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ABSTRACT We describe here the results of our
analysis of the comparative modeling predictions
submitted to the fourth round of Critical Assess-
ment of Structure Prediction (CASP4). On the basis
of anumerical evaluation of the models, we assessed
their ability to predict the overall fold correctly, the
relative orientation of domains in multidomain pro-
teins, the conformation of the side chains, the loop
regions, and the biologically important residues of
the targets. We also discuss the performance of
automatic prediction servers and compare the re-
sults of CASP4 with those obtained in CASPS3.
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INTRODUCTION

The assessor for comparative modeling in a CASP
experiment is required to evaluate the quality of hundreds
of protein models submitted by tens of groups either as
three-dimensional (3D) structures or as implicit models
(alignment to parents) in a matter of a few weeks.

The task is overwhelming, and it would be impossible if
it were not for the excellent support of the scientists at the
Livermore Prediction Center, who numerically evaluated
each model.’ The reliability of an assessment based only
on lists of numbers such as root-mean-square deviation
(RMSD) values or the percentage of correctly aligned
residues is debatable, but the only way to go if the
experiment is to be as wide, timely, and significant as we
believe to be. The number of predictions is such that visual
inspection of each model, which in our opinion is still the
best form of quality assessment, is infeasible.

The role of the assessor thus becomes that of combining
and analyzing the numbers, trying to make sense out of
them, and checking the conclusions at various stages by
visually inspecting selected models to verify that there are
no obvious flaws in the criteria adopted. This does allow a
few conclusions to be drawn and forms the basis of what
this article aims to describe.

The assessment is thus critical; in fact, the very concept
of assessor implies that some choices have to be made in
how results are analyzed and presented.

An assessment has to take into account the expectations
of the predictors, who invested considerable amount of
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time and effort in the experiment: they need to know
where they stand with respect to their colleagues and
fellow predictors and whether any of the novel ideas they
tried actually worked. But we believe that an assessment
must also meet the expectations of biologists, or other
users of the models, who need to know which methods to
use and which level of accuracy they can expect from it.
Luckily, most of the time these two aspects of the problem
coincide, and information can be provided to both predic-
tors and end users, but this is not necessarily the rule.
Here we tried to keep in mind the needs of the users
foremost, leaving the description of details and technicali-
ties of results to the numerous specialized reports that
usually result from a CASP experiment.

RESULTS
Criteria

To compare and evaluate prediction methods, it is
necessary to agree on a set of criteria.

In a soccer championship, each game is scored according
to the number of goals. Other parameters, such as shots on
target, fouls, or elegant play, although equally (or maybe
more) correlated to quality of a team are completely
discarded in assigning the score. Whether this is a good
idea, it is accepted worldwide and seems to work reason-
ably well.

In comparative modeling, the community believes that
no single parameter is sufficient to measure the quality of
amodel, so it is customary within and without CASP to use
a set of parameters and combine them. This introduces
ambiguity, because the combination of different parame-
ters is arbitrary and, most importantly, because the param-
eters are not all independent. For instance, a model with a
low RMSD value has certainly been based on a good
alignment and has probably produced a better quality of
side chains.

This is one reason, but not the only one, why CASP
results cannot possibly be considered as equivalent to the
results of a competition.
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TABLE 1. Comparative Modeling Targets for CASP4

ANALYSIS AND ASSESSMENT IN CASP4

Best PDB
template;
extent of
superposition
Target number (No of
Name Biologically Domain residues)/ Ca
Commenis important regions boundaries RMSD (&)
T0089 14, 16-19, 21, 84, Domain 1: lats
FtsA from Thermatoga 190, 212-217, 219, | 7-85, 167-200,| 115/2.08
maritima 238,242 257-261, | 359-390
Interacts with FisZ to 337-341,380 Domain 2 1dga
complete septal 239-290 48/2.53
invagination (cell Domain 3: Not CM target
division) 26-166
Domain 4: 1dej
201-238,291- | 93/1.96
358
T0090 55-57, 58-59, 94, Domain 1: Not CM target
ADP-ribose 96-97,99, 100, 112, | 1-57
pyrophosphatase from £. 115, 116, 130, 132,
coli 133, 137, 139-141, | Domain 2: Imut.M_15
166, 187-189 58-209 100/2 49
T0092 The active site Single domain: | 1d2c
Hypothetical protein from | residues of the 1-227 175/2.38
E. coli template are not
Shares homoelogy with conserved in the
one domain of Glycine target.
N-methyltransferase
T0099 6, 7,916, 30-33, 46,| Single domain: | llck
SH3 domain 48, 50 1-56 47/2.9
T0103 34, 80, 107-111, Single domain: | 1ak9
Extracellular alkaline 133-139, 193,195, | 1-368 237/1.96
serine proteinase 198, 287
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To assess which method works better in CASP, one
should know which models have been produced by which
method.

There are at least two problems to be to faced. The first is
that assessment is essentially blind, that is, only at the very
last minute after evaluating and scoring models is the
assessor informed about the identity of the predicting group
and can then see if the group has chosen to give information
about the type of method used. This implies that a model is
evaluated in the category of its target, not according to the
method used to produce it. It is obvious that even an
extraordinarily good ab initio prediction on a comparative
modeling target has very few chances to be better than the
comparative modeling predictions on the same target.

This has another effect: a comparative modeling group
has to decide which targets are within their category on
the basis of sequence data only. Protein structure data-
bases tend to grow during the prediction season, and it is

possible that database searches performed by different
groups at different points in time produce different results.
In any case, a group may choose to predict all the targets,
only some of them, or might fail to recognize that a target
can be modeled by homology. Furthermore, partial predic-
tions can be submitted, and indeed some models only cover
part(s) of the target.

And here is another difference from a soccer competi-
tion: each team has to play against all the designated
teams for an allotted time; it cannot just skip or shorten
matches at will. If this were possible, assigning the score
in a championship would be virtually impossible.

In CASP, predictors are not required to submit models
for all the targets, which implies that each model must be
scored according to the difficulty of the target and to the
fraction of the target predicted. Thus, both the total score
and the average score achieved by each group should be
considered.
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TABLE 1. (Continued)

T0111 38-45, 156=165, 167,| Domain 1: lebh
Enolase from E. coli 208, 245, 257-267, 1-128 126/1.96
Catalyzes the reversible 289, 316, 341, 370,
delydration of 7l Domain 2: Genl
2-phospho-D-glycerate to 129-430 290/0.99
phosphoenolpyruvate
To112 41, 66,92, 96, 99, Domain 1: Ad- | 1bxz
Sorbitol dehydrogenase 102, 110, 152, 153, | Al65, 200/2.07
from silverleaf whitefly 295 A294-A351
Reaction: L-iditol + Domain 2: lagn
NAD+) = L-sorbose + Al66-A293 121/1.75
NADH (related to Zn
ADH)
TO113 15-20, 40-44, 64-66,| Single domain: | lahi
HCD2 from rat 69, 91-94, 97-98, 1-255 235/1.45
Short chain 3-lydroxyl 119-120, 124, 127,
AcilCoA dehydrogenase 155-157, 161, 164-

165, 168, 172, 200,

205, 257
TO117 30-36, 51, 84, 88, Single domain: | Ivtk

104, 105, 110 1-197 174/2.2
To121 13, 3644, 84, 86, Domain 1: Al- | 1b0u
MalK from T liforalis 88, 135, 140-148, A240 209/2.51
ATP-binding subunit of | 158, 164, 165, 173,
the maltose ABC 177, 178, 192, 193, | Domain 2: 1b%n
transporter 198, 199 A241-A372 114/1,99
To122 10, 36, 47, 51, 86, Single domain: | 1c29
Tryptophan synthase 88,113,139, 161, 1-241 233/1.59
alpha subunit from 198, 220-222
Pyrococcus furiosus
Cleaves indole 3-glycerol
phosphate to give indole +
D-glyceradehyde-3-P

In conclusion, no matter how careful an assessment is,
there are intrinsic reasons why results have to be treated
with caution, and, although summaries such as this one
can prove useful, all the above should be kept in mind and,
whenever needed, reference made to the data publicly
available on the CASP server (http:/PredictionCenter.
llnl.gov/casp4).

Targets

Any sequence showing a significant E-value (<0.02)
with a protein of known structure (http:/PredictionCenter.
linl.gov/casp4) after a PSI-BLAST run? was considered a
target for comparative modeling.

The selected targets are listed in Table I. We also show
in the same table:

® the location of residues known to be important for the
protein’s function

® the domain boundaries for multi-domain proteins

® the closest structure present in the database

® the RMSD and the extent of the structural superposi-
tion! between the target and the best parent.

The location of residues important for the biological
function of the target protein, which are probably those of
interest for the end users, were identified by checking the
literature data on the target (if available) or on the
corresponding parent(s).

Domain boundaries were obtained by visual inspection
of the target structures.

A structure-based PDB search was performed by the
Livermore Prediction Center scientists,! and the closest
parent structure was identified by using the LGA proce-
dure.® Being based on knowledge of the target structure,
this information was not available at the time of predic-
tion.

From the final user’s point of view, the important factor
is how good the model is, not how good the result would
have been if the selected parent were the only one avail-
able. This means that a model should be compared with
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T0123 29,33,34,37-38, | Single domain: | 1beb
Beta lactoglobulin from | 40, 56, 61, 69, 84, 1-260 136/2.16
pig 92, 120, 145-152,
Function wnknown, 155
probably involved in the
transpori of retinol and/or
Jfaity acids
TM25 1-7,8, 11, 15, 24, Single domain: | 3lyn
Spl8 protein, Haliotis 28, 31, 37, 53, 55, 1-137 107/2.13
Julgens 59, 68, 69, 74, 85,
Dimer 92,93, 107, 100,

101, 120, 116, 123,

126,131,135
T0128 37,41,42,45-50, | Domain I: 1606 N
Manganese superoxide 78-79, 81-82,90, | A12-A99 88/0.7 ;%, '-g\f.,
dismutase homolog from | 137-139, 143, 160, PRI \,%'_
Pyrobacuium aerophilum | 166, 176, 178180, ‘j;%_ s
MnSOD dismute toxic 183184, 187-188, | Domain 2: 1606 . 4
superaxide radicals to 190 Al00-A222 | 117/0.84 Al Py
oxygen and oxygen '
peroxide

Domains 1, 2, and 4 are colored orange, blue, and magenta, respectively. Domains that are not

comparative modeling targets are shown in green.

the best possible parent and not to the one actually used to
produce it.

Incidentally, with the continuous increase in database
size and the implementation of methods that use more
than one parent per target, assessing each model in
relation to the parent used would be impossible anyway.

A rough measure of how well groups selected the parent
is given in Table II. There we list the RMSD between the
Cas of the target and those of the chosen parent(s) in the
superimposed region. We only list values for those predic-
tions where the selected template corresponds to one of the
templates listed by the Livermore Prediction Center Web
site.

Figure 1 shows a plot of the RMSD for Ca atoms
obtained by each group on multidomain targets after
optimal superposition of the predicted and experimental
structures compared with that obtained by superimposing
each domain separately.

Almost invariably, the prediction of the complete struc-
ture has a higher RMSD value than the individual do-
mains. This observation, not unexpected, points out once
more the difficulty of predicting the relative position of
domains even in related proteins. We always analyzed the
predictions according to the superposition of domains
rather than of the complete structure; if we did otherwise,
a high RMSD for a poorly predicted domain could be
masked by a low RMSD for a larger one.

Scoring Scheme

The aim of our scoring scheme was to evaluate the
models of each target by using a number of different
measures, each normalized by the distribution for that
measure over predictions for that target.

Predictors can submit more than one model, but as
announced beforehand (http://PredictionCenter.llnl.gov/
casp4), we only analyzed the one designated as model 1.
The first analysis we performed aimed at evaluating the
quality of the overall folds. The selected measures were
GDT-TS (GDT),* RMSD for all Ca atoms of the core (rms),
the percentage of correctly aligned residues (al0), the Ca
RMSD of biologically important regions (rmsb), and the Ca
RMSD for those regions where the target differs substan-
tially from its parent, in the following simply called loops
(rmsl).t

GDT-TS is defined as:

(%Ca within 1 A + %Ca within 2 A + %Ca within 4 A
+ %Ca within 8 A)/4 (1)

where % Ca within 1 A is the percent of aligned residues
within 1 A after superposition of model and target. It
should be noted that, contrary to RMSD values, GDT-TS
does not explicitly penalize models where one or more
regions are predicted very incorrectly, although, as we will
see, our scoring method does if other groups have produced
better models for those regions.

To analyze the details of the models, we used the RMSD
for all side-chain atoms (rmssc), all side-chain atoms
defined as reliable (rmsscr), all side chains in the core
(rmsscc), and all side chains in structurally divergent
regions (rmsscl). Definitions of these parameters can be
found in Ref. 1.

In all cases we used the following simple rule to assign a
score to a model. Let X be the selected parameter

(X €{GDT, rms, al0, rmsb, rmsl, rmssc,

rmsscr, rmsscc, rmsscl}), (2)
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TABLE II. Selection of Templates

Id Group T0089 T0090 TO0092 T0099 TO0103 T0111 TO0112 T0113 T0117 T0121 T0122 T0123 T0125 T0128
001 Shortle — — — — — — — — — — — — — —
002 Lomize-Andrei — — — — — — — — — — — — 2.13 —
012 Levitt 2.28 2.64 — — — — — — 241 2.49 — 2.06 2.38 —
017 Yang-Ansuei 241 2.64 2.28 — 198 — — — — 2.49 1.63 2.16 — —
018 Raghava-GPS — — — — — — — — — — — — — —
022 InforMax — — — — — — — — — — — 2.16 — 0.78
023 Jones 241 2.64 2.16 — — — — — — 2.49 — 2.16 2.19 —
028 Ram-Samudrala — 2.61 — 2.68 — — — — — — — — 2.38 —
031 BioInfo.PL — 2.61 2.16 — — — — — 223 2.49 — 2.13 2.13 —
032 Wolynes — 2.64 2.16 2.68 201 105 — — 2.31 — 16 2.13 2.38 —
035 Rose-Group — — — — — — — — — — — — — —
042 Honig-Barry — 2.64 2.16 2.74 — 123 — — — 2.49 — — 2.19 —
044 Walts-Wondrous — — — — — — — — — — — 2.16 — —
047 kitasato-univ. — 2.61 — 2.74 — — — — 22 2.49 1.63 2.16 — —
055 Bystroff — — — — — — — — — — — — — —
058 Harrison-Weber — 2.61-2.64 2.16 2.9 — — 2.19 1.68 2.31 2.49 — — 2.19 —
065 Torda-Andrew — — — 2.55 — — — 1.39 — 2.49 — 2.16 — —
077 rost — — — 248274 — — — 1.46 — 249 159-1.63 217 — 0.97
080 Skolnick-Kolinski — — — — — — — — — — — — — —
086 Bass-Michael — — — 2.67 — — — — — — 157 2.16 — —
088 ORNL-PROSPECT — 2.61 — 2.48 — 123 — — — 2.49 — 2.13 2.13 0.79
090 Hogue-Feldman — — — 2.74 — — — — — — — — — —
094 SAM-T2K — — — 2.65 — — — — — — — — — —
095 blundell-tl — 2.61 2.16 2.74 — — — — 2.6 2.49 — 2.17 2.19 —
118 Dlakic-Mensur — — — 251 — — — — — — — — — —
125 Sternberg-3D- — 2.64 — 265274 — — 225244 154-161 2.24 2.49 163 211-213 213-219 —
JIGSAW
126 Sternberg 241 2.64 216 2.65-2.74 193 —  2.25-244 154-161 2.24 249 157-163 211-2.13 213219 —
133 CBC-FOLD — 2.61 — 5.36 — — — — — — — — — —
152 Yoon — — — — — — — — — — — — — —
155 TUDELFT — — — 5.48 — — — — — — — 434 — —
161 GNM-FR — — — 2.74 — — — — — — — — — —
169 Dunbrack — 2.64 2.16 2.74 — — 2.3 — — 2.49 1.63 2.16 2.19 —
179 Sausage — — — — — — — — — — — 2.16 — —
186 SDSC1 — — — — 194 — — — — 2.49 — 2.16 — —
187 SDSC2:Reddy- — — — 26829 — — — 139 — — — — — —
Bourne
191 Lee-Jung — 2.61 — 2.55 — — 2.25 — — 2.49 — — 2.13 —
197 Godzik 241 2.64 — 2.65 — — — — 2.6 2.49 16 — 2.19 0.84
216 Isites-Server — — — — — — — — — — — — — —
218 LAMBERT- — 2.61 — — — — 2.44 — — 2.49 1.63 — — —
Christophe
223 Braun-UTMB 241 2.64 2.16 2.74 — — — — — 2.49 — 2.16 2.38 —
237 Sali-Andrej — 2.61 2.16 — — 123 — — — — — — — —
241 Vajda 241 2.64 — 2.74 — — — — — 2.49 16 2.17 2.38 —
243 Dill-Ken — — — — — — — — — — — — —
255 BinToHes — 2.64 — — — 113 — — — 2.49 — 2.16 — —
278 Flake&mates — — — 2.71 — — — — — — — — — —
279 Bateman — 2.61 — — — — 2.44 — — — — — — —
281 Mohan — — — — — — — — — — — — — —
312 HANRAM-CDFD — 2.64 — — — — — — — — — — — —
330 Zemla-Joanna — — — 2.74 — — — 1.39 — — 1.63 2.11 2.19 —
341 Lai — — — 2.55 — — — — — — — — — —
342 SBI-AT 241 — — — 197 — — — — 2.49 1.63 2.11 2.19 —
352 zhu — — — — — — — — — — — — — —
354 baker — 2.61 — — — — — — — — 157 — 2.13 —
359 Cafasp-consensus — 2.64 2.16 2.65 — — — — — — — — — —
363 Moult — 2.64 — — — — — — — — — 2.09 — —
375 Ho-Kai-Ming — — — — — — — — — — — — — —
381 SBfold — 5.22 — 3.17 — 123 — — — 2.49 — 2.16 2.33 —
382 SBauto — 2.61 — 3.17 2 123 2.25 — — 2.49 16 — — 123
383 HeadGordon-Teresa — — — — — — — — — — — — — —
384 Murzin — 2.61 — — — — — — — — — — — —
390 Taylor — 2.64 — — — — — — — — — — — —
393 Skolnick-Kolinski- — — — 2.55 — — — — — — — — — —
THD
406 VENCLOVAS 2.28-2.41 2.64 216 23-251 — 123 23244 153 — 2.49 163  211-2.16 — —
414 Friesner — 2.64 244 251 194 123 — — — 249 1.56 211 — —
426 koehl — 2.64 2.16 2.3 — — — — — — — — — —
429 CHEN-WENDY — — 2.16 2.55 — — — 1.39 2.31-2.6 249 — 216 213238 —
432 LMGDD — — — — — 123 — — — — — — — —
440 Deleage-Geourjon — — — — 194 — — — — 2.49 — — — —
444 MOE-CCG — — — — — — — — — — — — — —

447 MSI — — — 2.74 — — — — — 2.49 163 211217 213 —
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TABLE II. (Continued)

Id Group T0089 T0090 T0092 T0099 T0103 TO111

T0112 T0113 T0117 T0121 T0122 T0123 T0125 T0128

455 NIH-Garnier — — — — _ _
457 SBI-GR — — — 2.74 — _
459 mprabha — — — — — —
465 YASARA — — — — — _
468 SBl-jz — — _
471 Chodera-John — — — — _ _
473 Mushegian — — — — _ _
486 Shoshana-Wodak — — — — — _
489 FCLD — — — — — _
498 Kollman-Baker — — — — — —
500 FAMS —
512 ELAN —
526 Ginalski — — — — _ _
535 shankari — — — — — _

2.49 — —

2.17

Ca RMSD ranges for the target and the selected parent(s) in the superimposable regions are shown in A only for predictions using one or more

templates found by the ProSup procedure.
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Fig. 1. Scatter plot of the Ca RMSD between target and predicted structure (x axis) versus that of the corresponding domains (y axis). Only values
below 15 A are shown. The number following the target name indicates the domain.

X and o(X) the average and standard deviation of X over all
predictions for a given target. We first excluded predic-
tions with very “bad” values of X:

If X € {GDT, al0}, eliminate all X < X — 2 % ¢(X)

If X € {rms, rmsb, rmsl, rmssc, rmsscr, rmsscc, rmsscl},

eliminate all X > X + 2 * ¢(X)

We should mention here that the number of excluded
predictions was very low (around 5%).

We then recalculated and X and o(X) over all remaining
predictions and assigned the score as:

X-X )
Score(X) = 05%0X) * 9% predicted

Where % predicted is the percent of the structure (or of the
biologically important region or of the loop) that is present
in the prediction.
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TABLE III. Group Scores for Correctness of the Overall Fold
N GDT- GDT- RMS RMS al0 al0 Biol Biol Loop Loop Sum Sum Rank Rank Sum of

Id Group dom TStot TSav CaCtot CaCav tot av tot av  tot av tot av  tot av  ranks
406 VENCLOVAS 18 2623 146 2170 121 2346 130 11.74 0.65 19.27 1.07 10240 5.69 1 5 6
354  baker 19 3403 179 17.20 091 2268 119 1251 0.66 1587 084 10229 5.38 2 6 8
126  Sternberg 20 2867 143 18.05 090 2153 1.08 13.15 0.66 1646 0.82 97.86 4.89 3 12 15
031  BioInfo.PL 19 3172 167 16.26 0.86 2191 115 1134 0.60 1152 061 92.76 4.88 4 13 17
342  SBI-AT 20 2259 113 18.72 094 2185 1.09 1212 061 1195 060 87.24 4.36 5 15 20
197  Godzik 20 1892 095 1798 0.90 1756 0.88 10.57 0.53 19.54 098 8457 4.23 6 16 22
088  ORNL-PROSPECT 20 3237 162 14.30 0.71 1459 0.73 1021 051 1213 061 83.60 4.18 7 17 24
042  Honig-Barry 20 2323 116 17.83 0.89 1589 0.79 1048 0.52 1543 0.77 82.86 4.14 8 18 26
260 S mGen THREADER 20 20.15 1.01 16.59 0.83 1933 097 1276 064 1035 052 79.19 3.96 9 21 30
259 S Gen THREADER 20 1533 0.77 16.05 0.80 1881 094 1332 0.67 1191 060 7543 377 10 26 36
169  Dunbrack 17 18.05 1.06 13.25 0.78 1733 1.02 843 050 1087 0.64 6793 4.00 19 19 38
044  Walts-Wondrous 20 17.03 0.85 18.87 094 1617 081 9.09 045 1236 062 7353 368 11 28 39
047  kitasato-univ. 18 1863 1.03 13.43 0.75 1229 0.68 11.84 066 1335 0.74 69.53 3.86 16 23 39
223  Braun-UTMB 19 2090 110 13.30 0.70 1540 081 9.78 051 1204 063 7143 376 14 27 41
382  SBauto 20 23.01 115 12.75 0.64 1537 0.77 7.11 036 1497 0.75 7320 3.66 12 29 41
111S SAM-T99 20 1851 093 1821 091 1547 0.77 1052 053 1036 052 73.06 365 13 30 43
237  Sali-Andrej 12 1581 1.32 12.31 1.03 1023 085 899 0.75 11.16 093 5849 4.87 30 14 44
107 S  bioinbgu-seqpmprf 20 1811 091 1547 0.77 1543 0.77 9.34 047 1163 058 6998 350 15 32 47
170 DNAmining.com/p-map 16 1214 0.76 15.54 097 1273 080 744 047 1443 090 6229 3.89 26 22 48
132S Sternberg-3DPSSM 19 1684 089 1115 059 14.83 0.78 1363 0.72 1199 063 6844 360 18 31 49
103S Zhou-HX 20 1692 0.85 14.67 0.73 1442 0.72 1054 053 12,69 0.63 69.24 3.46 17 33 50
384  Murzin 4 1584 3.96 7.62 191 402 100 268 067 6.17 154 3632 9.08 53 1 54
093 S bioinbgu 20 19.07 0.95 14.33 0.72 1400 0.70 944 047 1049 052 67.32 3.37 20 37 57
357  Fischer-Daniel 20 1798 090 14.15 0.71 1392 0.70 1228 061 892 045 6724 336 21 39 60
094 SAM-T2K 20 2180 1.09 14.03 0.70 11.32 057 912 046 1026 051 66.53 3.33 22 41 63
359  Cafasp-consensus 20 1996 1.00 1440 0.72 1359 068 9.79 049 861 043 6636 332 23 42 65
106 S  bioinbgu-seqpprf 20 1725 0.86 1448 0.72 1486 0.74 877 044 10.73 054 66.09 3.30 24 43 67
218 LAMBERT-Christophe 17 1523 0.90 891 052 1571 092 851 050 958 056 5794 341 31 36 67
158 S PDB-Blast 15 1009 0.67 9.38 0.63 11.06 0.74 1060 0.71 10.64 0.71 51.77 345 36 34 70
137 Zhou-HX 19 1345 071 14.79 0.78 1269 067 933 049 1134 060 6160 324 27 44 71
526  Ginalski 4 6.77  1.69 5.13 1.28 553 138 417 104 252 063 24.13 6.03 68 3 71
077  rost 20 1377 069 15.14 0.76 1177 059 1114 056 10.75 054 6257 313 25 48 73
405  josé 6 944 157 5.70 0.95 3.73 062 315 053 7.66 128 29.69 4.95 62 11 73
500S FAMS 16 1516 0.95 9.95 0.62 966 060 749 047 1124 0.70 5350 334 33 40 73
023  Jones 19 18.06 0.95 13.73 0.72 1246 066 806 042 8.00 042 6032 3.17 28 46 74
331 Levy 17 1300 076 11.14 0.66 8.82 052 1036 0.61 1046 0.62 5379 3.16 32 47 79
381  SBfold 20 2044 1.02 9.92 050 1382 069 919 046 557 0.28 5894 295 29 51 80
426 koehl 4 542 136 3.53 0.88 6.27 157 200 050 323 081 2046 511 77 10 87
429 CHEN-WENDY 16 1373 0.86 10.67 0.67 728 045 939 059 852 053 49.60 3.10 38 50 88
032  Wolynes 19 1390 073 1041 0.55 937 049 17.76 041 1118 059 5262 277 35 56 91
279  Bateman 3 457 152 3.75 1.25 1.70 057 242 081 342 114 1587 529 82 9 91
498  Kollman-Baker 1 167 1.67 1.16 1.16 170 1.70 182 182 119 119 754 754 90 2 92
447  MSI 13 1241 095 8.46 0.65 9.15 0.70 654 050 530 041 4185 3.22 49 45 94
108 S  bioinbgu-prfseq 20 1505 0.75 1111 0.56 950 048 934 047 811 041 5312 266 34 61 95
465  YASARA 6 6.03 1.01 5.86 0.98 547 091 234 039 296 049 2267 3.78 70 25 95
002  Lomize-Andrei 1 196 1.96 1.35 135 113 113 0.00 0.00 141 141 586 586 92 4 96
095  blundell-tl 14 1257 0.90 8.12 0.58 6.84 049 748 053 855 061 4356 3.11 47 49 96
486  Shoshana-Wodak 9 944 1.05 7.21 0.80 625 069 254 028 482 054 3026 336 60 38 98
393  Skolnick-Kolinski-THD 19 12,61 0.66 9.61 0.51 8.03 042 547 029 1420 0.75 4992 263 37 63 100
118  Dlakic-Mensur 1 130 1.30 0.82 0.82 183 183 112 112 030 0.30 537 537 94 7 101
312 HANRAM-CDFD 1 147 147 147 1.47 081 0.81 084 084 0.69 0.69 529 5.29 95 8 103
012  Levitt 19 1257 066 10.24 0.54 11.08 058 648 0.34 800 042 4838 255 40 65 105
150  Chandonia-Cohen 13 9.13 0.70 8.49 0.65 643 049 642 049 6.72 052 3720 2.86 51 54 105
017  Yang-Ansuei 20 1233 062 11.69 0.58 839 042 852 043 824 041 4918 246 39 70 109
173  Barton 15 793 053 9.35 0.62 582 039 864 058 827 055 40.00 2.67 50 59 109
104 S  bioinbgu-gonp 20 1381 0.69 11.69 0.58 819 041 755 038 6.83 034 4806 240 41 71 112
133  CBC-FOLD 19 947 0.50 1191 0.63 857 045 10.02 053 690 0.36 46.86 247 43 69 112
363  Moult 18 992 055 1240 0.69 865 048 638 035 735 041 4470 248 45 67 112
028  Ram-Samudrala 20 1657 0.83 9.05 0.45 716 036 694 035 804 040 47776 239 42 72 114
395S FFAS 17 10.70 0.63 817 0.48 966 057 479 028 890 052 4223 248 48 66 114
105S bioinbgu-gonpm 20 1127 0.56 11.17 0.56 551 0.28 827 041 897 045 4519 226 44 75 119
241  Vajda 19 1224 064 9.52 0.50 745 039 553 029 910 048 4384 231 46 73 119
341 Lai 1 1.02 1.02 0.80 0.80 0.60 0.60 0.00 0.00 156 1.56 3.98 3.98 100 20 120
389S 123D+ 11 663 060 6.86 0.62 6.13 056 4.85 044 479 044 2926 266 63 60 123
344  PDB-ISL 1 0.75 0.75 1.27 1.27 1.38 138 0.09 009 031 031 3.80 3.80 101 24 125
330 Zemla-Joanna 10 613 061 7.62 0.76 230 023 457 046 586 059 2649 265 67 62 129

361  GMD-SCAI 18 7.00 0.39 9.29 0.52 639 036 920 051 525 029 3713 206 52 77 129
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TABLE III. (Continued)
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N GDT- GDT- RMS RMS al0 al0 Biol Biol Loop Loop Sum Sum Rank Rank Sum of
Id Group dom TStot TSav CaCtot CaCav tot av  tot av  tot av tot av tot av  ranks
453  Noguchi 8 577 0.72 5.10 064 230 029 246 031 636 080 2199 275 73 57 130
444 MOE-CCG 7 358 0.51 3.99 057 544 078 338 048 386 055 2024 289 78 53 131
457  SBI-GR 18 10.10 0.56 7.85 044 542 030 373 021 7.89 044 3498 194 54 78 132
155 TUDELFT 8 580 0.72 5.42 068 5.02 063 280 035 233 029 2137 267 75 58 133
468  SBl4z 9 6.55 0.73 4.57 051 588 065 320 036 311 035 2332 259 69 64 133
390  Taylor 18 8.84 049 9.63 053 311 017 466 026 729 041 3353 186 56 79 135
535  shankari 5 465 0.93 2.88 058 199 040 276 055 165 033 1393 279 84 55 139
191 Lee-Jung 20 881 044 8.09 040 453 023 630 031 640 032 3414 171 55 85 140
458  strauss 1 054 0.54 0.90 090 120 1.20 080 0.80 343 343 105 35 140
058  Harrison-Weber 17 438 0.26 7.78 046 612 036 450 026 754 044 3032 178 59 82 141
065  Torda-Andrew 19 847 045 6.77 036 489 026 681 036 569 030 3263 172 57 84 141
090  Hogue-Feldman 2 111 0.56 0.77 038 011 006 100 050 285 142 584 292 93 52 145
414  Friesner 19 575 0.30 5.04 027 658 035 750 039 630 033 3116 164 58 87 145
086  Bass-Michael 19 790 042 7.30 038 254 013 485 026 759 040 3019 159 61 88 149
125S Sternberg-3D-JIGSAW 18 484 0.27 5.34 030 242 013 684 038 734 041 2679 149 65 90 155
186S SDSC1 17 641 0.38 7.02 041 553 033 430 025 338 020 2664 157 66 89 155
536  Fox-Sheppard 8 457 057 3.83 048 315 039 385 048 123 0.15 1663 208 81 76 157
255  BinToHes 20 859 043 4.97 025 289 014 572 029 521 026 2738 137 64 95 159
022  InforMax 4 139 0.35 2.40 060 183 046 268 067 08 021 916 229 88 74 162
127S ssPsi/Elofsson-Arne 16 465 0.29 3.67 023 564 035 450 028 381 024 2226 139 72 93 165
161 GNM-FR 17 7.02 041 5.15 030 445 026 190 011 375 022 2227 131 71 97 168
375  Ho-Kai-Ming 4 245 0.61 2.40 060 0.75 019 042 011 130 033 732 183 91 80 171
440  Deleage-Geourjon 6 2.38 040 1.78 030 276 046 228 038 0.75 013 995 166 86 86 172
278  Flake&mates 17 429 0.25 5.35 031 058 003 464 027 655 039 2141 126 74 99 173
473  Mushegian 1 055 0.55 0.00 000 0.00 000 144 144 048 048 247 247 106 68 174
229  UCLA-DOE 19 318 0.17 6.60 035 228 012 230 012 694 037 2129 112 76 101 177
080  Skolnick-Kolinski 7 212 0.30 4.67 067 146 021 087 012 082 012 993 142 87 92 179
187  SDSC2:Reddy-Bourne 3 0.00 0.00 0.82 027 0.00 000 179 060 255 0.85 516 172 96 83 179
152 Yoon 6 251 042 1.92 032 128 021 297 049 0.00 0.00 867 144 89 91 180
010 Pan 9 223 0.25 2.69 030 289 032 165 0.18 255 0.28 1200 133 85 96 181
052  MRIT-Onizuka 18 566 0.31 4.73 026 211 012 142 0.08 624 035 2016 112 79 102 181
001  Shortle 2 197 0.99 0.00 000 163 0.81 0.00 0.00 360 1.80 103 81 184
274  Tsigelny 18 442 0.25 4.32 024 0.72 004 547 030 468 026 1961 109 80 104 184
401  Reva-Boris 15 185 0.12 2.31 015 263 018 464 031 431 029 1574 105 83 105 188
027  SHESTOPALOV 3 0.00 0.00 1.96 065 0.00 000 165 055 053 018 414 138 99 94 193
179S Sausage 4 1.86 0.46 0.85 021 066 017 106 0.27 000 0.00 443 111 97 103 200
352  zhu 5 135 027 0.00 000 170 034 137 027 0.00 0.00 442 0.88 98 106 204
035  Rose-Group 1 130 1.30 0.00 0.00  0.00 0.00 0.00 0.00 130 130 108 98 206
432 LMGDD 2 057 0.28 0.16 0.08 0.00 0.00 0.00 0.00 168 0.84 240 120 107 100 207
280 S Elber-Meller-2000 9 0.64 0.07 0.94 010 0.07 0.01 057 0.06 156 0.17 378 042 102 108 210
512 ELAN 5 0.33 0.07 0.00 000 096 019 070 0.14 156 031 356 0.71 104 107 211
273  WXW 6 0.00 0.00 0.05 001 0.00 000 0.00 0.00 101 017 106 018 109 111 220
329  Tatsuya 1 039 0.39 0.00 0.00  0.00 0.00 0.00 0.00 039 039 113 109 222
459  mprabha 3 0.00 0.00 0.46 015 0.00 0.00 0.00 0.00 0.00 0.00 046 0.15 111 112 223
045  Del-Carpia-Yoshimori 8 054 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 054 0.07 110 114 224
003  Gerloff 1 025 0.25 0.00 0.00  0.00 0.00 0.00 0.00 025 025 115 110 225
055  Bystroff 10 042 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 042 0.04 112 116 228
216 S Isites-Server 7 0.00 0.00 0.39 0.06 0.00 0.00 0.00 0.00 0.00 0.0 039 0.06 114 115 229
471  Chodera-John 1 0.00 0.00 0.00 0.00 0.00 000 0.14 014 000 0.00 0.14 014 116 113 229
018  Raghava-GPS 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 000 0.00 117 117 234
220 S valencia-cnb-pred 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 000 0.00 118 117 235
243 S Dill-Kern 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 119 117 236
248  BMERC 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 000 0.00 120 117 237
281  Mohan 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 000 0.00 121 117 238
383  HeadGordon-Teresa 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 000 0.00 122 117 239
489 FCLD 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 123 117 240

Groups identified by S in the second column of the table are CAFASP participants.

Sum of ranks, respectively).

The % predicted value is different for each prediction and
for each of the considered regions. However, most predictions
of the less difficult targets were nearly complete. For ex-

For each group, we report the number of evaluated
domains (N dom), the total and average score according to GDT-TS (GDT-TS tot and GDT-TS av), RMSD of the Ca of the core residues
(RMS CaC tot and RMS CaC av), the percent of correctly aligned residues (al0 tot and al0 av), the RMSD of the structurally divergent
regions (loop tot and loop av). The sums of the average and total scores are reported in the columns labeled Sum av and Sum tot,
respectively. The ranking according to the last two values and their sum are reported in the last three columns (Rank tot, Rank ave, and

ample, the percentage of Ca predictions including 80% or more
of the structure was >90% for all targets except T0092, T0090_2,
T0089_1 (ca. 70%) and T0121_1, and T0103 (ca. 40%).
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Fig. 2. Histogram of number of groups according to the number of
targets predicted. Each domain of multidomain proteins was considered
as a separate prediction.

Fig. 3. One of the predictions for target 103. The region in red
(residues 325-340) contains an “impossible” structure. Nevertheless, the
parameters for this prediction are as follows: GDT = 38.6;rms = 9.56 A;
al0 = 126/368. The corresponding values of a good and “reasonable”
prediction (group 042) are as follows: GDT = 37.7;rms = 9.21A;al0 =
126/368.

Assessment of Correctness of the Overall Fold

The results for all groups are shown in Table III where
average and total scores for each considered parameter are
reported. The last columns report the sum of the total and
average score per group and the respective ranking. In
general, they are different, because not all groups pre-
dicted all available targets (Fig. 2).

The “best” groups score well by using either ranking
system, with some exceptions. One notable exception is
group 384-Murzin (we use CASP4 group Id followed by the

100

GDT-TS total

GDT-TS biologically important regions

Fig. 4. Scatter plot of the GDT-TS values between target and
predicted structure (y axis) versus that of the corresponding biologically
important residues (x axis).
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Fig. 5. Scatter plot of the percentage of correctly aligned residues
versus the percentage of sequence identity between target and template
for the best prediction for each target.

Cg r.m.s.d. target - model

Co r.m.s.d. target - parent

Fig. 6. Scatter plot of the RMSD between target and parent with
respect to target and model. Only predictions with RMSD lower than 5 A
between template and model are shown. Squares correspond to predic-
tions spanning <50% of the superimposable regions.

identifier chosen by the groups), who submitted only four
predictions but achieved a very high score.

Three groups ranked among the first 15 for both total
and average score, implying that their method performs
well on as wide a range as possible of targets in the
present experiment. Of these, groups 354-baker also
obtained interesting results in fold recognition and novel
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fold targets (as did group 384-Murzin).*® Groups 406-
VENCLOVAS and 126-Sternberg were asked to report on
their comparative modeling results and methods.®”

During the December 2000 meeting in Asilomar, we also
asked other groups (chosen primarily on the basis of
methods) to briefly discuss some specific aspect of the
predictions (groups 137-Zhou-HX, 170-DNAmining.com/
p-map, and 259-GenTHREADER for alignment and 354-
baker, 393-Skolnick-Kolinski-THD, 31-BioInfo.PL for loop
building).

It should be mentioned that the differences in the loop
average scores of Table III are not very discriminating,
and only for targets T0111 and T0128 were there complete
loop predictions with a total Ca« RMSD lower than 3 A (and
even in these easy cases only groups 126-Sternberg and
255-BinToHes and groups 161-GNM-FR, 237-Sali-Andrej
and 429-CHEN-WENDY obtained values lower than 2 A
for T0111 and T0128, respectively). This finding suggests
that no group is clearly better in predicting difficult loops
and that a method able to consistently predict these
regions with good accuracy is still an elusive goal in
comparative modeling.

It is important to mention that scoring models using
RMSD and/or GDT values may fail to highlight major
problems with the models. Figure 3 shows one detail of a
model that is clearly incorrect, because it contains impos-
sible “knot” structures, although the corresponding RMSD
and GDT values were extremely good. We tried to identify
these cases (we found very few of them) and set their score
to zero but cannot guarantee that none escaped our
attention. Hopefully, for groups who submitted models for
several targets, the effect of problems in a single prediction
does not significantly alter the conclusions. Because the
number of predictions submitted to future CASPs is not
likely to decrease, some automatic method to detect these
cases should be devised.

Figure 4 shows a plot of the GDT-TS values obtained for
the total structure versus that for biologically important
regions, after superposition of the whole model. It is
apparent that, on average, the latter were predicted better
(higher GDT-TS value). This is clearly an important aspect
of the experiment. In our opinion, however, this reflects
more the intrinsic better conservation of these regions
than specific aspects of the methods.

By its own nature, comparative modeling exploits the
evolutionary constraints posed by the biological function
upon a protein and is, therefore, expected to work better on
such regions. Questionnaires posed to the predictors to-
ward the end of the experiment (data not shown) indicated
that the groups and/or the methods devoted no special care
to the prediction of these regions. The effect shown in
Figure 4 is most likely due to the fact that biologically
important regions are easier to align because of the
pattern of conservation of functional residues and, in any
case, more structurally conserved.

Alignment Quality

A pressing question in CASP is about general trends of
prediction methods, but it is difficult to derive general

conclusions using data including partial predictions on a
limited number of targets.

We address here the issue of the quality of present
sequence alignment methods, which poses the problem of
having to take into account that a correct partial align-
ment is better than a complete alignment that includes the
correct partial alignment but also contains incorrectly
aligned residues. Our scoring system is designed to deal
with this problem: if a prediction leaves out a part of the
structure, it is penalized if that region is correctly pre-
dicted by other groups and rewarded if most groups were
unable to predict it. This is very useful for discussing
relative performance of groups on a set of targets but
cannot be used to derive general conclusions.

One way to see what alignment methods are able to
achieve is to show the percent of correctly aligned
residues as a function of the percentage of sequence
identity between each target and its best template for
the best complete prediction for each target (Fig. 5). It is
apparent from these data that alignment quality is still
a problem and, more importantly, that its quality does
not correlate with sequence identity between target and
template. This should be a concern, especially because
structural genomics projects plan to use sequence iden-
tity as a criterion to select candidate targets for protein
structure determination and assume that comparative
modeling can provide reliable models for the remaining
proteins. Even a threshold of 50% would still fail to
provide satisfactory models for some proteins.

Were the Models Any Better Than the Closest
Structural Parent?

CASPs experiments provide a unique opportunity
to evaluate whether a 3D model provides more info-
rmation than simply aligning the target with the parent
sequence. In other words, if the alignment is optimal and
the parent correctly selected, one expects the model
to be at least as good as the structure superposition of
target and parent structures. If the modeling proce-
dure adds more information than just the alignment,
then the model should be closer to the target than the
parent.

Figure 6 shows a scatter plot of the Ca RMSD after
optimal superposition of the target and its closest parent
structure (x axis) versus the Ca RMSD of target and model
(y axis). In most cases, the structural similarity between
model and target is worse, or even much worse, than that
between target and parent. The factors primarily respon-
sible for this effect are the selection of a nonoptimal parent
structure and the errors in the alignment. In previous
CASPs, the database of known structures probably was
not populated sufficiently to allow predictors to make very
different choices in the selection of the parent. As the
database grows, also the selection of the parent is becom-
ing a discriminating factor among the various groups.

As shown in Figure 6, some predictions have improved
on the parent, but this only happened for target T0128_2
(where groups 126-Sternberg, 237-Sali-Andrej, 342-SBI-
AT, 406-VENCLOVAS, and 526-Ginalski achieved a Ca
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TABLE IV. Ratio Between the Ca RMSD for the Superposition Between Target and Model and Target and Best Template

Id Group T0089_2 T0099 T0111 1 T0112_2 T0113 To121_1 T0128_1 T0128_2
012 Levitt — 1.04 — — — 1.04 — 1.03
017 Yang-Ansuei — 1.01 — — — 1.01 — —
023 Jones — — — — — 1.08 — 1.01
028 Ram-Samudrala — — 1.01 — — —
031 Biolnfo.PL — — — — — 1.04 —
032 Wolynes — — — — — 1.03 —
044 Walts-Wondrous — 1.05 — — — 1.04 —
047 kitasato-univ. — — — — — 1.04 —
065 Torda-Andrew — 1.06 — — — 111
077 rost — — — — — 1.08 1.07 1.01
086 Bass-Michael — — — — — 1.08 — —
088 ORNL-PROSPECT — — — — — 1.04 — —
090 Hogue-Feldman — 1.02 — — — — —
093 bioinbgu — - — - — 1.04 — -
094 SAM-T2K — — — — 1.02 1.04 — —
095 blundell-tl — 1.04 — — — 1.07 — —
103 Zhou-HX 1.29 — — — — 1.04 — —
104 bioinbgu-gonp — 1.03 — — — 1.06 — —
105 bioinbgu-gonpm — 1.04 — — — 1.05 — —
106 bioinbgu-seqpprf — 1.03 — — — 1.04 — —
107 bioinbgu-seqpmprf — 1.03 — — — 1.04 — —
108 bioinbgu-prfseq — — — — — 1.04 — —
111 SAM-T99 — 1.01 — — — 1.04 — —
118 Dlakic-Mensur — 1.05 — — — — — —
125 Sternberg-3D-JIGSAW — 1.03 — — — — — —
126 Sternberg — — — — — 1.04 — 1.22
132 Sternberg-3DPSSM — 1.06 — — — 1.04 — —
133 CBC-FOLD — — — — 1.04 1.05 1.07 —
137 Zhou-HX — 1.01 — — — 1.04 — 1.04
150 Chandonia-Cohen — — — — — 1.04 — —
152 Yoon — — — — — 1.07
155 TUDELFT — — — — 1.05 1.01
158 PDB-Blast — — — — 1.04 — —
161 GNM-FR — 111 — — — — —
169 Dunbrack — 1.08 — — — 1.04 — —
170 DNAmining.com/p-map — 1.03 — — — 1.04 — —
173 Barton — 1.01 — — — 1.06 1.09 —
186 SDSC1 — — — — — 1.04 — —
197 Godzik — — — — — 1.02 — —
218 LAMBERT-Christophe — — — — — 1.06 — —
223 Braun-UTMB — 1.06 — — — — — —
229 UCLA-DOE — — — — — 1.03 — —
237 Sali-Andrej — — — — — — — 1.35
241 Vajda — 1.02 — — — 1.06 — 1.01
259 Gen THREADER — 1.06 — — — 1.04 — —
260 mGen THREADER — — — — — 1.04 — —
330 Zemla-Joanna — 1.05 — — — — — —
331 Levy - - — - — 1.04 — -
341 Lai — 1.04 — — — — — —
342 SBI-AT — — — — — 1.02 — 1.16
354 baker — — — — — 1.04 — —
357 Fischer-Daniel — — — — — 1.04 — —
359 Cafasp-consensus — — — — — 1.04 — —
361 GMD-SCAI — — — — — — — 1.15
363 Moult — — — — — 1.04 1.04 1.01
381 SBfold — — — — — 1.06 — —
382 SBauto — — — — — 1.07 — —
389 123D+ — — — — 1.01 1.04 — —
401 Reva-Boris — 1.05 — — — — — —
406 VENCLOVAS — — 1.01 1.02 1.02 1.04 — 1.22
440 Deleage-Geourjon — — — — — 1.02 — —
447 MSI — 1.06 — — — 1.04 — —
453 Noguchi — 1.01 — — — — — —
465 YASARA — 1.08 — — — — 1.05 —
468 SBIz — 1.03 — — — 1.05 — —
500 FAMS — — — — — 1.04 — —
526 Ginalski — — — — — — 1.34
536 Fox-Sheppard — — — — — 1.05 — —
average 1.29 1.04 1.01 1.02 1.02 1.05 1.06 112

Only ratios above 1 are shown. Values above 1.15 are in bold.
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Fig. 7. Average GDT score for predictions using single or multiple
parent structures.

RMSD value 15% lower than that with the closest tem-
plate). One exception is the prediction of target TO089_2 of
group 103-Fugue-Cam where the RMSD of the target with
the closest template (1dga_A) is 1.67 A over 26 residues
and this group obtained a prediction with an RMSD value
of 1.18 A for 22 residues. Usually, however, the improve-
ment is marginal (Table IV).

In general, methods using multiple parents perform
better than those based on a single parent in general fold
correctness (Fig. 7), although groups using both tech-
niques are present among the highest ranking ones (data
not shown).

Assessing the Correctness of the Details
of the Models

In our experience as modelers, most of the targets were
far from easy. Thus, it would be unreasonable to expect the
most difficult predictions to be correct in their fine details.

We selected all the models having a Ca RMSD value
lower than 5 A and only used those to examine the details
of the models.

A serious problem with CASP experiments is the limited
number of available targets, and the need to reduce that
number even further in analyzing the details only makes
this worse. Hence, even more so, the results presented
here should be treated with caution, and the reader should
keep in mind that their statistical significance is necessar-
ily limited. Table V shows the score, calculated as de-
scribed above, for the following parameters:

RMSD for all side-chain atoms

RMSD for all side-chain atoms defined as reliable
RMSD for all side chains in the core

RMSD for all side chains in structurally divergent
regions

It is hard to derive clear conclusions from these data for
anumber of reasons: the method of combining these scores
with those obtained in Table III is very arbitrary, the
number of evaluated models is rather small, and the
measurements are all correlated (Fig. 8).

At the December 2000 meeting in Asilomar, we asked
groups 237-Sali-Andrej, 197-Godzik, and 42-Honig-Barry

to cover the issue of the accuracy of side-chain modeling.
From this discussion and from our own attempts to derive
conclusions from these data, one thing became apparent:
neither the RMSD values or the percentage of correct
side-chain angles (defined as within 30° from the experi-
mental value) seemed appropriate to evaluate the details
of amodel on the basis of what we believe interesting to the
end users. One would like to know whether a method is
able to reproduce characteristics of the side chains that
can effectively guide experiments or theories about the
protein under study, and these are obviously interactions
between groups of atoms. Rather than analyzing whether
a side chain is correctly positioned in the reference space of
the protein’s main chain, it would be important to estab-
lish whether it is properly located with respect to other
side chains.

The timing of the experiment did not allow us to develop
and appropriately test different criteria, but we strongly
believe that this should be accomplished before the next
experiment takes place.

Servers

Another experiment run in parallel with CASP4 ex-
tended its scope: this experiment, named CAFASP232
evaluated automatic methods of predicting protein struc-
tures using CASP4 targets.

All targets were processed through prediction servers
that registered for the CAFASP experiment. Server devel-
opers or curators were then asked to re-submit these same
predictions to CASP4 by using the correct format. The
identity between the automatic and reformatted predic-
tions is guaranteed by the CAFASP organizers.

In the CASP4 comparative modeling assessment, the
automatic predictions were subjected to the same blind
evaluation, together with all other predictions. Only after
the process was completed were the assessors informed
which groups were the publicly available servers.

Obviously, other CASP predictions might have been
obtained by using automatic servers/programs, but only
for those highlighted in Table III and V is it practically
certain that there was no human intervention.

It is apparent that some of the servers perform as well as
the best groups (260-mGenthreader and 259-Gen-
Threader,® 111-SAM-T99,° and 93-bioinbgu'! score among
the first 20 groups; see Table III). The quality of their
performance can be considered the base level for compara-
tive modeling, because they provide good alignments to
correctly selected templates. For example, servers 103-
Zhou-HX, 108-bioinbgu-prfseq, 259-GenThreader, and 260-
mGenThreader provided alignments for all comparative
modeling targets and in all cases the percentage of resi-
dues correctly aligned was higher than the average for all
groups for that prediction.

A Few Examples

Lists of numbers are the only way to describe comprehen-
sively the quality of so many models; however, it is
important to have a feeling for their structural signifi-
cance. In Figure 9 we show the prediction with the highest
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TABLE V. Group Scores for Details of Models

CRMSC
N CRMSC CRMSC CRMSC CRMSC CRMSC CRMSC CRMSC LSH Ave Ave Rank Rank Sumof

Id Group dom tot ave reltot relave coretot coreave LSHtot ave tot ave ave tot ranks Glob TOT
406  VENCLOVAS 14 5.23 0.37 4.04 0.37 5.37 0.38 2.66 019 433 0.33 1 4 5 6 11
126 Sternberg 12 2.54 0.21 414 0.21 2.57 0.21 1.40 012 266 0.19 8 13 21 15 36
042  Honig-Barry 11 2.57 0.23 4.35 0.23 2.57 0.23 1.37 012 271 021 7 11 18 26 44
354  baker 13 1.03 0.08 4.77 0.08 1.03 0.08 1.95 015 219 010 12 26 38 8 46
342  SBI-AT 12 1.98 0.16 441 0.17 2.05 0.17 043 0.04 222 013 11 20 31 20 51
237  Sali-Andrej 9 3.37 0.37 3.66 0.37 3.46 0.38 1.50 0.17 3.00 0.33 4 5 9 4 53
197  Godzik 14 1.27 0.09 4.59 0.09 1.29 0.09 161 012 219 010 13 25 38 22 60
429 CHEN-WENDY 10 2.98 0.30 4.55 0.30 3.03 0.30 2.14 021 317 028 3 6 9 88 97
002  Lomize-Andrei 1 2.08 2.08 5.37 2.09 2.19 2.19 2.30 230 299 217 5 1 6 96 102
169  Dunbrack 12 0.80 0.07 4.65 0.07 0.80 0.07 0.00 000 156 005 33 35 68 38 106
077  rost 11 1.83 0.17 4.37 0.17 1.89 0.17 0.10 0.01 205 013 15 21 36 73 109
465  YASARA 5 2.17 0.43 3.01 0.43 2.20 0.44 124 025 216 039 14 2 16 95 111
223  Braun-UTMB 11 0.14 0.01 4.66 0.01 0.14 0.01 1.33 012 157 004 32 40 72 41 113
031  Biolnfo.PL 12 0.12 0.01 4.70 0.01 0.12 0.01 0.18 0.02 128 001 50 48 98 17 115
023  Jones 11 1.40 0.13 4.23 0.13 144 0.13 0.31 003 185 0.10 18 24 42 74 116
047  kitasato-univ. 10 0.69 0.07 411 0.07 0.69 0.07 0.00 0.00 137 005 43 34 77 39 116
363  Moult 12 5.51 0.46 3.80 048 5.79 048 1.54 013 416 0.39 2 3 5 112 117
447  MSI 12 1.69 0.14 4.61 0.14 1.74 0.15 2.21 018 256 0.15 9 15 24 94 118
526  Ginalski 5 0.67 0.13 4.60 0.13 0.67 0.13 0.66 013 165 013 28 19 47 71 118
0.12  Levitt 10 3.08 0.31 4.04 0.31 3.16 0.32 1.30 013 289 0.27 6 8 14 105 119
095  blundell-tl 10 1.72 0.17 4.96 0.17 1.75 0.17 0.72 0.07 229 015 10 17 27 96 123
500 FAMS 10 0.48 0.05 4.96 0.05 0.49 0.05 0.95 0.09 172 006 23 31 54 73 127
032  Wolynes 9 1.39 0.15 3.82 0.15 142 0.16 0.66 007 182 013 19 18 37 91 128
088  ORNL-PROSPECT 13 0.04 0.00 4.46 0.00 0.00 0.00 0.13 0.01 116 0.00 54 51 105 24 129
381  SBfold 10 0.50 0.05 5.08 0.05 0.50 0.05 0.75 0.07 171 006 24 33 57 80 137
382  SBauto 10 0.09 0.01 4.92 0.01 0.09 0.01 0.05 0.01 129 001 49 50 99 41 140
384  Murzin 1 0.00 0.00 5.75 0.00 0.00 0.00 0.00 0.00 144 0.00 40 53 93 54 147
028  Ram-Samudrala 8 1.13 0.14 4.72 0.14 1.13 0.14 0.00 000 175 0.11 22 23 45 114 159
094 SAM-T2K 5 0.12 0.02 3.92 0.02 0.12 0.02 0.35 0.07 113 004 55 42 97 63 160
468  SBlL4jz 6 0.97 0.16 4.58 0.16 1.01 0.17 0.69 011 181 015 20 16 36 133 169
155 TUDELFT 7 1.09 0.16 3.64 0.29 2.07 0.30 0.00 0.00 170 018 25 14 39 133 172
218 LAMBERT- 10 0.00 0.00 4.58 0.00 0.00 0.00 0.13 0.01 118 0.00 53 52 105 67 172

Christophe
086  Bass-Michael 8 2.20 0.27 2.89 0.33 2.27 0.28 0.62 0.08 199 024 16 9 25 149 174
359  Cafasp-consensus 5 0.00 0.00 4.48 0.00 0.00 0.00 0.00 0.00 112 0.00 56 53 109 65 174
241  Vajda 11 0.67 0.06 4.66 0.06 0.67 0.06 0.71 0.06 168 0.06 26 30 56 119 175
426 koehl 1 0.00 0.00 6.12 0.00 0.00 0.00 0.00 0.00 153 0.00 35 53 88 87 175
017  Yang-Ansuei 12 0.56 0.05 4.56 0.05 0.58 0.05 0.61 0.05 158 005 31 37 68 109 177
279  Bateman 2 0.00 0.00 531 0.00 0.00 0.00 0.12 0.06 136 0.02 46 46 92 91 183
486  Shoshana-Wodak 8 0.29 0.04 3.86 0.04 0.29 0.04 0.50 0.06 124 004 51 38 89 98 187
444  MOE-CCG 5 0.73 0.15 4.27 0.15 0.77 0.15 0.23 0.05 150 012 36 22 58 131 189
457  SBI-GR 11 0.82 0.07 445 0.07 0.82 0.07 0.38 0.03 162 006 29 29 58 132 190
278  Flake&mates 5 114 0.23 3.96 0.23 1.20 0.24 111 022 185 023 17 10 27 173 200
191  Lee-Jung 8 0.88 0.11 3.57 0.11 0.88 0.11 0.38 0.05 143 009 41 27 68 140 208
022  InforMax 4 1.06 0.26 3.63 0.27 1.17 0.29 0.00 000 146 021 38 12 50 162 212
393  Skolnick-Kolinski- 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 100 214

THD
133 CBC-FOLD 1 0.02 0.02 2.65 0.01 0.09 0.09 0.00 0.00 0.69 0.03 60 43 103 112 215
065  Torda-Andrew 9 0.59 0.07 424 0.07 0.59 0.07 0.02 0.00 136 005 45 36 81 141 222
058  Harrison-Weber 9 0.00 0.00 5.06 0.00 0.00 0.00 0.61 0.07 142 0.02 42 45 87 141 228
090  Hogue-Feldman 1 0.00 0.00 6.41 0.00 0.00 0.00 0.00 0.00 160 0.00 30 53 83 145 228
390  Taylor 10 0.09 0.01 4.88 0.01 0.05 0.00 0.13 0.01 129 001 48 49 97 135 232
161 GNM-FR 8 0.01 0.00 4.37 0.00 0.01 0.00 181 023 155 006 34 32 66 168 234
125S  Sternberg-3D- 11 0.03 0.00 4.84 0.00 0.03 0.00 0.99 0.09 147 002 37 44 81 155 236

JIGSAW
255  BinToHes 7 0.00 0.00 4.68 0.00 0.00 0.00 112 016 145 0.04 39 39 78 159 237
535  shankari 6 0.46 0.08 3.71 0.08 048 0.08 0.25 0.04 122 007 52 28 80 157 237
330  Zemla-Joanna 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 129 243
414 Friesner 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 145 259
498  Kollman-Baker 1 0.20 0.20 6.17 0.20 0.20 0.20 0.48 048 176 027 21 7 28 240 268
186 S SDSC1 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 155 269
187  SDSC2:Reddy- 5 0.00 0.00 5.22 0.00 0.00 0.00 0.24 0.05 136 001 44 47 91 179 270

Bourne
440  Deleage-Geourjon 3 0.00 0.00 4.12 0.00 0.00 0.00 0.00 0.00 103 0.00 57 53 110 172 282
375  Ho-Kai-Ming 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 171 285
512 ELAN 2 0.00 0.00 6.65 0.00 0.00 0.00 0.00 0.00 166 0.00 27 53 80 211 291
152 Yoon 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61 53 114 180 294
179S Sausage 3 0.14 0.05 3.50 0.06 0.15 0.05 0.02 0.01 095 0.04 59 41 100 200 300
432  LMGDD 2 0.00 0.00 4.01 0.00 0.00 0.00 0.00 0.00 100 0.00 58 53 111 207 318
459  mprabha 1 0.00 0.00 5.40 0.00 0.00 0.00 0.00 000 135 0.00 47 53 100 223 323

Only predictions with Ca RMSD lower than 5 A are considered. Groups identified by S in the second column of the table are CAFASP participants.
For each group we report the number of evaluated domains (N dom), the total and average score according to RMSD for all side-chain atoms
(CRMSC tot and CRMSC ave), RMSD for all reliable side-chain atoms (CRMSC rel tot and CRMSC rel ave), RMSD for all core side-chain
atoms (CRMSC core tot and CRMSC core ave), RMSD for all side-chain atoms of the structurally divergent regions (CRMSC LSH tot and
CRMSC LSH ave). The averages of the total and average scores are reported in the columns labeled Ave tot and Ave ave, respectively. The
ranking according to the last two values and their sum are reported in the Rank ave, Rank tot and Sum of rank columns. The Glob column
reports the group ranking for the quality of the overall fold (see Table II). The last column (TOT) is the sum of the last two columns.
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Fig. 8. Total (a) and average (b) score for RMSD of the side chain
atoms of all (), reliable (M), core (A), and loop (—) residues for groups
submitting 3D predictions.

GDT-TS score superimposed on the respective target for
each domain.

The groups that scored best for overall fold in our
scheme are 406-VENCLOVAS, 354-baker, and 126-Stern-
berg (see Table III). Some of their predictions can be seen
in the figure. In particular, note the prediction of target 92
obtained by group 406-VENCLOVAS. This group chose
not to predict the N-terminal part and the 169—-206 region
of this protein, and these regions are indeed the most
divergent between the target and its closest parent. The
same group operated a similar (equally appropriate) choice
on target 103.

CASP4 Versus CASP3

One important question that a CASP experiment should
address is whether there has been clearly recognizable
progress with respect to the previous one. Again, this poses
the problem of evaluating predictions of targets with
varying degrees of difficulty. Our scoring system is de-
signed to take into account the difficulty of each target, on
the basis of the predictors’ average performance. Conse-
quently, it cannot trace differences if the quality of predic-
tions increases together with the difficulty of targets. We
should mention, however, that the difficulty of targets
between CASP3 and CASP4 does not seem to be substan-
tially different when measured by the percentage identity
between target and parent sequences (Fig. 10).

Under the hypothesis that the two sets of targets are
equivalent, predictions can be compared with our scoring
method, so we repeated the same analysis for CASP3,
limiting ourselves to parameters that measure the correct-
ness of overall folds. We excluded the CASP4 score for
biologically important regions and loops, because data for

the former are not available for CASP3 targets and the
second depends too much on the individual features of the
targets. The comparison is shown in Figure 11.

Notably, even if based on a completely different method
of analysis, the groups selected by Jones and Kleywegt'? in
CASP3 for the overall fold (074, 136, 019) score among the
first five in our analysis.

In some cases, it was possible to recognize groups
participating in both CASP3 and CASP4 (Fig. 12), al-
though there were some ambiguities (e.g., the Sternberg
group participated as Sternberg but also as Sternberg-
Jigsaw and Sternberg 3D PSSM in CASP4).

We are well aware of all the caveats of comparing
predictions on different targets, but we are forced to
conclude that, in first approximation, there has been no
major improvement in comparative modeling between

CASP3 and CASP4.

DISCUSSION

In CASP2, the number of participating groups was 72,
which submitted 947 models denoted as first'®; in CASP3,
the numbers were 98 groups submitting 2261 first mod-
els.** In this experiment, there were 163 groups, and 4922
first models were deposited.®

Making all these predictions amounts to a huge amount
of work, compared to which the workload of an assessor is
minimum. In this report we have tried to convey the
results of a very large experiment to a wider audience. It
is, however, a unique and almost embarrassing aspect of
CASP experiments that the people who produced the
results are not those who draw the conclusions!

On the other hand, although all the data are available
via the CASP WWW server (http:/PredictionCenter.llnl.
gov/casp4), the assessors are expected to comment on the
results in a way that is meaningful to the widest possible
audience.

We hope to have convinced the reader that CASPs
should not be considered competitions, not for psychologi-
cal reasons, but for serious technical ones connected with
the complexity of the analysis of the data.

We do, however, believe that the field of protein struc-
ture prediction has benefited enormously from the CASP
experiments and will continue to do so, if it is clear what
can be learned from each of the experiments. To this end,
we summarize here the results of our assessment of the
CASP4 predictions.

Overall quality of the models

The models submitted to CASP4 are reasonable approxi-
mations of the target folds, but they are rarely closer to the
experimental structure than their structural parents. There
is still a long way to go before such models can be
considered useful surrogates of experimental structures. It
would certainly be impossible to use them for drug design
or maybe even for rational mutagenesis of regions other
than the active sites, especially when they are based on
low-similarity parent structures.

From our analysis, it appears that one of the steps of the
modeling procedure that does require some improvement
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Fig. 9. Predictions with the highest value of GDT-TS for each of the target domains. Target and model structures are shown in thick and thin lines,
respectively. Regions deviating <2.0, 4.0, and 8.0 A are shown in green, yellow, and orange, respectively. Regions deviating >8.0 A are shown in purple
for the target and red for the model. Targets/groups are as follows: a: target 89 dom. 1/group 354-baker; b: target 89 dom. 2/group 126-Sternberg; c:
target 89 dom. 4/group 390-Taylor; d: target 90 dom. 2/group 23-Jones; e: target 92/group 406-VENCLOVAS; f: target 99/group 237-Sali-Andrej; g:
target 103/group 218-LAMBERT-Christophe; h: target 111 dom. 1 406-VENCLOVAS; i: target 111 dom. 2/group 32-Wolynes; j: target 112 dom. 1/group
406-VENCLOVAS; k: target 112 dom. 2/group 406-VENCLOVAS; I: target 113/group 406-VENCLOVAS; m: target 117/group 31-Biolnfo.PL; n: target
121 dom. 1/group 381-SBfold; o: target 121 dom. 2/group 384-Murzin; p: target 122/group 526-Ginalski; g: target 123/group 17-Yang-Ansuei; r: target
125/group 95-blundell-tl; s: target 128 dom. 1/group 12-Levitt; t: target 128 dom. 2/group 526-Ginalski.
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Fig. 11. Average values of the percentage of correctly aligned
residues (a) and GDT-TS (b) in CASP3 and CASP4 as a function of the
percentage of sequence identity between the target and its closest
template.

is the development of strategies to identify the best parent
structure available. The other aspect that requires atten-
tion is, obviously, the prediction of regions whose structure
deviates substantially from that of the parent.

A feature of one of the most successful methods (group
406-VENCLOVAS) worth noting is the capacity to detect
some of these “unpredictable” regions. From the viewpoint
of a protein model user, having no model is better than
having the wrong model, and methods able to detect local
refolding of proteins are extremely useful.

Alignment quality

The alignment still represents a major problem in
comparative modeling. It is still rare, even for the best
methods, to achieve an accuracy above 80% for targets
with sequence identity lower than 50% and, more impor-
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Fig. 12. Comparison of ranking in CASP3 and CASP4 for selected
groups.

tantly, it does not seem reasonable to use sequence iden-
tity as a measure of the expected accuracy of alignments.

Domain orientation

In general, the methods assessed do not seem to achieve
a reasonable degree of accuracy in predicting variations in
the relative orientation of domains with respect to target
proteins.

Target/parent versus target/model

We have once more to conclude that rarely is a model
closer to the experimental structure than its structural
parent.

Biologically important regions

As discussed above, biologically important regions are,
on average, predicted better than other parts of the model.
Although as we have said, this is due more to evolution
than to prediction methods, it is still important to bear in
mind. It is, in fact, the underlying reason why we believe
that comparative modeling, with all its pitfalls and prob-
lems, is still an invaluable tool in modern biology.

Performance of automatic servers

A number of servers selected and aligned the target to
the parent as well as the best “human” groups, and this is
certainly important. This is, nonetheless, not true for all of
them. The wide accessibility of publicly available servers
offers the end user many choices but not necessarily
sufficient information to select the most appropriate tool
for the problem at hand. We believe that results of CASPs,
as well as those from publicly available evaluation servers
(see for example http://maple.bioc.columbia.edu/eva/, http:/
bioinfo.pl/LiveBench/, http://www.sanger.ac.uk/Users/lp1/
MaxBench/), should be taken into serious consideration by
the users.

CASP3 vs CASP4

Finally, we must comment on the comparison of the
CASP3 and CASP4 results. It is clear that there has been
only a marginal improvement, if any, between the two
experiments. As a scientific community, we can either
discard the problem or blame this unpleasant result on the
dangers of comparing different experiments. However, we
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should honestly recognize that there has not been an
overwhelming effort toward improving comparative model-
ing techniques in the last couple of years. As is clear from
Figure 12, this also applies to individual groups, with the
notable exception of the Baker group.

One last comment directed to the end users of models:
Because of the time limit imposed on the predictors, CASP
experiments are not necessarily representative of what
one should expect as the standard performance of a
predictor in real life. CASP results tend more toward
lower, rather than average, quality of models. Certainly,
all the CASP predictors would not, in real life, build a
model as quickly as possible, trying to be faster than the
experimentalists working on it, regardless of the difficulty
involved. Certainly, they would take the necessary time,
check every possible aspect of the problem, and verify the
biological implications of the resulting model, thus substan-
tially increasing the chances of its being correct.

In real life, the closest things to CASPs are large-scale
prediction efforts connected, for example, with genome
projects, which are becoming increasingly widespread and
popular. In this respect, the results of CASP experiments
are very important indicators of state of the art of predic-
tion methods.
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