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ABSTRACT We describe here the results of our
analysis of the comparative modeling predictions
submitted to the fourth round of Critical Assess-
ment of Structure Prediction (CASP4). On the basis
of a numerical evaluation of the models, we assessed
their ability to predict the overall fold correctly, the
relative orientation of domains in multidomain pro-
teins, the conformation of the side chains, the loop
regions, and the biologically important residues of
the targets. We also discuss the performance of
automatic prediction servers and compare the re-
sults of CASP4 with those obtained in CASP3.
Proteins 2001;Suppl 5:22–38. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

The assessor for comparative modeling in a CASP
experiment is required to evaluate the quality of hundreds
of protein models submitted by tens of groups either as
three-dimensional (3D) structures or as implicit models
(alignment to parents) in a matter of a few weeks.

The task is overwhelming, and it would be impossible if
it were not for the excellent support of the scientists at the
Livermore Prediction Center, who numerically evaluated
each model.1 The reliability of an assessment based only
on lists of numbers such as root-mean-square deviation
(RMSD) values or the percentage of correctly aligned
residues is debatable, but the only way to go if the
experiment is to be as wide, timely, and significant as we
believe to be. The number of predictions is such that visual
inspection of each model, which in our opinion is still the
best form of quality assessment, is infeasible.

The role of the assessor thus becomes that of combining
and analyzing the numbers, trying to make sense out of
them, and checking the conclusions at various stages by
visually inspecting selected models to verify that there are
no obvious flaws in the criteria adopted. This does allow a
few conclusions to be drawn and forms the basis of what
this article aims to describe.

The assessment is thus critical; in fact, the very concept
of assessor implies that some choices have to be made in
how results are analyzed and presented.

An assessment has to take into account the expectations
of the predictors, who invested considerable amount of

time and effort in the experiment: they need to know
where they stand with respect to their colleagues and
fellow predictors and whether any of the novel ideas they
tried actually worked. But we believe that an assessment
must also meet the expectations of biologists, or other
users of the models, who need to know which methods to
use and which level of accuracy they can expect from it.
Luckily, most of the time these two aspects of the problem
coincide, and information can be provided to both predic-
tors and end users, but this is not necessarily the rule.
Here we tried to keep in mind the needs of the users
foremost, leaving the description of details and technicali-
ties of results to the numerous specialized reports that
usually result from a CASP experiment.

RESULTS
Criteria

To compare and evaluate prediction methods, it is
necessary to agree on a set of criteria.

In a soccer championship, each game is scored according
to the number of goals. Other parameters, such as shots on
target, fouls, or elegant play, although equally (or maybe
more) correlated to quality of a team are completely
discarded in assigning the score. Whether this is a good
idea, it is accepted worldwide and seems to work reason-
ably well.

In comparative modeling, the community believes that
no single parameter is sufficient to measure the quality of
a model, so it is customary within and without CASP to use
a set of parameters and combine them. This introduces
ambiguity, because the combination of different parame-
ters is arbitrary and, most importantly, because the param-
eters are not all independent. For instance, a model with a
low RMSD value has certainly been based on a good
alignment and has probably produced a better quality of
side chains.

This is one reason, but not the only one, why CASP
results cannot possibly be considered as equivalent to the
results of a competition.
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To assess which method works better in CASP, one
should know which models have been produced by which
method.

There are at least two problems to be to faced. The first is
that assessment is essentially blind, that is, only at the very
last minute after evaluating and scoring models is the
assessor informed about the identity of the predicting group
and can then see if the group has chosen to give information
about the type of method used. This implies that a model is
evaluated in the category of its target, not according to the
method used to produce it. It is obvious that even an
extraordinarily good ab initio prediction on a comparative
modeling target has very few chances to be better than the
comparative modeling predictions on the same target.

This has another effect: a comparative modeling group
has to decide which targets are within their category on
the basis of sequence data only. Protein structure data-
bases tend to grow during the prediction season, and it is

possible that database searches performed by different
groups at different points in time produce different results.
In any case, a group may choose to predict all the targets,
only some of them, or might fail to recognize that a target
can be modeled by homology. Furthermore, partial predic-
tions can be submitted, and indeed some models only cover
part(s) of the target.

And here is another difference from a soccer competi-
tion: each team has to play against all the designated
teams for an allotted time; it cannot just skip or shorten
matches at will. If this were possible, assigning the score
in a championship would be virtually impossible.

In CASP, predictors are not required to submit models
for all the targets, which implies that each model must be
scored according to the difficulty of the target and to the
fraction of the target predicted. Thus, both the total score
and the average score achieved by each group should be
considered.

TABLE 1. Comparative Modeling Targets for CASP4
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In conclusion, no matter how careful an assessment is,
there are intrinsic reasons why results have to be treated
with caution, and, although summaries such as this one
can prove useful, all the above should be kept in mind and,
whenever needed, reference made to the data publicly
available on the CASP server (http://PredictionCenter.
llnl.gov/casp4).

Targets

Any sequence showing a significant E-value (�0.02)
with a protein of known structure (http://PredictionCenter.
llnl.gov/casp4) after a PSI-BLAST run2 was considered a
target for comparative modeling.

The selected targets are listed in Table I. We also show
in the same table:

● the location of residues known to be important for the
protein’s function

● the domain boundaries for multi-domain proteins
● the closest structure present in the database

● the RMSD and the extent of the structural superposi-
tion1 between the target and the best parent.

The location of residues important for the biological
function of the target protein, which are probably those of
interest for the end users, were identified by checking the
literature data on the target (if available) or on the
corresponding parent(s).

Domain boundaries were obtained by visual inspection
of the target structures.

A structure-based PDB search was performed by the
Livermore Prediction Center scientists,1 and the closest
parent structure was identified by using the LGA proce-
dure.3 Being based on knowledge of the target structure,
this information was not available at the time of predic-
tion.

From the final user’s point of view, the important factor
is how good the model is, not how good the result would
have been if the selected parent were the only one avail-
able. This means that a model should be compared with

TABLE 1. (Continued)
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the best possible parent and not to the one actually used to
produce it.

Incidentally, with the continuous increase in database
size and the implementation of methods that use more
than one parent per target, assessing each model in
relation to the parent used would be impossible anyway.

A rough measure of how well groups selected the parent
is given in Table II. There we list the RMSD between the
C�s of the target and those of the chosen parent(s) in the
superimposed region. We only list values for those predic-
tions where the selected template corresponds to one of the
templates listed by the Livermore Prediction Center Web
site.

Figure 1 shows a plot of the RMSD for C� atoms
obtained by each group on multidomain targets after
optimal superposition of the predicted and experimental
structures compared with that obtained by superimposing
each domain separately.

Almost invariably, the prediction of the complete struc-
ture has a higher RMSD value than the individual do-
mains. This observation, not unexpected, points out once
more the difficulty of predicting the relative position of
domains even in related proteins. We always analyzed the
predictions according to the superposition of domains
rather than of the complete structure; if we did otherwise,
a high RMSD for a poorly predicted domain could be
masked by a low RMSD for a larger one.

Scoring Scheme

The aim of our scoring scheme was to evaluate the
models of each target by using a number of different
measures, each normalized by the distribution for that
measure over predictions for that target.

Predictors can submit more than one model, but as
announced beforehand (http://PredictionCenter.llnl.gov/
casp4), we only analyzed the one designated as model 1.
The first analysis we performed aimed at evaluating the
quality of the overall folds. The selected measures were
GDT-TS (GDT),1 RMSD for all C� atoms of the core (rms),
the percentage of correctly aligned residues (al0), the C�
RMSD of biologically important regions (rmsb), and the C�
RMSD for those regions where the target differs substan-
tially from its parent, in the following simply called loops
(rmsl).1

GDT-TS is defined as:

�%C� within 1 Å � %C� within 2 Å � %C� within 4 Å

� %C� within 8 Å�/4 (1)

where % C� within 1 Å is the percent of aligned residues
within 1 Å after superposition of model and target. It
should be noted that, contrary to RMSD values, GDT-TS
does not explicitly penalize models where one or more
regions are predicted very incorrectly, although, as we will
see, our scoring method does if other groups have produced
better models for those regions.

To analyze the details of the models, we used the RMSD
for all side-chain atoms (rmssc), all side-chain atoms
defined as reliable (rmsscr), all side chains in the core
(rmsscc), and all side chains in structurally divergent
regions (rmsscl). Definitions of these parameters can be
found in Ref. 1.

In all cases we used the following simple rule to assign a
score to a model. Let X be the selected parameter

�X � �GDT, rms, al0, rmsb, rmsl, rmssc,

rmsscr, rmsscc, rmsscl��, (2)

TABLE 1. (Continued)

Domains 1, 2, and 4 are colored orange, blue, and magenta, respectively. Domains that are not
comparative modeling targets are shown in green.
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TABLE II. Selection of Templates

Id Group T0089 T0090 T0092 T0099 T0103 T0111 T0112 T0113 T0117 T0121 T0122 T0123 T0125 T0128

001 Shortle — — — — — — — — — — — — — —
002 Lomize-Andrei — — — — — — — — — — — — 2.13 —
012 Levitt 2.28 2.64 — — — — — — 2.41 2.49 — 2.06 2.38 —
017 Yang-Ansuei 2.41 2.64 2.28 — 1.98 — — — — 2.49 1.63 2.16 — —
018 Raghava-GPS — — — — — — — — — — — — — —
022 InforMax — — — — — — — — — — — 2.16 — 0.78
023 Jones 2.41 2.64 2.16 — — — — — — 2.49 — 2.16 2.19 —
028 Ram-Samudrala — 2.61 — 2.68 — — — — — — — — 2.38 —
031 BioInfo.PL — 2.61 2.16 — — — — — 2.23 2.49 — 2.13 2.13 —
032 Wolynes — 2.64 2.16 2.68 2.01 1.05 — — 2.31 — 1.6 2.13 2.38 —
035 Rose-Group — — — — — — — — — — — — — —
042 Honig-Barry — 2.64 2.16 2.74 — 1.23 — — — 2.49 — — 2.19 —
044 Walts-Wondrous — — — — — — — — — — — 2.16 — —
047 kitasato-univ. — 2.61 — 2.74 — — — — 2.2 2.49 1.63 2.16 — —
055 Bystroff — — — — — — — — — — — — — —
058 Harrison-Weber — 2.61–2.64 2.16 2.9 — — 2.19 1.68 2.31 2.49 — — 2.19 —
065 Torda-Andrew — — — 2.55 — — — 1.39 — 2.49 — 2.16 — —
077 rost — — — 2.48–2.74 — — — 1.46 — 2.49 1.59–1.63 2.17 — 0.97
080 Skolnick-Kolinski — — — — — — — — — — — — — —
086 Bass-Michael — — — 2.67 — — — — — — 1.57 2.16 — —
088 ORNL-PROSPECT — 2.61 — 2.48 — 1.23 — — — 2.49 — 2.13 2.13 0.79
090 Hogue-Feldman — — — 2.74 — — — — — — — — — —
094 SAM-T2K — — — 2.65 — — — — — — — — — —
095 blundell-tl — 2.61 2.16 2.74 — — — — 2.6 2.49 — 2.17 2.19 —
118 Dlakic-Mensur — — — 2.51 — — — — — — — — — —
125 Sternberg-3D-

JIGSAW
— 2.64 — 2.65–2.74 — — 2.25–2.44 1.54–1.61 2.24 2.49 1.63 2.11–2.13 2.13–2.19 —

126 Sternberg 2.41 2.64 2.16 2.65–2.74 1.93 — 2.25–2.44 1.54–1.61 2.24 2.49 1.57–1.63 2.11–2.13 2.13–2.19 —
133 CBC-FOLD — 2.61 — 5.36 — — — — — — — — — —
152 Yoon — — — — — — — — — — — — — —
155 TUDELFT — — — 5.48 — — — — — — — 4.34 — —
161 GNM-FR — — — 2.74 — — — — — — — — — —
169 Dunbrack — 2.64 2.16 2.74 — — 2.3 — — 2.49 1.63 2.16 2.19 —
179 Sausage — — — — — — — — — — — 2.16 — —
186 SDSC1 — — — — 1.94 — — — — 2.49 — 2.16 — —
187 SDSC2:Reddy-

Bourne
— — — 2.68–2.9 — — — 1.39 — — — — — —

191 Lee-Jung — 2.61 — 2.55 — — 2.25 — — 2.49 — — 2.13 —
197 Godzik 2.41 2.64 — 2.65 — — — — 2.6 2.49 1.6 — 2.19 0.84
216 Isites-Server — — — — — — — — — — — — — —
218 LAMBERT-

Christophe
— 2.61 — — — — 2.44 — — 2.49 1.63 — — —

223 Braun-UTMB 2.41 2.64 2.16 2.74 — — — — — 2.49 — 2.16 2.38 —
237 Sali-Andrej — 2.61 2.16 — — 1.23 — — — — — — — —
241 Vajda 2.41 2.64 — 2.74 — — — — — 2.49 1.6 2.17 2.38 —
243 Dill-Ken — — — — — — — — — — — — — —
255 BinToHes — 2.64 — — — 1.13 — — — 2.49 — 2.16 — —
278 Flake&mates — — — 2.71 — — — — — — — — — —
279 Bateman — 2.61 — — — — 2.44 — — — — — — —
281 Mohan — — — — — — — — — — — — — —
312 HANRAM-CDFD — 2.64 — — — — — — — — — — — —
330 Zemla-Joanna — — — 2.74 — — — 1.39 — — 1.63 2.11 2.19 —
341 Lai — — — 2.55 — — — — — — — — — —
342 SBI-AT 2.41 — — — 1.97 — — — — 2.49 1.63 2.11 2.19 —
352 zhu — — — — — — — — — — — — — —
354 baker — 2.61 — — — — — — — — 1.57 — 2.13 —
359 Cafasp-consensus — 2.64 2.16 2.65 — — — — — — — — — —
363 Moult — 2.64 — — — — — — — — — 2.09 — —
375 Ho-Kai-Ming — — — — — — — — — — — — — —
381 SBfold — 5.22 — 3.17 — 1.23 — — — 2.49 — 2.16 2.33 —
382 SBauto — 2.61 — 3.17 2 1.23 2.25 — — 2.49 1.6 — — 1.23
383 HeadGordon-Teresa — — — — — — — — — — — — — —
384 Murzin — 2.61 — — — — — — — — — — — —
390 Taylor — 2.64 — — — — — — — — — — — —
393 Skolnick-Kolinski-

THD
— — — 2.55 — — — — — — — — — —

406 VENCLOVAS 2.28–2.41 2.64 2.16 2.3–2.51 — 1.23 2.3–2.44 1.53 — 2.49 1.63 2.11–2.16 — —
414 Friesner — 2.64 2.44 2.51 1.94 1.23 — — — 2.49 1.56 2.11 — —
426 koehl — 2.64 2.16 2.3 — — — — — — — — — —
429 CHEN-WENDY — — 2.16 2.55 — — — 1.39 2.31–2.6 2.49 — 2.16 2.13–2.38 —
432 LMGDD — — — — — 1.23 — — — — — — — —
440 Deleage-Geourjon — — — — 1.94 — — — — 2.49 — — — —
444 MOE-CCG — — — — — — — — — — — — — —
447 MSI — — — 2.74 — — — — — 2.49 1.63 2.11–2.17 2.13 —
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X� and �(X) the average and standard deviation of X over all
predictions for a given target. We first excluded predic-
tions with very “bad” values of X:

If X � �GDT, al0�, eliminate all X � X� � 2 � ��X�

If X � �rms, rmsb, rmsl, rmssc, rmsscr, rmsscc, rmsscl�,

eliminate all X � X� � 2 � ��X�

We should mention here that the number of excluded
predictions was very low (around 5%).

We then recalculated and X� and �(X) over all remaining
predictions and assigned the score as:

Score�X� �
X � X�

0.5 � ��X�
� % predicted

Where % predicted is the percent of the structure (or of the
biologically important region or of the loop) that is present
in the prediction.

Id Group T0089 T0090 T0092 T0099 T0103 T0111 T0112 T0113 T0117 T0121 T0122 T0123 T0125 T0128

455 NIH-Garnier — — — — — — — — — — — — — —
457 SBI-GR — — — 2.74 — — — — 2.6 2.49 — — 2.13 —
459 mprabha — — — — — — — — — — — — — —
465 YASARA — — — — — — — — — — — — — —
468 SBI-jz — — — 2.51 — — — — — — 1.63 2.12 — —
471 Chodera-John — — — — — — — — — — — — — —
473 Mushegian — — — — — — — — — — — — — —
486 Shoshana-Wodak — — — — — — — — — — 1.63 2.16 2.19 —
489 FCLD — — — — — — — — — — — — — —
498 Kollman-Baker — — — — — — — — — — — — — —
500 FAMS — 2.64 — 2.71 — — — — — 2.49 1.59 — — —
512 ELAN — — — — — — — — — — — — — —
526 Ginalski — — — — — — — — — — 1.63 2.17 2.19 —
535 shankari — — — — — — — — — — — — — —

C� RMSD ranges for the target and the selected parent(s) in the superimposable regions are shown in Å only for predictions using one or more
templates found by the ProSup procedure.

Fig. 1. Scatter plot of the C� RMSD between target and predicted structure (x axis) versus that of the corresponding domains (y axis). Only values
below 15 Å are shown. The number following the target name indicates the domain.
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TABLE III. Group Scores for Correctness of the Overall Fold

Id Group
N

dom
GDT-
TS tot

GDT-
TS av

RMS
CaC tot

RMS
CaC av

al0
tot

al0
av

Biol
tot

Biol
av

Loop
tot

Loop
av

Sum
tot

Sum
av

Rank
tot

Rank
av

Sum of
ranks

406 VENCLOVAS 18 26.23 1.46 21.70 1.21 23.46 1.30 11.74 0.65 19.27 1.07 102.40 5.69 1 5 6
354 baker 19 34.03 1.79 17.20 0.91 22.68 1.19 12.51 0.66 15.87 0.84 102.29 5.38 2 6 8
126 Sternberg 20 28.67 1.43 18.05 0.90 21.53 1.08 13.15 0.66 16.46 0.82 97.86 4.89 3 12 15
031 BioInfo.PL 19 31.72 1.67 16.26 0.86 21.91 1.15 11.34 0.60 11.52 0.61 92.76 4.88 4 13 17
342 SBI-AT 20 22.59 1.13 18.72 0.94 21.85 1.09 12.12 0.61 11.95 0.60 87.24 4.36 5 15 20
197 Godzik 20 18.92 0.95 17.98 0.90 17.56 0.88 10.57 0.53 19.54 0.98 84.57 4.23 6 16 22
088 ORNL-PROSPECT 20 32.37 1.62 14.30 0.71 14.59 0.73 10.21 0.51 12.13 0.61 83.60 4.18 7 17 24
042 Honig-Barry 20 23.23 1.16 17.83 0.89 15.89 0.79 10.48 0.52 15.43 0.77 82.86 4.14 8 18 26
260 S mGen THREADER 20 20.15 1.01 16.59 0.83 19.33 0.97 12.76 0.64 10.35 0.52 79.19 3.96 9 21 30
259 S Gen THREADER 20 15.33 0.77 16.05 0.80 18.81 0.94 13.32 0.67 11.91 0.60 75.43 3.77 10 26 36
169 Dunbrack 17 18.05 1.06 13.25 0.78 17.33 1.02 8.43 0.50 10.87 0.64 67.93 4.00 19 19 38
044 Walts-Wondrous 20 17.03 0.85 18.87 0.94 16.17 0.81 9.09 0.45 12.36 0.62 73.53 3.68 11 28 39
047 kitasato-univ. 18 18.63 1.03 13.43 0.75 12.29 0.68 11.84 0.66 13.35 0.74 69.53 3.86 16 23 39
223 Braun-UTMB 19 20.90 1.10 13.30 0.70 15.40 0.81 9.78 0.51 12.04 0.63 71.43 3.76 14 27 41
382 SBauto 20 23.01 1.15 12.75 0.64 15.37 0.77 7.11 0.36 14.97 0.75 73.20 3.66 12 29 41
111 S SAM-T99 20 18.51 0.93 18.21 0.91 15.47 0.77 10.52 0.53 10.36 0.52 73.06 3.65 13 30 43
237 Sali-Andrej 12 15.81 1.32 12.31 1.03 10.23 0.85 8.99 0.75 11.16 0.93 58.49 4.87 30 14 44
107 S bioinbgu-seqpmprf 20 18.11 0.91 15.47 0.77 15.43 0.77 9.34 0.47 11.63 0.58 69.98 3.50 15 32 47
170 DNAmining.com/p-map 16 12.14 0.76 15.54 0.97 12.73 0.80 7.44 0.47 14.43 0.90 62.29 3.89 26 22 48
132 S Sternberg-3DPSSM 19 16.84 0.89 11.15 0.59 14.83 0.78 13.63 0.72 11.99 0.63 68.44 3.60 18 31 49
103 S Zhou-HX 20 16.92 0.85 14.67 0.73 14.42 0.72 10.54 0.53 12.69 0.63 69.24 3.46 17 33 50
384 Murzin 4 15.84 3.96 7.62 1.91 4.02 1.00 2.68 0.67 6.17 1.54 36.32 9.08 53 1 54
093 S bioinbgu 20 19.07 0.95 14.33 0.72 14.00 0.70 9.44 0.47 10.49 0.52 67.32 3.37 20 37 57
357 Fischer-Daniel 20 17.98 0.90 14.15 0.71 13.92 0.70 12.28 0.61 8.92 0.45 67.24 3.36 21 39 60
094 SAM-T2K 20 21.80 1.09 14.03 0.70 11.32 0.57 9.12 0.46 10.26 0.51 66.53 3.33 22 41 63
359 Cafasp-consensus 20 19.96 1.00 14.40 0.72 13.59 0.68 9.79 0.49 8.61 0.43 66.36 3.32 23 42 65
106 S bioinbgu-seqpprf 20 17.25 0.86 14.48 0.72 14.86 0.74 8.77 0.44 10.73 0.54 66.09 3.30 24 43 67
218 LAMBERT-Christophe 17 15.23 0.90 8.91 0.52 15.71 0.92 8.51 0.50 9.58 0.56 57.94 3.41 31 36 67
158 S PDB-Blast 15 10.09 0.67 9.38 0.63 11.06 0.74 10.60 0.71 10.64 0.71 51.77 3.45 36 34 70
137 Zhou-HX 19 13.45 0.71 14.79 0.78 12.69 0.67 9.33 0.49 11.34 0.60 61.60 3.24 27 44 71
526 Ginalski 4 6.77 1.69 5.13 1.28 5.53 1.38 4.17 1.04 2.52 0.63 24.13 6.03 68 3 71
077 rost 20 13.77 0.69 15.14 0.76 11.77 0.59 11.14 0.56 10.75 0.54 62.57 3.13 25 48 73
405 josé 6 9.44 1.57 5.70 0.95 3.73 0.62 3.15 0.53 7.66 1.28 29.69 4.95 62 11 73
500 S FAMS 16 15.16 0.95 9.95 0.62 9.66 0.60 7.49 0.47 11.24 0.70 53.50 3.34 33 40 73
023 Jones 19 18.06 0.95 13.73 0.72 12.46 0.66 8.06 0.42 8.00 0.42 60.32 3.17 28 46 74
331 Levy 17 13.00 0.76 11.14 0.66 8.82 0.52 10.36 0.61 10.46 0.62 53.79 3.16 32 47 79
381 SBfold 20 20.44 1.02 9.92 0.50 13.82 0.69 9.19 0.46 5.57 0.28 58.94 2.95 29 51 80
426 koehl 4 5.42 1.36 3.53 0.88 6.27 1.57 2.00 0.50 3.23 0.81 20.46 5.11 77 10 87
429 CHEN-WENDY 16 13.73 0.86 10.67 0.67 7.28 0.45 9.39 0.59 8.52 0.53 49.60 3.10 38 50 88
032 Wolynes 19 13.90 0.73 10.41 0.55 9.37 0.49 7.76 0.41 11.18 0.59 52.62 2.77 35 56 91
279 Bateman 3 4.57 1.52 3.75 1.25 1.70 0.57 2.42 0.81 3.42 1.14 15.87 5.29 82 9 91
498 Kollman-Baker 1 1.67 1.67 1.16 1.16 1.70 1.70 1.82 1.82 1.19 1.19 7.54 7.54 90 2 92
447 MSI 13 12.41 0.95 8.46 0.65 9.15 0.70 6.54 0.50 5.30 0.41 41.85 3.22 49 45 94
108 S bioinbgu-prfseq 20 15.05 0.75 11.11 0.56 9.50 0.48 9.34 0.47 8.11 0.41 53.12 2.66 34 61 95
465 YASARA 6 6.03 1.01 5.86 0.98 5.47 0.91 2.34 0.39 2.96 0.49 22.67 3.78 70 25 95
002 Lomize-Andrei 1 1.96 1.96 1.35 1.35 1.13 1.13 0.00 0.00 1.41 1.41 5.86 5.86 92 4 96
095 blundell-tl 14 12.57 0.90 8.12 0.58 6.84 0.49 7.48 0.53 8.55 0.61 43.56 3.11 47 49 96
486 Shoshana-Wodak 9 9.44 1.05 7.21 0.80 6.25 0.69 2.54 0.28 4.82 0.54 30.26 3.36 60 38 98
393 Skolnick-Kolinski-THD 19 12.61 0.66 9.61 0.51 8.03 0.42 5.47 0.29 14.20 0.75 49.92 2.63 37 63 100
118 Dlakic-Mensur 1 1.30 1.30 0.82 0.82 1.83 1.83 1.12 1.12 0.30 0.30 5.37 5.37 94 7 101
312 HANRAM-CDFD 1 1.47 1.47 1.47 1.47 0.81 0.81 0.84 0.84 0.69 0.69 5.29 5.29 95 8 103
012 Levitt 19 12.57 0.66 10.24 0.54 11.08 0.58 6.48 0.34 8.00 0.42 48.38 2.55 40 65 105
150 Chandonia-Cohen 13 9.13 0.70 8.49 0.65 6.43 0.49 6.42 0.49 6.72 0.52 37.20 2.86 51 54 105
017 Yang-Ansuei 20 12.33 0.62 11.69 0.58 8.39 0.42 8.52 0.43 8.24 0.41 49.18 2.46 39 70 109
173 Barton 15 7.93 0.53 9.35 0.62 5.82 0.39 8.64 0.58 8.27 0.55 40.00 2.67 50 59 109
104 S bioinbgu-gonp 20 13.81 0.69 11.69 0.58 8.19 0.41 7.55 0.38 6.83 0.34 48.06 2.40 41 71 112
133 CBC-FOLD 19 9.47 0.50 11.91 0.63 8.57 0.45 10.02 0.53 6.90 0.36 46.86 2.47 43 69 112
363 Moult 18 9.92 0.55 12.40 0.69 8.65 0.48 6.38 0.35 7.35 0.41 44.70 2.48 45 67 112
028 Ram-Samudrala 20 16.57 0.83 9.05 0.45 7.16 0.36 6.94 0.35 8.04 0.40 47.76 2.39 42 72 114
395 S FFAS 17 10.70 0.63 8.17 0.48 9.66 0.57 4.79 0.28 8.90 0.52 42.23 2.48 48 66 114
105 S bioinbgu-gonpm 20 11.27 0.56 11.17 0.56 5.51 0.28 8.27 0.41 8.97 0.45 45.19 2.26 44 75 119
241 Vajda 19 12.24 0.64 9.52 0.50 7.45 0.39 5.53 0.29 9.10 0.48 43.84 2.31 46 73 119
341 Lai 1 1.02 1.02 0.80 0.80 0.60 0.60 0.00 0.00 1.56 1.56 3.98 3.98 100 20 120
389 S 123D� 11 6.63 0.60 6.86 0.62 6.13 0.56 4.85 0.44 4.79 0.44 29.26 2.66 63 60 123
344 PDB-ISL 1 0.75 0.75 1.27 1.27 1.38 1.38 0.09 0.09 0.31 0.31 3.80 3.80 101 24 125
330 Zemla-Joanna 10 6.13 0.61 7.62 0.76 2.30 0.23 4.57 0.46 5.86 0.59 26.49 2.65 67 62 129
361 GMD-SCAI 18 7.00 0.39 9.29 0.52 6.39 0.36 9.20 0.51 5.25 0.29 37.13 2.06 52 77 129
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The % predicted value is different for each prediction and
for each of the considered regions. However, most predictions
of the less difficult targets were nearly complete. For ex-

ample, the percentage of C� predictions including 80% or more
of thestructurewas	90%forall targetsexceptT0092,T0090_2,
T0089_1 (ca. 70%) and T0121_1, and T0103 (ca. 40%).

TABLE III. (Continued)

Id Group
N

dom
GDT-
TS tot

GDT-
TS av

RMS
CaC tot

RMS
CaC av

al0
tot

al0
av

Biol
tot

Biol
av

Loop
tot

Loop
av

Sum
tot

Sum
av

Rank
tot

Rank
av

Sum of
ranks

453 Noguchi 8 5.77 0.72 5.10 0.64 2.30 0.29 2.46 0.31 6.36 0.80 21.99 2.75 73 57 130
444 MOE-CCG 7 3.58 0.51 3.99 0.57 5.44 0.78 3.38 0.48 3.86 0.55 20.24 2.89 78 53 131
457 SBI-GR 18 10.10 0.56 7.85 0.44 5.42 0.30 3.73 0.21 7.89 0.44 34.98 1.94 54 78 132
155 TUDELFT 8 5.80 0.72 5.42 0.68 5.02 0.63 2.80 0.35 2.33 0.29 21.37 2.67 75 58 133
468 SBI-jz 9 6.55 0.73 4.57 0.51 5.88 0.65 3.20 0.36 3.11 0.35 23.32 2.59 69 64 133
390 Taylor 18 8.84 0.49 9.63 0.53 3.11 0.17 4.66 0.26 7.29 0.41 33.53 1.86 56 79 135
535 shankari 5 4.65 0.93 2.88 0.58 1.99 0.40 2.76 0.55 1.65 0.33 13.93 2.79 84 55 139
191 Lee-Jung 20 8.81 0.44 8.09 0.40 4.53 0.23 6.30 0.31 6.40 0.32 34.14 1.71 55 85 140
458 strauss 1 0.54 0.54 0.90 0.90 1.20 1.20 0.80 0.80 3.43 3.43 105 35 140
058 Harrison-Weber 17 4.38 0.26 7.78 0.46 6.12 0.36 4.50 0.26 7.54 0.44 30.32 1.78 59 82 141
065 Torda-Andrew 19 8.47 0.45 6.77 0.36 4.89 0.26 6.81 0.36 5.69 0.30 32.63 1.72 57 84 141
090 Hogue-Feldman 2 1.11 0.56 0.77 0.38 0.11 0.06 1.00 0.50 2.85 1.42 5.84 2.92 93 52 145
414 Friesner 19 5.75 0.30 5.04 0.27 6.58 0.35 7.50 0.39 6.30 0.33 31.16 1.64 58 87 145
086 Bass-Michael 19 7.90 0.42 7.30 0.38 2.54 0.13 4.85 0.26 7.59 0.40 30.19 1.59 61 88 149
125 S Sternberg-3D-JIGSAW 18 4.84 0.27 5.34 0.30 2.42 0.13 6.84 0.38 7.34 0.41 26.79 1.49 65 90 155
186 S SDSC1 17 6.41 0.38 7.02 0.41 5.53 0.33 4.30 0.25 3.38 0.20 26.64 1.57 66 89 155
536 Fox-Sheppard 8 4.57 0.57 3.83 0.48 3.15 0.39 3.85 0.48 1.23 0.15 16.63 2.08 81 76 157
255 BinToHes 20 8.59 0.43 4.97 0.25 2.89 0.14 5.72 0.29 5.21 0.26 27.38 1.37 64 95 159
022 InforMax 4 1.39 0.35 2.40 0.60 1.83 0.46 2.68 0.67 0.85 0.21 9.16 2.29 88 74 162
127 S ssPsi/Elofsson-Arne 16 4.65 0.29 3.67 0.23 5.64 0.35 4.50 0.28 3.81 0.24 22.26 1.39 72 93 165
161 GNM-FR 17 7.02 0.41 5.15 0.30 4.45 0.26 1.90 0.11 3.75 0.22 22.27 1.31 71 97 168
375 Ho-Kai-Ming 4 2.45 0.61 2.40 0.60 0.75 0.19 0.42 0.11 1.30 0.33 7.32 1.83 91 80 171
440 Deleage-Geourjon 6 2.38 0.40 1.78 0.30 2.76 0.46 2.28 0.38 0.75 0.13 9.95 1.66 86 86 172
278 Flake&mates 17 4.29 0.25 5.35 0.31 0.58 0.03 4.64 0.27 6.55 0.39 21.41 1.26 74 99 173
473 Mushegian 1 0.55 0.55 0.00 0.00 0.00 0.00 1.44 1.44 0.48 0.48 2.47 2.47 106 68 174
229 UCLA-DOE 19 3.18 0.17 6.60 0.35 2.28 0.12 2.30 0.12 6.94 0.37 21.29 1.12 76 101 177
080 Skolnick-Kolinski 7 2.12 0.30 4.67 0.67 1.46 0.21 0.87 0.12 0.82 0.12 9.93 1.42 87 92 179
187 SDSC2:Reddy-Bourne 3 0.00 0.00 0.82 0.27 0.00 0.00 1.79 0.60 2.55 0.85 5.16 1.72 96 83 179
152 Yoon 6 2.51 0.42 1.92 0.32 1.28 0.21 2.97 0.49 0.00 0.00 8.67 1.44 89 91 180
010 Pan 9 2.23 0.25 2.69 0.30 2.89 0.32 1.65 0.18 2.55 0.28 12.00 1.33 85 96 181
052 MRIT-Onizuka 18 5.66 0.31 4.73 0.26 2.11 0.12 1.42 0.08 6.24 0.35 20.16 1.12 79 102 181
001 Shortle 2 1.97 0.99 0.00 0.00 1.63 0.81 0.00 0.00 3.60 1.80 103 81 184
274 Tsigelny 18 4.42 0.25 4.32 0.24 0.72 0.04 5.47 0.30 4.68 0.26 19.61 1.09 80 104 184
401 Reva-Boris 15 1.85 0.12 2.31 0.15 2.63 0.18 4.64 0.31 4.31 0.29 15.74 1.05 83 105 188
027 SHESTOPALOV 3 0.00 0.00 1.96 0.65 0.00 0.00 1.65 0.55 0.53 0.18 4.14 1.38 99 94 193
179 S Sausage 4 1.86 0.46 0.85 0.21 0.66 0.17 1.06 0.27 0.00 0.00 4.43 1.11 97 103 200
352 zhu 5 1.35 0.27 0.00 0.00 1.70 0.34 1.37 0.27 0.00 0.00 4.42 0.88 98 106 204
035 Rose-Group 1 1.30 1.30 0.00 0.00 0.00 0.00 0.00 0.00 1.30 1.30 108 98 206
432 LMGDD 2 0.57 0.28 0.16 0.08 0.00 0.00 0.00 0.00 1.68 0.84 2.40 1.20 107 100 207
280 S Elber-Meller-2000 9 0.64 0.07 0.94 0.10 0.07 0.01 0.57 0.06 1.56 0.17 3.78 0.42 102 108 210
512 ELAN 5 0.33 0.07 0.00 0.00 0.96 0.19 0.70 0.14 1.56 0.31 3.56 0.71 104 107 211
273 WXW 6 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.00 1.01 0.17 1.06 0.18 109 111 220
329 Tatsuya 1 0.39 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.39 113 109 222
459 mprabha 3 0.00 0.00 0.46 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.15 111 112 223
045 Del-Carpia-Yoshimori 8 0.54 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.07 110 114 224
003 Gerloff 1 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 115 110 225
055 Bystroff 10 0.42 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.04 112 116 228
216 S Isites-Server 7 0.00 0.00 0.39 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.06 114 115 229
471 Chodera-John 1 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.00 0.00 0.14 0.14 116 113 229
018 Raghava-GPS 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 117 117 234
220 S valencia-cnb-pred 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 118 117 235
243 S Dill-Kern 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 119 117 236
248 BMERC 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 120 117 237
281 Mohan 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 121 117 238
383 HeadGordon-Teresa 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 122 117 239
489 FCLD 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 123 117 240

Groups identified by S in the second column of the table are CAFASP participants. For each group, we report the number of evaluated
domains (N dom), the total and average score according to GDT-TS (GDT-TS tot and GDT-TS av), RMSD of the C� of the core residues
(RMS CaC tot and RMS CaC av), the percent of correctly aligned residues (al0 tot and al0 av), the RMSD of the structurally divergent
regions (loop tot and loop av). The sums of the average and total scores are reported in the columns labeled Sum av and Sum tot,
respectively. The ranking according to the last two values and their sum are reported in the last three columns (Rank tot, Rank ave, and
Sum of ranks, respectively).
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Assessment of Correctness of the Overall Fold

The results for all groups are shown in Table III where
average and total scores for each considered parameter are
reported. The last columns report the sum of the total and
average score per group and the respective ranking. In
general, they are different, because not all groups pre-
dicted all available targets (Fig. 2).

The “best” groups score well by using either ranking
system, with some exceptions. One notable exception is
group 384-Murzin (we use CASP4 group Id followed by the

identifier chosen by the groups), who submitted only four
predictions but achieved a very high score.

Three groups ranked among the first 15 for both total
and average score, implying that their method performs
well on as wide a range as possible of targets in the
present experiment. Of these, groups 354-baker also
obtained interesting results in fold recognition and novel

Fig. 2. Histogram of number of groups according to the number of
targets predicted. Each domain of multidomain proteins was considered
as a separate prediction.

Fig. 3. One of the predictions for target 103. The region in red
(residues 325–340) contains an “impossible” structure. Nevertheless, the
parameters for this prediction are as follows: GDT � 38.6; rms � 9.56 Å;
al0 � 126/368. The corresponding values of a good and “reasonable”
prediction (group 042) are as follows: GDT � 37.7; rms � 9.21 Å; al0 �
126/368.

Fig. 4. Scatter plot of the GDT-TS values between target and
predicted structure (y axis) versus that of the corresponding biologically
important residues (x axis).

Fig. 5. Scatter plot of the percentage of correctly aligned residues
versus the percentage of sequence identity between target and template
for the best prediction for each target.

Fig. 6. Scatter plot of the RMSD between target and parent with
respect to target and model. Only predictions with RMSD lower than 5 Å
between template and model are shown. Squares correspond to predic-
tions spanning �50% of the superimposable regions.
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fold targets (as did group 384-Murzin).4,5 Groups 406-
VENCLOVAS and 126-Sternberg were asked to report on
their comparative modeling results and methods.6,7

During the December 2000 meeting in Asilomar, we also
asked other groups (chosen primarily on the basis of
methods) to briefly discuss some specific aspect of the
predictions (groups 137-Zhou-HX, 170-DNAmining.com/
p-map, and 259-GenTHREADER for alignment and 354-
baker, 393-Skolnick-Kolinski-THD, 31-BioInfo.PL for loop
building).

It should be mentioned that the differences in the loop
average scores of Table III are not very discriminating,
and only for targets T0111 and T0128 were there complete
loop predictions with a total C� RMSD lower than 3 Å (and
even in these easy cases only groups 126-Sternberg and
255-BinToHes and groups 161-GNM-FR, 237-Sali-Andrej
and 429-CHEN-WENDY obtained values lower than 2 Å
for T0111 and T0128, respectively). This finding suggests
that no group is clearly better in predicting difficult loops
and that a method able to consistently predict these
regions with good accuracy is still an elusive goal in
comparative modeling.

It is important to mention that scoring models using
RMSD and/or GDT values may fail to highlight major
problems with the models. Figure 3 shows one detail of a
model that is clearly incorrect, because it contains impos-
sible “knot” structures, although the corresponding RMSD
and GDT values were extremely good. We tried to identify
these cases (we found very few of them) and set their score
to zero but cannot guarantee that none escaped our
attention. Hopefully, for groups who submitted models for
several targets, the effect of problems in a single prediction
does not significantly alter the conclusions. Because the
number of predictions submitted to future CASPs is not
likely to decrease, some automatic method to detect these
cases should be devised.

Figure 4 shows a plot of the GDT-TS values obtained for
the total structure versus that for biologically important
regions, after superposition of the whole model. It is
apparent that, on average, the latter were predicted better
(higher GDT-TS value). This is clearly an important aspect
of the experiment. In our opinion, however, this reflects
more the intrinsic better conservation of these regions
than specific aspects of the methods.

By its own nature, comparative modeling exploits the
evolutionary constraints posed by the biological function
upon a protein and is, therefore, expected to work better on
such regions. Questionnaires posed to the predictors to-
ward the end of the experiment (data not shown) indicated
that the groups and/or the methods devoted no special care
to the prediction of these regions. The effect shown in
Figure 4 is most likely due to the fact that biologically
important regions are easier to align because of the
pattern of conservation of functional residues and, in any
case, more structurally conserved.

Alignment Quality

A pressing question in CASP is about general trends of
prediction methods, but it is difficult to derive general

conclusions using data including partial predictions on a
limited number of targets.

We address here the issue of the quality of present
sequence alignment methods, which poses the problem of
having to take into account that a correct partial align-
ment is better than a complete alignment that includes the
correct partial alignment but also contains incorrectly
aligned residues. Our scoring system is designed to deal
with this problem: if a prediction leaves out a part of the
structure, it is penalized if that region is correctly pre-
dicted by other groups and rewarded if most groups were
unable to predict it. This is very useful for discussing
relative performance of groups on a set of targets but
cannot be used to derive general conclusions.

One way to see what alignment methods are able to
achieve is to show the percent of correctly aligned
residues as a function of the percentage of sequence
identity between each target and its best template for
the best complete prediction for each target (Fig. 5). It is
apparent from these data that alignment quality is still
a problem and, more importantly, that its quality does
not correlate with sequence identity between target and
template. This should be a concern, especially because
structural genomics projects plan to use sequence iden-
tity as a criterion to select candidate targets for protein
structure determination and assume that comparative
modeling can provide reliable models for the remaining
proteins. Even a threshold of 50% would still fail to
provide satisfactory models for some proteins.

Were the Models Any Better Than the Closest
Structural Parent?

CASPs experiments provide a unique opportunity
to evaluate whether a 3D model provides more info-
rmation than simply aligning the target with the parent
sequence. In other words, if the alignment is optimal and
the parent correctly selected, one expects the model
to be at least as good as the structure superposition of
target and parent structures. If the modeling proce-
dure adds more information than just the alignment,
then the model should be closer to the target than the
parent.

Figure 6 shows a scatter plot of the C� RMSD after
optimal superposition of the target and its closest parent
structure (x axis) versus the C� RMSD of target and model
(y axis). In most cases, the structural similarity between
model and target is worse, or even much worse, than that
between target and parent. The factors primarily respon-
sible for this effect are the selection of a nonoptimal parent
structure and the errors in the alignment. In previous
CASPs, the database of known structures probably was
not populated sufficiently to allow predictors to make very
different choices in the selection of the parent. As the
database grows, also the selection of the parent is becom-
ing a discriminating factor among the various groups.

As shown in Figure 6, some predictions have improved
on the parent, but this only happened for target T0128_2
(where groups 126-Sternberg, 237-Sali-Andrej, 342-SBI-
AT, 406-VENCLOVAS, and 526-Ginalski achieved a C�
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TABLE IV. Ratio Between the C� RMSD for the Superposition Between Target and Model and Target and Best Template

Id Group T0089_2 T0099 T0111_1 T0112_2 T0113 T0121_1 T0128_1 T0128_2

012 Levitt — 1.04 — — — 1.04 — 1.03
017 Yang-Ansuei — 1.01 — — — 1.01 — —
023 Jones — — — — — 1.08 — 1.01
028 Ram-Samudrala — — 1.01 — — —
031 BioInfo.PL — — — — — 1.04 —
032 Wolynes — — — — — 1.03 —
044 Walts-Wondrous — 1.05 — — — 1.04 —
047 kitasato-univ. — — — — — 1.04 —
065 Torda-Andrew — 1.06 — — — 1.11
077 rost — — — — — 1.08 1.07 1.01
086 Bass-Michael — — — — — 1.08 — —
088 ORNL-PROSPECT — — — — — 1.04 — —
090 Hogue-Feldman — 1.02 — — — — —
093 bioinbgu — — — — — 1.04 — —
094 SAM-T2K — — — — 1.02 1.04 — —
095 blundell-tl — 1.04 — — — 1.07 — —
103 Zhou-HX 1.29 — — — — 1.04 — —
104 bioinbgu-gonp — 1.03 — — — 1.06 — —
105 bioinbgu-gonpm — 1.04 — — — 1.05 — —
106 bioinbgu-seqpprf — 1.03 — — — 1.04 — —
107 bioinbgu-seqpmprf — 1.03 — — — 1.04 — —
108 bioinbgu-prfseq — — — — — 1.04 — —
111 SAM-T99 — 1.01 — — — 1.04 — —
118 Dlakic-Mensur — 1.05 — — — — — —
125 Sternberg-3D-JIGSAW — 1.03 — — — — — —
126 Sternberg — — — — — 1.04 — 1.22
132 Sternberg-3DPSSM — 1.06 — — — 1.04 — —
133 CBC-FOLD — — — — 1.04 1.05 1.07 —
137 Zhou-HX — 1.01 — — — 1.04 — 1.04
150 Chandonia-Cohen — — — — — 1.04 — —
152 Yoon — — — — — 1.07
155 TUDELFT — — — — 1.05 1.01
158 PDB-Blast — — — — 1.04 — —
161 GNM-FR — 1.11 — — — — —
169 Dunbrack — 1.08 — — — 1.04 — —
170 DNAmining.com/p-map — 1.03 — — — 1.04 — —
173 Barton — 1.01 — — — 1.06 1.09 —
186 SDSC1 — — — — — 1.04 — —
197 Godzik — — — — — 1.02 — —
218 LAMBERT-Christophe — — — — — 1.06 — —
223 Braun-UTMB — 1.06 — — — — — —
229 UCLA-DOE — — — — — 1.03 — —
237 Sali-Andrej — — — — — — — 1.35
241 Vajda — 1.02 — — — 1.06 — 1.01
259 Gen THREADER — 1.06 — — — 1.04 — —
260 mGen THREADER — — — — — 1.04 — —
330 Zemla-Joanna — 1.05 — — — — — —
331 Levy — — — — — 1.04 — —
341 Lai — 1.04 — — — — — —
342 SBI-AT — — — — — 1.02 — 1.16
354 baker — — — — — 1.04 — —
357 Fischer-Daniel — — — — — 1.04 — —
359 Cafasp-consensus — — — — — 1.04 — —
361 GMD-SCAI — — — — — — — 1.15
363 Moult — — — — — 1.04 1.04 1.01
381 SBfold — — — — — 1.06 — —
382 SBauto — — — — — 1.07 — —
389 123D� — — — — 1.01 1.04 — —
401 Reva-Boris — 1.05 — — — — — —
406 VENCLOVAS — — 1.01 1.02 1.02 1.04 — 1.22
440 Deleage-Geourjon — — — — — 1.02 — —
447 MSI — 1.06 — — — 1.04 — —
453 Noguchi — 1.01 — — — — — —
465 YASARA — 1.08 — — — — 1.05 —
468 SBI-jz — 1.03 — — — 1.05 — —
500 FAMS — — — — — 1.04 — —
526 Ginalski — — — — — — 1.34
536 Fox-Sheppard — — — — — 1.05 — —

average 1.29 1.04 1.01 1.02 1.02 1.05 1.06 1.12

Only ratios above 1 are shown. Values above 1.15 are in bold.
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RMSD value 15% lower than that with the closest tem-
plate). One exception is the prediction of target T0089_2 of
group 103-Fugue-Cam where the RMSD of the target with
the closest template (1dga_A) is 1.67 Å over 26 residues
and this group obtained a prediction with an RMSD value
of 1.18 Å for 22 residues. Usually, however, the improve-
ment is marginal (Table IV).

In general, methods using multiple parents perform
better than those based on a single parent in general fold
correctness (Fig. 7), although groups using both tech-
niques are present among the highest ranking ones (data
not shown).

Assessing the Correctness of the Details
of the Models

In our experience as modelers, most of the targets were
far from easy. Thus, it would be unreasonable to expect the
most difficult predictions to be correct in their fine details.

We selected all the models having a C� RMSD value
lower than 5 Å and only used those to examine the details
of the models.

A serious problem with CASP experiments is the limited
number of available targets, and the need to reduce that
number even further in analyzing the details only makes
this worse. Hence, even more so, the results presented
here should be treated with caution, and the reader should
keep in mind that their statistical significance is necessar-
ily limited. Table V shows the score, calculated as de-
scribed above, for the following parameters:

● RMSD for all side-chain atoms
● RMSD for all side-chain atoms defined as reliable
● RMSD for all side chains in the core
● RMSD for all side chains in structurally divergent

regions

It is hard to derive clear conclusions from these data for
a number of reasons: the method of combining these scores
with those obtained in Table III is very arbitrary, the
number of evaluated models is rather small, and the
measurements are all correlated (Fig. 8).

At the December 2000 meeting in Asilomar, we asked
groups 237-Sali-Andrej, 197-Godzik, and 42-Honig-Barry

to cover the issue of the accuracy of side-chain modeling.
From this discussion and from our own attempts to derive
conclusions from these data, one thing became apparent:
neither the RMSD values or the percentage of correct
side-chain angles (defined as within 30° from the experi-
mental value) seemed appropriate to evaluate the details
of a model on the basis of what we believe interesting to the
end users. One would like to know whether a method is
able to reproduce characteristics of the side chains that
can effectively guide experiments or theories about the
protein under study, and these are obviously interactions
between groups of atoms. Rather than analyzing whether
a side chain is correctly positioned in the reference space of
the protein’s main chain, it would be important to estab-
lish whether it is properly located with respect to other
side chains.

The timing of the experiment did not allow us to develop
and appropriately test different criteria, but we strongly
believe that this should be accomplished before the next
experiment takes place.

Servers

Another experiment run in parallel with CASP4 ex-
tended its scope: this experiment, named CAFASP2,8

evaluated automatic methods of predicting protein struc-
tures using CASP4 targets.

All targets were processed through prediction servers
that registered for the CAFASP experiment. Server devel-
opers or curators were then asked to re-submit these same
predictions to CASP4 by using the correct format. The
identity between the automatic and reformatted predic-
tions is guaranteed by the CAFASP organizers.

In the CASP4 comparative modeling assessment, the
automatic predictions were subjected to the same blind
evaluation, together with all other predictions. Only after
the process was completed were the assessors informed
which groups were the publicly available servers.

Obviously, other CASP predictions might have been
obtained by using automatic servers/programs, but only
for those highlighted in Table III and V is it practically
certain that there was no human intervention.

It is apparent that some of the servers perform as well as
the best groups (260-mGenthreader and 259-Gen-
Threader,9 111-SAM-T99,10 and 93-bioinbgu11 score among
the first 20 groups; see Table III). The quality of their
performance can be considered the base level for compara-
tive modeling, because they provide good alignments to
correctly selected templates. For example, servers 103-
Zhou-HX, 108-bioinbgu-prfseq, 259-GenThreader, and 260-
mGenThreader provided alignments for all comparative
modeling targets and in all cases the percentage of resi-
dues correctly aligned was higher than the average for all
groups for that prediction.

A Few Examples

Lists of numbers are the only way to describe comprehen-
sively the quality of so many models; however, it is
important to have a feeling for their structural signifi-
cance. In Figure 9 we show the prediction with the highest

Fig. 7. Average GDT score for predictions using single or multiple
parent structures.
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TABLE V. Group Scores for Details of Models

Id Group
N

dom
CRMSC

tot
CRMSC

ave
CRMSC
rel tot

CRMSC
rel ave

CRMSC
core tot

CRMSC
core ave

CRMSC
LSH tot

CRMSC
LSH
ave

Ave
tot

Ave
ave

Rank
ave

Rank
tot

Sum of
ranks Glob TOT

406 VENCLOVAS 14 5.23 0.37 4.04 0.37 5.37 0.38 2.66 0.19 4.33 0.33 1 4 5 6 11
126 Sternberg 12 2.54 0.21 4.14 0.21 2.57 0.21 1.40 0.12 2.66 0.19 8 13 21 15 36
042 Honig-Barry 11 2.57 0.23 4.35 0.23 2.57 0.23 1.37 0.12 2.71 0.21 7 11 18 26 44
354 baker 13 1.03 0.08 4.77 0.08 1.03 0.08 1.95 0.15 2.19 0.10 12 26 38 8 46
342 SBI-AT 12 1.98 0.16 4.41 0.17 2.05 0.17 0.43 0.04 2.22 0.13 11 20 31 20 51
237 Sali-Andrej 9 3.37 0.37 3.66 0.37 3.46 0.38 1.50 0.17 3.00 0.33 4 5 9 44 53
197 Godzik 14 1.27 0.09 4.59 0.09 1.29 0.09 1.61 0.12 2.19 0.10 13 25 38 22 60
429 CHEN-WENDY 10 2.98 0.30 4.55 0.30 3.03 0.30 2.14 0.21 3.17 0.28 3 6 9 88 97
002 Lomize-Andrei 1 2.08 2.08 5.37 2.09 2.19 2.19 2.30 2.30 2.99 2.17 5 1 6 96 102
169 Dunbrack 12 0.80 0.07 4.65 0.07 0.80 0.07 0.00 0.00 1.56 0.05 33 35 68 38 106
077 rost 11 1.83 0.17 4.37 0.17 1.89 0.17 0.10 0.01 2.05 0.13 15 21 36 73 109
465 YASARA 5 2.17 0.43 3.01 0.43 2.20 0.44 1.24 0.25 2.16 0.39 14 2 16 95 111
223 Braun-UTMB 11 0.14 0.01 4.66 0.01 0.14 0.01 1.33 0.12 1.57 0.04 32 40 72 41 113
031 BioInfo.PL 12 0.12 0.01 4.70 0.01 0.12 0.01 0.18 0.02 1.28 0.01 50 48 98 17 115
023 Jones 11 1.40 0.13 4.23 0.13 1.44 0.13 0.31 0.03 1.85 0.10 18 24 42 74 116
047 kitasato-univ. 10 0.69 0.07 4.11 0.07 0.69 0.07 0.00 0.00 1.37 0.05 43 34 77 39 116
363 Moult 12 5.51 0.46 3.80 0.48 5.79 0.48 1.54 0.13 4.16 0.39 2 3 5 112 117
447 MSI 12 1.69 0.14 4.61 0.14 1.74 0.15 2.21 0.18 2.56 0.15 9 15 24 94 118
526 Ginalski 5 0.67 0.13 4.60 0.13 0.67 0.13 0.66 0.13 1.65 0.13 28 19 47 71 118
0.12 Levitt 10 3.08 0.31 4.04 0.31 3.16 0.32 1.30 0.13 2.89 0.27 6 8 14 105 119
095 blundell-tl 10 1.72 0.17 4.96 0.17 1.75 0.17 0.72 0.07 2.29 0.15 10 17 27 96 123
500 FAMS 10 0.48 0.05 4.96 0.05 0.49 0.05 0.95 0.09 1.72 0.06 23 31 54 73 127
032 Wolynes 9 1.39 0.15 3.82 0.15 1.42 0.16 0.66 0.07 1.82 0.13 19 18 37 91 128
088 ORNL-PROSPECT 13 0.04 0.00 4.46 0.00 0.00 0.00 0.13 0.01 1.16 0.00 54 51 105 24 129
381 SBfold 10 0.50 0.05 5.08 0.05 0.50 0.05 0.75 0.07 1.71 0.06 24 33 57 80 137
382 SBauto 10 0.09 0.01 4.92 0.01 0.09 0.01 0.05 0.01 1.29 0.01 49 50 99 41 140
384 Murzin 1 0.00 0.00 5.75 0.00 0.00 0.00 0.00 0.00 1.44 0.00 40 53 93 54 147
028 Ram-Samudrala 8 1.13 0.14 4.72 0.14 1.13 0.14 0.00 0.00 1.75 0.11 22 23 45 114 159
094 SAM-T2K 5 0.12 0.02 3.92 0.02 0.12 0.02 0.35 0.07 1.13 0.04 55 42 97 63 160
468 SBI-jz 6 0.97 0.16 4.58 0.16 1.01 0.17 0.69 0.11 1.81 0.15 20 16 36 133 169
155 TUDELFT 7 1.09 0.16 3.64 0.29 2.07 0.30 0.00 0.00 1.70 0.18 25 14 39 133 172
218 LAMBERT-

Christophe
10 0.00 0.00 4.58 0.00 0.00 0.00 0.13 0.01 1.18 0.00 53 52 105 67 172

086 Bass-Michael 8 2.20 0.27 2.89 0.33 2.27 0.28 0.62 0.08 1.99 0.24 16 9 25 149 174
359 Cafasp-consensus 5 0.00 0.00 4.48 0.00 0.00 0.00 0.00 0.00 1.12 0.00 56 53 109 65 174
241 Vajda 11 0.67 0.06 4.66 0.06 0.67 0.06 0.71 0.06 1.68 0.06 26 30 56 119 175
426 koehl 1 0.00 0.00 6.12 0.00 0.00 0.00 0.00 0.00 1.53 0.00 35 53 88 87 175
017 Yang-Ansuei 12 0.56 0.05 4.56 0.05 0.58 0.05 0.61 0.05 1.58 0.05 31 37 68 109 177
279 Bateman 2 0.00 0.00 5.31 0.00 0.00 0.00 0.12 0.06 1.36 0.02 46 46 92 91 183
486 Shoshana-Wodak 8 0.29 0.04 3.86 0.04 0.29 0.04 0.50 0.06 1.24 0.04 51 38 89 98 187
444 MOE-CCG 5 0.73 0.15 4.27 0.15 0.77 0.15 0.23 0.05 1.50 0.12 36 22 58 131 189
457 SBI-GR 11 0.82 0.07 4.45 0.07 0.82 0.07 0.38 0.03 1.62 0.06 29 29 58 132 190
278 Flake&mates 5 1.14 0.23 3.96 0.23 1.20 0.24 1.11 0.22 1.85 0.23 17 10 27 173 200
191 Lee-Jung 8 0.88 0.11 3.57 0.11 0.88 0.11 0.38 0.05 1.43 0.09 41 27 68 140 208
022 InforMax 4 1.06 0.26 3.63 0.27 1.17 0.29 0.00 0.00 1.46 0.21 38 12 50 162 212
393 Skolnick-Kolinski-

THD
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 100 214

133 CBC-FOLD 1 0.02 0.02 2.65 0.01 0.09 0.09 0.00 0.00 0.69 0.03 60 43 103 112 215
065 Torda-Andrew 9 0.59 0.07 4.24 0.07 0.59 0.07 0.02 0.00 1.36 0.05 45 36 81 141 222
058 Harrison-Weber 9 0.00 0.00 5.06 0.00 0.00 0.00 0.61 0.07 1.42 0.02 42 45 87 141 228
090 Hogue-Feldman 1 0.00 0.00 6.41 0.00 0.00 0.00 0.00 0.00 1.60 0.00 30 53 83 145 228
390 Taylor 10 0.09 0.01 4.88 0.01 0.05 0.00 0.13 0.01 1.29 0.01 48 49 97 135 232
161 GNM-FR 8 0.01 0.00 4.37 0.00 0.01 0.00 1.81 0.23 1.55 0.06 34 32 66 168 234
125 S Sternberg-3D-

JIGSAW
11 0.03 0.00 4.84 0.00 0.03 0.00 0.99 0.09 1.47 0.02 37 44 81 155 236

255 BinToHes 7 0.00 0.00 4.68 0.00 0.00 0.00 1.12 0.16 1.45 0.04 39 39 78 159 237
535 shankari 6 0.46 0.08 3.71 0.08 0.48 0.08 0.25 0.04 1.22 0.07 52 28 80 157 237
330 Zemla-Joanna 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 129 243
414 Friesner 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 145 259
498 Kollman-Baker 1 0.20 0.20 6.17 0.20 0.20 0.20 0.48 0.48 1.76 0.27 21 7 28 240 268
186 S SDSC1 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 155 269
187 SDSC2:Reddy-

Bourne
5 0.00 0.00 5.22 0.00 0.00 0.00 0.24 0.05 1.36 0.01 44 47 91 179 270

440 Deleage-Geourjon 3 0.00 0.00 4.12 0.00 0.00 0.00 0.00 0.00 1.03 0.00 57 53 110 172 282
375 Ho-Kai-Ming 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 171 285
512 ELAN 2 0.00 0.00 6.65 0.00 0.00 0.00 0.00 0.00 1.66 0.00 27 53 80 211 291
152 Yoon 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 180 294
179 S Sausage 3 0.14 0.05 3.50 0.06 0.15 0.05 0.02 0.01 0.95 0.04 59 41 100 200 300
432 LMGDD 2 0.00 0.00 4.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00 58 53 111 207 318
459 mprabha 1 0.00 0.00 5.40 0.00 0.00 0.00 0.00 0.00 1.35 0.00 47 53 100 223 323

Only predictions with C� RMSD lower than 5 Å are considered. Groups identified by S in the second column of the table are CAFASP participants.
For each group we report the number of evaluated domains (N dom), the total and average score according to RMSD for all side-chain atoms
(CRMSC tot and CRMSC ave), RMSD for all reliable side-chain atoms (CRMSC rel tot and CRMSC rel ave), RMSD for all core side-chain
atoms (CRMSC core tot and CRMSC core ave), RMSD for all side-chain atoms of the structurally divergent regions (CRMSC LSH tot and
CRMSC LSH ave). The averages of the total and average scores are reported in the columns labeled Ave tot and Ave ave, respectively. The
ranking according to the last two values and their sum are reported in the Rank ave, Rank tot and Sum of rank columns. The Glob column
reports the group ranking for the quality of the overall fold (see Table II). The last column (TOT) is the sum of the last two columns.
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GDT-TS score superimposed on the respective target for
each domain.

The groups that scored best for overall fold in our
scheme are 406-VENCLOVAS, 354-baker, and 126-Stern-
berg (see Table III). Some of their predictions can be seen
in the figure. In particular, note the prediction of target 92
obtained by group 406-VENCLOVAS. This group chose
not to predict the N-terminal part and the 169–206 region
of this protein, and these regions are indeed the most
divergent between the target and its closest parent. The
same group operated a similar (equally appropriate) choice
on target 103.

CASP4 Versus CASP3

One important question that a CASP experiment should
address is whether there has been clearly recognizable
progress with respect to the previous one. Again, this poses
the problem of evaluating predictions of targets with
varying degrees of difficulty. Our scoring system is de-
signed to take into account the difficulty of each target, on
the basis of the predictors’ average performance. Conse-
quently, it cannot trace differences if the quality of predic-
tions increases together with the difficulty of targets. We
should mention, however, that the difficulty of targets
between CASP3 and CASP4 does not seem to be substan-
tially different when measured by the percentage identity
between target and parent sequences (Fig. 10).

Under the hypothesis that the two sets of targets are
equivalent, predictions can be compared with our scoring
method, so we repeated the same analysis for CASP3,
limiting ourselves to parameters that measure the correct-
ness of overall folds. We excluded the CASP4 score for
biologically important regions and loops, because data for

the former are not available for CASP3 targets and the
second depends too much on the individual features of the
targets. The comparison is shown in Figure 11.

Notably, even if based on a completely different method
of analysis, the groups selected by Jones and Kleywegt12 in
CASP3 for the overall fold (074, 136, 019) score among the
first five in our analysis.

In some cases, it was possible to recognize groups
participating in both CASP3 and CASP4 (Fig. 12), al-
though there were some ambiguities (e.g., the Sternberg
group participated as Sternberg but also as Sternberg-
Jigsaw and Sternberg 3D PSSM in CASP4).

We are well aware of all the caveats of comparing
predictions on different targets, but we are forced to
conclude that, in first approximation, there has been no
major improvement in comparative modeling between
CASP3 and CASP4.

DISCUSSION

In CASP2, the number of participating groups was 72,
which submitted 947 models denoted as first13; in CASP3,
the numbers were 98 groups submitting 2261 first mod-
els.14 In this experiment, there were 163 groups, and 4922
first models were deposited.15

Making all these predictions amounts to a huge amount
of work, compared to which the workload of an assessor is
minimum. In this report we have tried to convey the
results of a very large experiment to a wider audience. It
is, however, a unique and almost embarrassing aspect of
CASP experiments that the people who produced the
results are not those who draw the conclusions!

On the other hand, although all the data are available
via the CASP WWW server (http://PredictionCenter.llnl.
gov/casp4), the assessors are expected to comment on the
results in a way that is meaningful to the widest possible
audience.

We hope to have convinced the reader that CASPs
should not be considered competitions, not for psychologi-
cal reasons, but for serious technical ones connected with
the complexity of the analysis of the data.

We do, however, believe that the field of protein struc-
ture prediction has benefited enormously from the CASP
experiments and will continue to do so, if it is clear what
can be learned from each of the experiments. To this end,
we summarize here the results of our assessment of the
CASP4 predictions.

Overall quality of the models

The models submitted to CASP4 are reasonable approxi-
mations of the target folds, but they are rarely closer to the
experimental structure than their structural parents. There
is still a long way to go before such models can be
considered useful surrogates of experimental structures. It
would certainly be impossible to use them for drug design
or maybe even for rational mutagenesis of regions other
than the active sites, especially when they are based on
low-similarity parent structures.

From our analysis, it appears that one of the steps of the
modeling procedure that does require some improvement

Fig. 8. Total (a) and average (b) score for RMSD of the side chain
atoms of all (}), reliable (�), core (Œ), and loop (
) residues for groups
submitting 3D predictions.
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Fig. 9. Predictions with the highest value of GDT-TS for each of the target domains. Target and model structures are shown in thick and thin lines,
respectively. Regions deviating �2.0, 4.0, and 8.0 Å are shown in green, yellow, and orange, respectively. Regions deviating 	8.0 Å are shown in purple
for the target and red for the model. Targets/groups are as follows: a: target 89 dom. 1/group 354-baker; b: target 89 dom. 2/group 126-Sternberg; c:
target 89 dom. 4/group 390-Taylor; d: target 90 dom. 2/group 23-Jones; e: target 92/group 406-VENCLOVAS; f: target 99/group 237-Sali-Andrej; g:
target 103/group 218-LAMBERT-Christophe; h: target 111 dom. 1 406-VENCLOVAS; i: target 111 dom. 2/group 32-Wolynes; j: target 112 dom. 1/group
406-VENCLOVAS; k: target 112 dom. 2/group 406-VENCLOVAS; l: target 113/group 406-VENCLOVAS; m: target 117/group 31-BioInfo.PL; n: target
121 dom. 1/group 381-SBfold; o: target 121 dom. 2/group 384-Murzin; p: target 122/group 526-Ginalski; q: target 123/group 17-Yang-Ansuei; r: target
125/group 95-blundell-tl; s: target 128 dom. 1/group 12-Levitt; t: target 128 dom. 2/group 526-Ginalski.
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is the development of strategies to identify the best parent
structure available. The other aspect that requires atten-
tion is, obviously, the prediction of regions whose structure
deviates substantially from that of the parent.

A feature of one of the most successful methods (group
406-VENCLOVAS) worth noting is the capacity to detect
some of these “unpredictable” regions. From the viewpoint
of a protein model user, having no model is better than
having the wrong model, and methods able to detect local
refolding of proteins are extremely useful.

Alignment quality

The alignment still represents a major problem in
comparative modeling. It is still rare, even for the best
methods, to achieve an accuracy above 80% for targets
with sequence identity lower than 50% and, more impor-

tantly, it does not seem reasonable to use sequence iden-
tity as a measure of the expected accuracy of alignments.

Domain orientation

In general, the methods assessed do not seem to achieve
a reasonable degree of accuracy in predicting variations in
the relative orientation of domains with respect to target
proteins.

Target/parent versus target/model

We have once more to conclude that rarely is a model
closer to the experimental structure than its structural
parent.

Biologically important regions

As discussed above, biologically important regions are,
on average, predicted better than other parts of the model.
Although as we have said, this is due more to evolution
than to prediction methods, it is still important to bear in
mind. It is, in fact, the underlying reason why we believe
that comparative modeling, with all its pitfalls and prob-
lems, is still an invaluable tool in modern biology.

Performance of automatic servers

A number of servers selected and aligned the target to
the parent as well as the best “human” groups, and this is
certainly important. This is, nonetheless, not true for all of
them. The wide accessibility of publicly available servers
offers the end user many choices but not necessarily
sufficient information to select the most appropriate tool
for the problem at hand. We believe that results of CASPs,
as well as those from publicly available evaluation servers
(see for example http://maple.bioc.columbia.edu/eva/, http://
bioinfo.pl/LiveBench/, http://www.sanger.ac.uk/Users/lp1/
MaxBench/), should be taken into serious consideration by
the users.

CASP3 vs CASP4

Finally, we must comment on the comparison of the
CASP3 and CASP4 results. It is clear that there has been
only a marginal improvement, if any, between the two
experiments. As a scientific community, we can either
discard the problem or blame this unpleasant result on the
dangers of comparing different experiments. However, we

Fig. 10. Percentage sequence identity between targets and templates
in CASP3 and CASP4.

Fig. 11. Average values of the percentage of correctly aligned
residues (a) and GDT-TS (b) in CASP3 and CASP4 as a function of the
percentage of sequence identity between the target and its closest
template.

Fig. 12. Comparison of ranking in CASP3 and CASP4 for selected
groups.
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should honestly recognize that there has not been an
overwhelming effort toward improving comparative model-
ing techniques in the last couple of years. As is clear from
Figure 12, this also applies to individual groups, with the
notable exception of the Baker group.

One last comment directed to the end users of models:
Because of the time limit imposed on the predictors, CASP
experiments are not necessarily representative of what
one should expect as the standard performance of a
predictor in real life. CASP results tend more toward
lower, rather than average, quality of models. Certainly,
all the CASP predictors would not, in real life, build a
model as quickly as possible, trying to be faster than the
experimentalists working on it, regardless of the difficulty
involved. Certainly, they would take the necessary time,
check every possible aspect of the problem, and verify the
biological implications of the resulting model, thus substan-
tially increasing the chances of its being correct.

In real life, the closest things to CASPs are large-scale
prediction efforts connected, for example, with genome
projects, which are becoming increasingly widespread and
popular. In this respect, the results of CASP experiments
are very important indicators of state of the art of predic-
tion methods.
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