∈ R

N−1.

(8)
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To show that the function ρR is the unique solution of (8), we proceed as
in [BCN]. Let ζ be another solution of (8). Let Σδ denote the intersection
ΩR ∩ {ΩR − (h − δ)e1}, and let ρ′ be the shifted ρR. Then the function ρ′

satisfies:

−∆ρ′ = f(ρ′) in Σδ

and

lim inf
x→∂Σδ

(ρ′ − ζ) ≥ 0.

Since the function f is locally Lipschitz, by the mean value Theorem, ρδ :=
(ρ′ − ζ) satisfies:

−∆ρδ = c(x)ρδ in Σδ , (9)

where |c(x)| is a function bounded by the Lipschitz constant of f .

For δ small we may apply the maximum Principle in narrow domains (see
[GNN] Corollary p. 213), as Σδ is narrow in the x1 direction, and conclude that
ρδ > 0 (using also the strong maximum Principle).

We want to slide the translated ΩR by increasing δ, and use the maximum
Principle to show that ρδ > 0 in Σδ for every positive δ < h. Suppose that
ρδ > 0 in Σδ for a maximal open interval (0, µ), with µ ≤ δ.

We want to show that µ = h by contradiction. Assume that µ < h.

By continuity, ρµ ≥ 0 in Σµ and satisfies (9), since ρµ > 0 on {x1 = 0} we
have that ρµ 6≡ 0; therefore, by the maximum Principle, we can say that ρµ > 0
in Σµ.

We choose a small positive real number α such that α < min[(h − µ), R],
and consider the subset A := {(x, x′) ∈ ΩR : x1 < (µ− α) , |x′| < (R− α)}.

As ρµ > 0 in Σµ, there exists some constant ε > 0 such that ρµ ≥ ε in A.
Thus for µ′ > µ, with (µ′ − µ) sufficiently small, we obtain that ρµ′ > 0 in A.

To conclude that ρµ′ > 0 in Σµ′ we use the maximum Principle again. In
Σµ′ \ A the function ρµ′ verifies −∆ρµ′ = c(x)ρµ′ , and since ρµ′ > 0 in A, we
also have lim infx→∂(Σµ′\A) ρµ′(x) ≥ 0. Since

(

Σµ′ \A
)

has small measure for

(µ′ − µ) small, the maximum principle holds in
(

Σµ′ \A
)

(see Proposition 1.1

in [BN2]), and we conclude that ρµ′ > 0 in
(

Σµ′ \A
)

, and hence in all of Σµ′ .
This is impossible for the maximality of (0, µ), therefore we have proved that
ρδ > 0 in Σδ, ∀δ < h.

Now let δ → h; by continuity, it follows that ρR ≥ ζ in ΩR. We may
interchange the roles of ρR and ζ in the proof, and state that ρR ≡ ζ.

Now we can consider R′ > R. For a ∈ R
N−1 such that |a| <

(

R
′

−R
)

, and

for δ ∈ (0, h), we slide ΩR so that its center is at
(

a, δ − h
2

)

. For δ small, by
continuity, the translated ρR is less than ρR′ in the overlapped region with ΩR′ .
Moving the displaced ΩR, and using the sliding method, we conclude that

ρR′ (x) > ρR(x1, x
′ + a) ∀a ∈ R

N−1, with |a| < R′ −R. (10)
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It follows that ρR is an increasing sequence in R. We let R →∞, through a
sequence, and find that the sequence converges to a function ρ, which satisfies
equation (5). From (10) we find that

ρ(x) ≥ ρ(x1, x
′ + a) ∀a ∈ R

N−1,

then it follows that ρ is independent of x′, since a is arbitrary. Furthermore, we
also have that

0 ≤ ρ(x1) ≤ u(x),

(it follows from the formulation of problem (5) and letting R → ∞). This
concludes the proof of Proposition 2.3.

3 Remarks and corollaries

Proposition 3.1 Theorem 2.1 is true even if the function f depends on x1

provided the function f(t, s) is increasing in the variable t.

Proof Indeed if f(s, u) is increasing in the first variable, we obtain

−∆ρδ = f(x1 + (δ − h), ρ)− f(x1, ζ)

≤ f(x1, ρ)− f(x1, ζ)

= c(x)(ρ − ζ) .

This inequality is sufficient for the proofs of the above Propositions. In fact the
maximum Principle holds with inequality, and we don’t need the equality.

Corollary 3.2 There exists a unique classical solution to problem (4) which
satisfies the claim of Theorem 2.1, supposing that f is a locally Lipschitz function
such that f(0) ≥ 0 and f(M) ≤ 0.

Proof We have proved that every solution of the problem is a function de-
pending only on x1, thus problem (4) has a solution if and only if problem (5)
has a solution. But the one-dimensional problem admits a weak solution u by
the Theorem of sub and supersolution (see theorem 1.2), since the constants
0 and M are functions of H1(0, h) and they are sub and supersolution of (5),
respectively.

Since f is a locally Lipshitz function this weak solution u is a classical solu-
tion (see appendix B in [S]) and is unique by the Theorem 1.1. The Corollary
is proved.

This Corollary is a simple generalization of Theorem 1.2; in fact our domain
is not bounded, but the domain S has a particular geometry and this is crucial
for the proof of Theorem 2.3 and Corollary 3.2.
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Corollary 3.3 Consider the problem:






















−∆u = f(u) in (0, h)× Ω
0 < u < M in (0, h)× Ω

u ≡ 0 on {0} × Ω
u ≡ M on {h} × Ω
uν ≡ 0 on (0, h)× ∂Ω ,

(11)

where Ω is a Domain in R
N−1 and uν is the exterior normal derivative. Let f

be a locally Lipschitz function with f(0) ≥ 0 and f(M) ≤ 0.
Then there exists at least a classical solution of (11) depending only on the

variable x1 and strictly increasing in the x1 direction.

Proof. Under these hypotheses we know that if there is a unique classical
solution to this problem with Ω = R

N−1, this solution satisfies problem (11).
In fact the function u is a function of x1 only, thus the derivative uν is zero on
(0, h)× ∂Ω since the normal vector ν is orthogonal to the x1−direction on this
part of the boundary. Then the solution of (4) is a solution of (11), and this
concludes the proof of the statement.

Remark. In Corollary 3.3 we don’t require all of the hypotheses on the domain
Ω ⊂ R

N−1. In fact, this domain can be unbounded, and the argument still holds.
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