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Abstract 

 This study has proposed an alternative to promote the learning and enhancement 

of Lámh language for communication partners that support current users by creating a 

real time detection tool to recognise 20 chosen Lámh signs based on existing studies in 

the field. This implementation was carried out by generating primary data composed by 

MediaPipe landmark numpy arrays of 40 frames and 45 repetitions per sign. The Neural 

Networks were built using the Python library Keras and the applied SVM models were 

built with the library sklearn. The real time detection was carried out by integrating the 

mentioned elements with the library OpenCV. Neural Networks with different 

architectures with Long Short-Term Memory (LSTM) and 1D Convolutional Neural 

Network (CNN) were compared with SVM classifications applied with cross-validations to 

achieve the optimal hyperparameters in order to determine the most appropriate model. 

The final chosen model after the assessment of the training and testing accuracy 

and loss was the two 1-D CNN layers with 32 and 64 nodes respectively, a dropout of 0.2 

followed by two LSTM layers with 32 and 64 nodes respectively and a dense layer of 32 

nodes. The training accuracy was 99.86%, the testing accuracy was 93.33%, the training 

loss was 0.0035 and the testing loss was 0.1791. This was the model which performed 

better in a real-time detection environment, easily detecting 8 different Lámh signs and 

detecting other 6 with reservations. 

 For future work, some skeletal motion signs should be captured again and other 

data augmentation strategies should be adopted, like capturing hips and legs landmarks 

alongside the signs and explore the augmentation of the data by promoting offset 

measures of the landmark coordinates of the skeletons captured by MediaPipe. Once the 
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corrections of the methodology achieve better real time results, works toward tool 

accessibility and user experience should be investigated in order to generate a Lámh 

language real-time detection tool that could potentially promote Lámh and become a 

learning alternative for communication partners.  
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1. Research Question 

 

At first glance, technology interventions might seem to contradict the essence of 

unaided augmentative and alternative communication (AAC) within key word sign (KWS) 

languages such as Lámh, since authors like Sigafoos et al. (2014) have defined this type 

of communication as the use of gestures and manual signs without the assistance of any 

other external object. However, considering the aspects investigated in this research 

regarding Lámh language and its promotion, accessibility and training for communication 

partners, what solutions could be proposed on a data analytics perspective to assist 

people who use or must learn Lámh language – or even other KWS languages? 

2. Relevance 

Communication partners (CP) are defined by Kent-Walsh and McNaughton (2005) 

as people who either compose the AAC user's personal life (family and friends) or retain 

an education or care nature towards the individual (e.g.: teachers, health care 

professionals). However, the authors attest that very little attention has been given to the 

improvement of AAC learning methods for CP intervention programs. 

A solution focused on improving the learning methods specifically for Lámh 

language communication partners may be proposed considering the fragility of this field 

according to the authors presented in the literature review. Such a solution would not 

extinguish the practicality and the portability that Wilkinson and Hennig (2007) highlight 

as the main advantages of KWS languages, once the assisting tool would not be 

introduced in the direct relation between the user and their communication partner.  
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Instead, a data analytics supporting alternative could be applied at the preparation 

of the communication partners, in a stage of the learning process that Kent-Walsh and 

McNaughton (2005) classify as "Controlled Practice and Feedback". The latter consists 

in a controlled environment with only the communication partner, the Lámh user and an 

instructor.  

In this context, if a Deep Neural Network model is able to classify Lámh signs in 

real time, this model can be used in the "Controlled Practice and Feedback" stage, giving 

the communication partner the possibility to train the learnt signs more often. Hence, the 

CP acquires confidence and knowledge to be able to use the language in a natural 

environment, directly with the AAC/Lámh user.  

Therefore, the proposal of a solution focused on facilitating the learning methods 

for Lámh communication partners using Deep Learning for sign recognition would 

promote more democratic, accessible and playful learning opportunities for those involved 

in the Lámh user’s life. Furthermore, the consistent implementation and use of this 

communication support can also provide a wide variety of benefits to one's inclusion in 

society. 

3. Contribution 

The novelty of this work is the application of machine learning functions and tools 

to classify Lámh language signs. The main contributions of this work are firstly the data 

acquisition methodology – since there is no existing database of Lámh signs for machine 

learning classification, after the best Machine Learning models are chosen, they were 

evaluated in actual real time detection applications  – and secondly the comparison of 

Convolution Neural Network, Long Short Term Memory and Support Vector Machine for 
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the classification of these signs, defining the most appropriate method for the proposed 

context. 

4. Objectives 

4.1. Primary Objectives 

The primary objective of this project is to obtain a highly accurate and generalised 

machine learning model that must effectively predict the movements of users through real 

time detection, labelling these in accordance to the respective meaning within the list of 

signs of the Lámh language. Due to the time frame imposed on this project, twenty signs 

should be trained by the model instead of the totality of the Lámh signs available. 

4.2. Secondary Objectives 

To achieve the primary objective, the secondary objectives below must be 

achieved: 

- To gather and to capture comprehensive data that represent the proposed 

twenty Lámh signs, recurring to data augmentation strategies when applicable to enhance 

training and testing results. The data must reflect the needs of the project, capturing 

different people, under different lighting, making the same signs with their own ways as 

an attempt to predict the many different scenarios and circumstances that the final trained 

Deep Learning method must cover. The final accuracy of the learning model's algorithm 

depends on the integrity of the input-data representation (Alzubaidi et al., 2021); 

- To explore and choose the best data augmentation strategies and other 

methods like dropout to reduce possible overfitting of the trained models. Since, due to 

the specificity of Lámh language signs, datasets such as COCO, PASCAL VOC and 
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Imagenet are not viable sources. Hence, the image data must be methodically captured 

during the research process or from existing sources of the Lámh sector. The mentioned 

lack of image data related to Lámh signs in large scale requires data augmentation as an 

important alternative for the project to succeed when considering the application of Deep 

Learning techniques; 

- To explore and to compare the different architectures and methods of DNN 

applied to the context of the project, choosing the most appropriate and generalized for 

the Lámh sign language recognition. These models should be compared with Support 

Vector Machine in real time detection context so it can be confirmed whether the best 

DNN model tested overcame the best Support Vector Machine tested. The types of DNN 

that will be tested in this research are based on previous successful models that carried 

out object detection and classification of sign languages; 

- To consolidate the previous objectives into an artifact, obtained through 

coding, which will turn the machine learning outcome into an interface with users. Initially, 

the accessibility of this technology will not be explored as it involves complex design 

solutions and user driven studies and analyses that go beyond the scope of this project. 
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5. Literature Review 

5.1. Augmentative and alternative communication, Key Word Signing and 

Lámh 

Sigafoos et al. (2014) and Wilkinson and Hennig (2007) similarly define 

augmentative and alternative communication (AAC) as an area of research of speech-

language that supplements and creates alternatives of communication for those who 

cannot communicate effectively through conventional verbal language. These methods 

can help the individuals to express themselves, Schlosser and Wendt (2008) even identify 

cases in which AAC helped users to develop natural language, although they alert that 

the magnitude of the learning can be minimal and should not be expected as an outcome.  

Byrne, Pyne and Sheehan (2019) synthesize that, within AAC, an alternative to 

support people that face difficulties in their communication is key word signing (KWS), 

which is communication through manual signing alongside the spoken word incorporating 

features from sign language (Tan et al.,2014), being Lámh the KWS language practiced 

in Ireland (Byrne, Pyne and Sheehan, 2019). Lámh vocabulary is made of 580 different 

signs categorised as actions, modifiers, objects, people and social words, and they are 

originally from the Irish Sign Language (Frizelle and Lyons, 2022).  

Dolly and Noble (2018) define that, although this type of communication 

enhancement is important to be established in a one-to-one relation between the client 

and the speech therapist, the communication partners (CP) would play an important role 

by bringing key word signing to the natural setting of the individual.  

In the Lámh context, Dolly and Noble (2018) and Byrne, Pyne and Sheehan (2019) 

highlight that on-going training is effectively important for communication partners, 

although the latter authors have identified that the studied staff that support Lámh users 
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had variable levels of knowledge of this language. This becomes a concern in regards to 

the inclusion of users that require Lámh language since key word signing is a method of 

language reception and expression (Frizelle and Lyons, 2022). 

Byrne, Pyne and Sheehan (2019) also point out that the studied group had a will 

to learn more signs and believed in the benefits of Lámh to its users although 20% of 

them confirmed they rarely applied the language on their routine, working on a day-to-

day with Lámh users. Seeking a rationale, the authors identified in their studied group a 

lack of confidence in their own performance with the language. The authors then 

concluded that the lack of training and practice interferes in the proper application of key 

word signing on these professionals' crafts. 

In Ireland, Frizelle and Lyons (2022) alert that the only entry level course funded 

for primary school teachers, social care workers, special needs assistants (SNAs) and 

other professionals from related sectors is Lámh Module 1, that brings 100 words of the 

vocabulary and consists of three hours of online self-learning and three hours and a half 

of oriented learning with a Lámh Tutor. The authors also enhance that the vocabulary 

available in the course does not necessarily reflect the main words the professionals 

require in their routine with the Lámh users. The authors mention, for example, that there 

is a considerable difference between the main vocabulary needed by a child with down 

syndrome in pre-school from the main Lámh vocabulary for a child with down syndrome 

in primary school due to the different moments of the children’s development. This 

emphasizes that an extended vocabulary should be absorbed by the professionals in the 

area, alongside a frequent practice as recommended by Byrne, Pyne and Sheehan 

(2019). 
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In order to propose a beneficial intervention to the matters raised, an accurate 

object detection tool that is built with Deep Learning techniques could classify a physical 

sign based on labeled images, possibly generating a real time sign classification tool for 

practice of Lámh language signs, since Sennott et al. (2019) recognise the possibilities 

given by Deep Learning when managing unstructured data (images, videos, audios, 

texts). The authors also list the several applications of Deep Learning and the beneficial 

impact it has already caused in AAC so far, including speech recognition, moving 

detection and alternative access to AAC. 

5.2. Machine learning and the computer vision studies and their applicability to 

existing sign languages 

Sanchez, Romero and Morales (2020) have considered artificial intelligence as the 

core of the contemporary industrial trend, which the authors defined as the fourth 

industrial revolution, having as one of its main roles the processing and analysis of Big 

Data. Xue-Wen Chen and Xiaotong Lin (2014) set a common ground of the definition of 

Big Data as an exponential availability of digital data that cannot be managed by 

conventional software tools and techniques. Chan (2013) contextualizes the daily 

volumes of Big Data in the magnitude of terabytes (1012 bytes), petabytes (1015 bytes), or 

exabytes (1018 bytes) depending on the industry. In this context of exponential data, 

Sanchez, Romero and Morales (2020) highlight the field of Machine Learning within 

artificial intelligence as the capacity of computers to learn by themselves using data input 

with support of statistics. Within the several machine learning models to process data, the 

latter authors define deep learning (DL) as the area that thrives in terms of performance 

when dealing with the abundant growth of data previously commented, having as practical 
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advantages the automation of selection of features from the input data (Alzubaidi et al., 

2021) and the discovery of hidden patterns within the data (Shrestha and Mahmood, 

2019). 

Shrestha and Mahmood (2019) and Alzubaidi et al. (2021) explain the basic 

architecture of the DL neural networks as a similar structure of human neurons connected 

in deep layers with highly optimized algorithms. The architecture that organises these 

layers and their connections can be variable, but they will always include an input layer, 

hidden layers and a final output layer. Each layer is composed of nodes that contain 

values, the nodes of one layer are connected to the nodes of an adjacent layer by the 

application of a weight. Once the first input goes to the first node, it is priorly multiplied by 

a weight and then summed to the value in the node. A mathematical function is applied 

on each node in order to compute partial derivatives or error deltas generated by the 

application of the weight (Shrestha and Mahmood, 2019), this process is sequentially 

carried out until the final output layer is obtained. 

Amongst the different types of neural networks, Sanchez, Romero and Morales 

(2020), Shrestha and Mahmood (2019), Alzubaidi et al. (2021), Srivastava et al. (2021) 

and Sharma, Jain and Mishra (2018) have identified Convolution Neural Network (CNN) 

as the DNN model ideal for the processing and the classification of images and videos, 

but not exclusively for this purpose, as the authors also identify the efficiency of CNN in 

other fields like speech recognition, a good example being the work by Kim et al. (2020). 

Since the outcome of this project is based on images and videos, a special attention will 

be given to CNN rather than other neural networks and machine learning models in order 
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to propose a better understanding of this model and the diversity of architectures and 

methods suggested by authors only within the last ten years. 

CNN distinguishes from other DNN models mainly on the application of 

convolutional layers in the early stage of the Neural Network structure, as clearly 

described by Alzubaidi et al. (2021). The convolutional layer, according to the authors, is 

formed by the application of the Kernel, which is in essence a matrix of different weights 

that slide through the data (vertically, horizontally or both depending on the chosen CNN). 

Each value of this matrix will be multiplied by a corresponding value in the process of 

sliding through the data, the products of each multiplication are then summed and the 

process repeats for the next snippets of the data until the kernel is completely applied. 

The result of this process is an optimal reduction and selection of features from the data.  

The authors also identify peculiarities of the CNN that makes it uniquely 

advantageous: the nodes from one layer are not connected each one of them to all the 

nodes from the adjacent layer, which is a memory-effective approach; the weights are 

applied equally in the whole data, reducing data training time and costs. 

Alzubaidi et al. (2021) describe another important component of a CNN: the 

pooling layer, which is applied after the convolutional layers and it is responsible to 

generate samples from the feature maps generated from the convolution layers, keeping 

the relevant features. The authors highlight the most common pooling layers as max, min 

and GAP pooling. 

In CNN, after every weight layer, Alzubaidi et al. (2021) identify the existence of 

activation functions, which will transform the input layer of the node into a value in 

accordance with the needs of the architecture of the CNN. The authors enhance that the 
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most common activation functions are ReLu, Sigmoid and Tahn. The former is widely 

applied but contains variations in cases that the deactivation of neurons must be avoided, 

a phenomenon described as "Dying ReLu" (Lu, 2020). Zhang and Wan (2019) enhance 

the importance of the activation functions as, without them, CNN models would be simple 

regression models that would not be able to handle complex data like images, videos or 

audios.  

Finally, Alzubaidi et al. (2021) indicates that usually the fully connected layer is set 

at the end of the CNN model to classify the data from the transformed feature maps. All 

these elements that compose CNN - dimension of the kernel, number of convolutional 

layers, types of activation functions and others - are tested by researchers for the creation 

of more efficient architectures. Some of these architectures, as highlighted by Alzubaidi 

et al. (2021), are AlexNet (Krizhevsky, Sutskever and Hinton, 2017), Visual Geometry 

Group (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), Residual 

Networks (He et al., 2016) and Xception (Chollet, 2017).  

In the last decade, methods have progressed to make CNN more accurate and 

fast. The main methods could be split into: region-based CNNs - R-CNN (Girshick et al., 

2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2017) and Mask R-CNN 

(He et al.,2017) -, which work with algorithms that pre-select the bounding boxes that 

have higher probabilities of containing the objects; single shot detection CNNs - You Only 

Look Once (YOLO) by Redmon et al. (2016) and Single Shot Multibox Detector (SSD) by 

Liu et al. (2016) - which, in a single network, apply bounding box regression and then 

classify the detected objects. Sanchez, Romero and Morales (2020) summarize a certain 

trade between accuracy (measured as mean Average Precision) and speed (measured 
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as Frames per Second) of these models: while the region-based models seem to be very 

accurate, the single shot CNNs compensate in speed but lose in accuracy of small objects 

as the authors of these models themselves highlight in their articles. Thus, none of these 

methods outperform the others in all possible perspectives and must be assessed on 

different cases.  

In the context of sign language detection and classification studies, Liao et al. 

(2019) enhance that Faster R-CNN presents an outstanding performance when predicting 

more subtle gestures of the hands. This is imperative when it comes to detecting and 

classifying sign language vocabulary. Although Frizelle and Lyons (2022) conceptually 

indicate that KWS languages are simpler than other sign languages in terms of hand 

positions and finger spelling - the latter is nonexistent in the Lámh language -, one can 

still identify Lámh signs that differ from others by small differences in the fingers’ 

disposition - for example, the initial gesture of the action vocabulary ‘to open’, which is 

composed by the fingers of one hand touching the fingers of the other hand on a single 

centralized reference at the chest level, could be considered quite similar to the sign of 

‘ball’, which contains the same disposition of palms facing each other at the chest level 

with fingers of one hand mirroring and touching the fingers of the other hand, but with a 

wider distance between the fingers on the same hand, forming the ball shape. Hence, 

single shot detection CNNs may present inaccuracies if compared to region-based CNNs 

when classifying different signs that may be distinguished by gestural subtleties, but this 

must be confirmed through experimentation. 

In order to assess the CNN model and its varieties of architectures and methods, 

Karim, Pujak and Sewak (2018) demonstrate in their book how Tensorflow, an open 
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source library with API for several programming languages, contains functions and 

resources for creation and processing of CNN structures. To make it more accessible for 

data analysts, the authors identify the use of Keras, which comes from TensorFlow. This 

library is a DNN API in python that makes the coding more accessible, with simpler 

commands to train and process the DNN models. Shrestha and Mahmood (2019) 

enhance in a chart comparison how Tensorflow is the most well-evaluated deep learning 

library in GitHub when compared to other renowned libraries like scikit-learn or pytorch. 

In terms of object detection and classification of human gestures, studies carried 

out after the advent of better classification algorithms discuss the different methods of 

data acquisition. Vo et al. (2017) summarise these methods as sensorial-based and 

vision-based data acquisition. The sensorial-based methods make use of additional 

technologies with sensors that must be worn by the user. Mehdi and Khan (2002) 

generated an American Sign Language (ASL) predictor with an Artificial Neural Network 

with seven neurons on the input layer, fifty four neurons on the hidden layer and 26 

neurons on the output layer. The input of the data was made using a seven-sensor glove 

that should be worn by the user and each sensor would return integer numbers that would 

indicate the bent of the sensor. These integers would be processed by the neural network 

that would classify the input in accordance to the ASL alphabet, which would then be 

transformed from text to speech. Although, at the time it was published, the model 

proposed pioneer elements combined and with a basic neural network it was able to 

achieve 88% of accuracy, bringing such solution to the contemporary context raises 

limitations: the glove sensors only detects static gestures that specifically depend on the 

hand and no other part of the body; this type of solution, alongside other types of sensors, 
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like the energy sensor of the model proposed by Kosmidou and Hadjileontiadis (2009), is 

not widely available, which becomes a problem considering that the input of the models 

rely on the use of the proposed technologies. Lefebvre et al. (2013) present a model of 

gesture recognition that contains as input 6D input vectors that combine the linear 

acceleration and the angular velocity captured by the accelerometer and gyroscope from 

Micro Electro Mechanical systems, which, as the authors confirm, are technologies 

present in Smartphones. Although Smartphones are more used than previously 

mentioned sensor sources, this approach is also dependent on either the right hand or 

left hand, limiting the scope of this data input alternative. Still, it is important to 

acknowledge the discoveries made by these studies that could potentially bring benefits 

for users that were able to access these sensors and solutions. 

The vision-based data acquisition, differently from the sensor-based, consists of 

data inputs of images and videos translated into matrix representations that would then 

be processed by the machine learning model. There are technologies of image capture 

that can generate a three dimensional imagery, known as RGB-D - a widely known 

example is the Microsoft Kinnect, that contains, not only an RGB camera, but also an 

Infrared (IR) camera and sensor, and this set is able to read images in three dimensions 

(Zhang, 2012). Authors like Jiang et al. (2018) were able to implement the depth input 

and the skeleton tracking available by Kinnect to increase the performance of the CNN 

model applied, overperforming state of the art models of the CNN itself and Support 

Vector Machine (SVM) sign language classifications. However, as mentioned by Zhang 

et al. (2019), RGB-D technologies are more expensive and require additional computation 

for the depth data. Liu et al. (2017) mention that there is another technique that composes 
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the types of visual-based data acquisition with RGB-D, which is the skeletal data. By the 

time the authors published the article, one of the concerns regarding the skeletal data in 

comparison to RGB-D is the dependency on a tracking algorithm that tended to be harder 

to obtain than getting the data from RGB-D images.  

However, the advent of Google’s MediaPipe must be enhanced (Lugaresi et al., 

2019). This tool started as an object detection with bounding boxes and face landmark 

recognition framework but already counts with additional frameworks derived from its 

initial development, which are the Blazepose for body poses (Bazarevsky et al., 2020) 

and the MediaPipe Hands (Zhang et al., 2020), creating new opportunities for gesture 

detection using skeletal data. These tools have pre-trained neural network models that 

generate landmarks in a human’s pose, face and hands. Their application is already 

noticeable: Halder and Tayade (2021) used MediaPipe on their first stage of data 

acquisition by capturing the landmarks on the images used in their study. The authors 

created a model using Support Vector Machine (SVM) for the classification of signs of 

American, Indian, Italian and Turkey sign languages. This combination outperformed 

models that classified the same languages using SVM itself and CNN models, with 

accuracy above 99%. The authors conclude that MediaPipe played an important role by 

precisely identifying complex hand gestures prior to the machine learning application. 

Bagby et al. (2021) built a CNN classification model based on 15,000 images of twenty 

six signs of the ASL alphabet on the top of MediaPipe, which would detect the landmarks 

of the hand gestures. Although the authors obtained great results for 14 classes of the 

ASL alphabet (99%), the same result was not identified for classification of 20 different 

signs. The authors concluded that a larger dataset needed to be adopted for the 
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classification of a greater variety of signs. This converges to the concept of Neural 

Networks, which theoretically perform better with exponential data increase. 

It is also important to distinguish the gesture classification studies between the 

static gesture recognitions and the dynamic gesture recognitions. Solutions and 

outstanding achievements from both types of gesture recognition must be considered as 

Lámh language contains signs that can be considered statical, but there are also dynamic 

ones. The vision-based studies mentioned so far dealt with static gestures and signs. As 

mentioned by Koller et al. (2018), although CNN models have outperformed other 

approaches in all computer vision tasks, CNN-based approaches don’t take the temporal 

domain of video data into consideration as they should. However, it is possible to utilise 

statistical and machine learning solutions to enhance the prediction of dynamic gestures. 

The Hidden Markov Model (HMM) is defined, but not introduced, by Rabiner and Juang 

(1986) as a statistical probability method with an underlying stochastic process that is not 

observable (hidden stages), but can be observed through another stochastic process that 

produces the observed symbols. In the context of sign language detection of a video, the 

temporal sequence is the hidden stage, whereas the generated vocabulary is the 

observed symbol. 

According to Koller et al. (2018), HMM dominates automatic speech recognition 

but remains unpopular in computer vision tasks. Vo et al. (2017) compared SVM and 

HMM to recognise dynamic gestures of the Vietnamese sign language (VSL) using as a 

base 30 gestures detected with Kinect of 5 different volunteers. The frames would be 

adjusted to a normalized height and width, and the dimension of the number of frames 

would be transformed to the same dimension of the height and width. The SVM model 
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drastically outperformed the accuracy of the HMM model in the three trained grid sizes 

(4x4x4, 16x16x16, 32x32x32) reaching 95% in one of the cases. However, Koller et al. 

(2018) applied the probabilities of HMM on the top of CNN with a given probability of n-

gram language model from the SRI Language Model Toolkit (Stolcke, 2002) since the 

predicted datasets were syntactic constructions of sequential words with sign language. 

As a result, the authors were able to generate a model that outperformed HMM models 

and combinations of CNN neural networks with other neural networks. The comparison 

was established in Word Error Rate (WER) instead of prediction accuracy. It can be 

concluded that the author used speech recognition techniques to predict sign language 

videos and the results seem to be promising. 

Raheja, Mishra, and Chaudhary (2016) built a model that predicted 4 Indian sign 

language gestures using SVM and data captured by regular webcams and Microsoft 

Kinect, reaching 97,5% for the 4 signs. Extending to models that classified more gestures, 

different machine learning solutions were presented. Zhang and Wang (2019) applied a 

3D CNN to predict 26 gestures that do not correspond to an official sign language. Using 

a regular camera to capture 12 frames per second videos as inputs, the authors were 

able to obtain 90% accuracy with the proposed model. The third dimension of the CNN 

would be related to the order of the frames. As the authors described, one can convert 

the sequence of frames of a video into another dimension of the matrix that represents a 

single image. However, the convolutional layer and the pooling layer must consider this 

additional dimension, becoming 3D layers. 

Zhang et al. (2019) present in their article a gesture recognition by a 2D CNN 

model with VGG architecture (previously mentioned) and, for the first time in a study that 
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addresses gesture recognition, also applies a 3D Densenet. Densenet was created by 

Huang et al. (2017) in order to solve the vanishing or exploding gradients in deep CNN 

architectures. When the Neural Network, not only the Convolutional one, gets too long 

and deep, the multiple application of activation functions and weights interfere in the 

gradient of the loss function, either generating gradients that are too small to be 

accounted for or too big, drastically interfering in the optimization of the training of the 

model. 

Before the release of Densenet, the previously mentioned Residual Networks 

(Resnet) by He et al. (2016) observed that, the more the CNN layers were increased, the 

greater was the error of the model when compared to the CNN with less layers. Differently 

from the authors of Densenet, the Resnet authors don’t see the vanishing or exploding 

gradient as the problem of regular deep CNNs as they believe the batch normalization by 

Ioffe and Szegedy (2015) - which introduced normalised activation within Neural 

Networks - already addressed the gradient control in regular CNNs. Instead, the authors 

described the increase of the error of the model alongside the increase of the layers to - 

as the authors named - a degradation in deep Neural Networks. The authors then 

proposed an intervention based on shortcuts between some of the stacked layers of their 

model to diminish the mentioned degradation in deep CNNs that showed increased errors 

when the layers were increased. By applying this measure of residual layers, the authors 

won first place in benchmark competitions of object detection without the use of dropout 

measures. In the Resnet article, it is demonstrated that models with residual layers 

actually reduce their error when the number of layers are increased. Nevertheless, this 

does not mean that complex and deep neural networks become a response to all machine 
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learning problems. As Simonyan and Zisserman (2014) defined in their introduction to the 

architecture Visual Geometry Group (VGG), deep CNN models are a solution to large 

scale data, and, as it could be seen with Resnet and batch-normalization, by addressing 

a complicated subject such as large data, deep CNN models inherit problematic 

phenomena from their multiple layers, like the CNN degradation, that require non-trivial 

corrections to improve the deep layer models’ accuracy. 

What Densenet suggested, having its publication after Resnet, was a group of 

measurements that compose its model in order to reduce the impact of deep layers in the 

gradient - which they believed was the core problem of deep layers. They proposed: 

severe reduction of the size of layers, 12 neurons, narrowing the model in comparison to 

previous ones; dense blocks in which all layers are connected to all the following ones 

within the block in a process that the authors described as a concatenation of features, 

which would then reduce effects of vanishing or exploding gradients of the model.  

In the context of the implementation promoted by Zhang et al. (2019), the 3D 

Densnet would have the 2D Densenet architecture, but replacing the 2D CNN layers by 

3D ones, as previously mentioned, in order to process the additional dimension of the 

matrix related to the frame sequence of the dynamic gestures. Not only the 3D Densenet 

model was adopted, but also the 2D CNN that would process the same training data in 

parallel to the 3D Densenet. The way the authors encountered to process sequential 

images in a 2D Neural Network was the conversion of the image sequences into a single 

one using as reference a simple but effective process of image representation: movement 

history image (MHI) by Bobick and Davis (2001). The latter authors describe MHI as a 

variety of motions represented in a spatially indexed way, in which the intensity of the 
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pixels is mathematically related to the temporal variable. Interestingly, by applying this 

method and fusing the classifications of 2D CNN with MHI and 3D Densenet through a 

simple probabilistic function that would take into consideration the probabilities of 

classifications from both models (2D CNN and 3D Densenet), Zhang et al. (2019) identify 

that the predictions of the fused models at feature level outperform the predictions of each 

model separately with 87.8% and 87.1% of accuracy in two datasets, and the fused 

models at decision level instead of feature level achieve 89.1% and 89.5% when 

predicting the same two datasets. The authors indicate that the accuracy of the model 

could be potentially increased if Internal Transfer Learning (Wang et al., 2017) or 

Recurrent Neural Networks (RNN) – more specifically the Long short-term memory 

functionality (Hochreiter and Schmidhuber, 1997) – were applied to the model. 

Internal Transfer Learning (Wang et al., 2017) seems to have been developed 

specifically to address the application of CNN models in small datasets. The concept 

behind this technique is to train the model as a binary classification for each pair of 

classes that can be combined from the N classes that must be predicted. The top five 

trained networks from these binary classifications would be picked and there would be a 

transfer learning of its weights to five networks that would then need to classify all the N 

classes instead of two. The model that performed better amongst the five would be the 

final trained model. This method was applied to a pre-trained 3D CNN and, applied in 

datasets of videos with dynamic actions, the authors were able to reach high predictions 

above state of the art models - 98.2%, 100%, 93.6 and 96.1 depending on the dataset. 

Probably the application of this method for a big dataset would not be ideal as the multiple 

training rounds of binary classifications would be more time consuming for bigger 
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datasets. Potentially, in theory, this technique would not be required for large data as they 

fit better in regular CNN solutions. 

RNN is another type of Neural Network. Its structure is distinguished from other 

NN models as it is not a feedforward NN (Shrestha and Mahmood, 2019). Instead, they 

are processing units that form a cycle. RNN had limitations in relation to vanishing and 

exploding gradients, similarly to what was exposed previously for deep CNNs. In the case 

of the sequential architecture of RNN, Long short-term memory (LSTM) by Hochreiter and 

Schmidhuber (1997) was created to control the gradient issue by adding what the authors 

called memory cells and gate units with binary outputs that would control the access to 

the memory cells in order to stabilize the error flow. Because of its approach, RNN models 

are widely used in sequential problems like time series or speech recognition (Shrestha 

and Mahmood, 2019; Alzubaidi et al., 2021).  

Putting LSTM in the context of classification of sequential image frames, there can 

be similarities drawn with the previous examples in which RNN were applied. Du, Wang 

and Wang (2015) demonstrate the importance of LSTM for RNN performance when they 

compare 5 different types of RNN architectures for skeletal human action recognition and 

the models containing LSTM layers outperform the accuracy of the models that only have 

layers with Tanh functions. The authors also compare models that use deep RNN with 

the whole skeletal as input with hierarchical models that use fusion layers through its 

architecture to merge neural network layers of 5 different parts of the body (right leg, left 

leg, trunk, left arm and right arm). The authors concluded that the hierarchical models 

had a better performance when applied to the analysed datasets than a trained deep 

RNN in the same study and state of the art deep RNNs that were trained with the same 
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dataset. However, the authors emphasized that the LSTM layer tended to generate 

overfitting, and, curiously, dropout strategies would not help to diminish the overfitting 

condition. The solution found by the authors was the adoption of strategies - being the 

most relevant the weight noise - described by Graves (2011) in their study of controlling 

overfitting of the hierarchical RNN model developed to recognise phonemes from a 

speech corpus. The concept and different types of weight noises specifically applied in 

RNNs as opposed to feedforward neural networks are thoroughly described by Jim, Giles 

and Horne (1996) and they consist on additional or multiplicative parameters applied to 

the weights of the Neural Network primarily to generalise the model, reducing the gap of 

the training error to the testing and validation error, but the authors theoretically 

demonstrate that the convergence can also be improved with weight noises. This is an 

important consideration for overfitting strategies when dealing with Neural Networks 

having as a reference the improvement of the RNN model generalisation brought by the 

mentioned authors. 

Liu et al. (2016) extended the concept of LSTM to ST-LSTM, which consists of the 

LSTM structure with spatial and temporal processing. The authors added in the article an 

efficient way of representing the skeletal joints in a tree-based structure for RNNs in a 

transversal fashion. This chain disposition of skeletal joint relations can discover stronger 

long-term spatial dependency of the adjacent structures of the joint. The authors also 

implemented memory cells that work similarly to the LSTM but specifically for the context 

of the human motion, in which the model predicts how the joint will move and this 

prediction is compared to the actual move. The error generated between the prediction 

and the actual input would generate what the authors called ‘trust gate’, which will 
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influence the memory cells of the model. This means that, if a predicted input was quite 

different from the actual input of the movement, the trust gate could block the input gate 

to prevent the memory cell from being updated based on an irregular input. Curiously, the 

model is therefore trusting the prediction more than potential noisy inputs. This is due to 

the context of the study in which the Kinect RGBD camera could eventually not detect the 

skeletal structure correctly, leading to data noises in some joints of the body. By applying 

the newly ST-LSTM model with the transversal tree to represent the skeletal structure 

and using trust gates, Liu et al. (2016) were able to generate an accuracy that 

overperformed the accuracy of other models that analysed similar Kinect datasets of 

skeletal actions. 

Liu et al. (2017) advance the concepts from ST-LSTM by creating the Global 

Context-Aware Attention LSTM (GCA-LSTM). The main difference of this other approach 

for LSTM is the creation of a global context memory cell that is initialised as the sum of 

input of each joint on each frame divided by total number of joints multiplied by number 

of frames. In a sequence of equations, the global context memory cell is used to obtain 

an informativeness score that is a real number between 0 and 1 for each joint on each 

frame and is applied in the same function of the trust gate of the ST-LSTM previously 

mentioned. By doing this, the informativeness score is supposed to enhance the joints 

that are more relevant in the action. In the end of the LSTM layer, the global context 

memory is recalculated based on the last output and the process is repeated through 

different iterations until the memory cell is refined to be applied to a softmax classification 

function to classify the action. The authors were able to improve the accuracy of the ST-

LSTM proposition, which had already overcome the state of the art. 
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One could notice that the structure of RNN and its improvement, LSTM, follow a 

sequential structure that could be considered similar to the HMM, previously mentioned. 

Salaün, Petetin and Desbouvries (2019) compare both approaches and they have 

considerable differences, like the transition from one step to another: whilst RNN operates 

with activation functions, HMM considers transition probabilities. Also, according to the 

authors, RNN makes deterministic deductions from the current observation and the 

previous variable to move to the next stage, while HMM is an stochastic model. Therefore, 

although HMM and RNN contain similarities in the types of mathematical problems both 

solve (timeseries, speech recognition) they make essentially different probabilistic 

assumptions. Moreover, being RNN a type of deep learning technique, it would tend to 

be more efficient in the classification of large datasets. However, it was demonstrated 

earlier that HMM can be merged with Neural Networks to enhance the model accuracy in 

problems of sequential events like the sign language detection of Koller et al. (2018). 

Li et al. (2017) explored the spatial-domain-features used in the LSTM architecture 

and temporal-domain-features used as input in the CNN architecture to classify the 

actions of NTU RGB+D Dataset. However, instead of creating a single architecture having 

both layers, the authors created 10 neural networks being 3 LSTM that are trained based 

on the spatial features of the skeletal data and 7 CNN models trained based on temporal 

features of the skeletal data. The choice of the authors is curious when verifying the 

previous concepts presented for LSTM and CNN as, according to their strengths and 

benefits, CNN seems to be more powerful to enhance the main features on an image, for 

example, whereas LSTM is widely used for sequential or temporal data as several authors 

applied this Neural Network calculation in data composed by videos. Li et al. (2017) 
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therefore inverted the applications of CNN and LSTM. Their final structured was based 

on a final score fusion that, for each classification, would choose the index that contained 

the highest when multiplying the scores of the 10 parallel Neural Networks. The method 

was able to achieve the state of the art applied to the same dataset. 

Differently from Li et al. (2017), Ercolano and Rossi (2021) propose an architecture 

in which the LSTM layers are applied after multiple CNN layers. The dataset used by the 

study was another RGB-D dataset, CAD-60, composed by 60 videos with 12 different 

actions performed in 5 different environments. The final model aimed to generate a 

classification of activities of daily living (ADL) to monitor the actions of elderly people in 

their homes. In contrast to Li et al. (2017), Ercolano and Rossi (2021) support the CNN 

layers as spatial dependency handlers, whereas LSTM learns the pattern from 

sequences. These assumptions from the authors converge with previous discussions in 

the literature review. The authors consider that the final CNN-LSTM model achieved and 

outperformed the state of the art with 98% of precision and 97% of recall. 

Another matter to be discussed regarding the presented machine learning models 

is that their authors utilised widely spread datasets for object detection or gesture 

classification to attest the result of their models. Common Objects in Context (COCO), 

presented by Lin et al. (2014), and PASCAL Visual Object Classes (VOC) -  presented 

as an annual benchmark challenge by Everingham et al. (2005) - contain millions of 

labeled instances in images and these are used for object detection model benchmark 

comparison. For sign language detection, there are studies that developed sign language 

datasets for application in algorithms, like the dataset created by Martínez et al. (2002) 

for American Sign Language (ASL). In a context in which the image inputs cannot come 
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from existing datasets, the limited data problem requires solutions to avoid overfitted 

models of DNN (Shorten and Khoshgoftaar, 2019). Krizhevsky, Sutskever and Hinton 

(2017) define two relevant label-preserving methods for data augmentation that increase 

the training performance of input images in a deep CNN model: image translations 

alongside horizontal reflections and Principal Component Analysis (PCA) - the latter is a 

concept introduced by these authors that consists in changing the RGB values of an 

image by adding multiples of its principal components. 

By assessing in this review previous achievements of authors that aimed to classify 

gestures and sign language vocabulary, several combinations could be noticed in the 

different stages of a project such as this one and many of the presented solutions 

achieved excellent results in their respective contexts. Utilising the correct permutation of 

these elements tends to take one closer to the objectives of this research, which is to 

create a Lámh sign language detection and classification. The main stages that are 

common amongst all the mentioned studies are the data acquisition, data preparation 

and the machine learning application that generate the predictions as a consequence.  

Moreover, thoroughly inspecting each stage, there are opportunities for them to be 

tuned. In terms of data acquisition, the data can be obtained through sensors, or RGB-D 

cameras like the Microsoft Kinect or regular RGB cameras, being the latter the most 

popular due to its accessibility (Zhang et al., 2019) and it was be the tool implemented by 

this study since the result is expected to be used by different users that will not have 

access to more expensive and complex alternatives like RGB-D.  

Even when the data comes from existing data sources, there is still possibility to 

improve the image perception by the machine learning with the application of bounding 
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boxes for object detection, available for different computing languages, or landmark 

detection performed by pre-trained frameworks like MediaPipe (Lugaresi et al., 2019) or 

different techniques of motion representation like MHI in case of dynamic actions. 

MediaPipe would bring benefits in relation to a pixel array approach as indicated by 

Nunnari, F., España-Bonet, C. and Avramidis (2021) – the data capturing would not be 

influenced by the signer’s features or clothing; the light would not play a relevant role; the 

coordinate location of the poses would be enhanced; the fact that the skeleton data is two 

dimensions smaller than picture based data tends to require a smaller neural network 

and, consequently, more efficient and faster. 

Data preparation also contains variables within its sub-stages that can be taken 

into consideration and may affect the final result: normalization, picture dimensions and 

data augmentation. These elements can define the success of models in some cases. 

Some CNN models only accept certain picture dimensions, for example, and the data 

augmentation may be crucial to avoid overfitting. 

Finally, the choice of the machine learning model is another core matter. This 

review has presented efficient solutions involving machine learning models that are not 

within the deep learning classification, mainly SVM. Deep Learning also presents options 

that can even be merged in the same model, being the 2D CNN, 3D CNN, 3D Densenet 

and LSTM (from RNN), HMM was also applied with neural networks in order to improve 

existing models. When applied in correct cases, these Deep Learning solutions seem to 

address greater datasets with increased classes to be predicted, and good results were 

obtained by applying 3D Neural Networks or LSTM to predict sequential frames, which is 
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a requirement in this study since Frizelle and Lyons (2022) identify Lámh and other KWS 

as dynamic signs alongside the spoken word.  

Therefore, MediaPipe holistic model was applied to the produced videos of Lámh 

gestures in order to enhance the human landmarks. This framework was chosen rather 

than bounding boxes since it tends to optimize the process for videos, instead of the 

bounding box frame by frame classification. Also, a CNN models were applied to the 

prepared data in order to achieve the main research objectives. If the predictions don’t 

achieve considerably good accuracy, LSTM models were also be applied in separate 

models and integrated with CNN layers as well. Finally, the models were compared to 

SVM in order to promote a relevant conclusion regarding the role of neural networks in 

comparison to another Machine Learning classifier, since CNNs and SVM seem to be 

competing alternatives in the analysed state of the art studies, being LSTM also a relevant 

alternative in terms of sequential frames and videos. 

Investigating the core studies related to the Lámh language, it can be noticed that 

constant training is considered crucial by the authors. Thus, this study proposes the 

creation of a Lámh language detection tool, which is unprecedent, utilising machine 

learning techniques in order to efficiently recognise Lámh language signs. By applying all 

the given concepts and theories to this project, DNN models were be explored through 

TensorFlow and Keras in Python language, alongside the library OpenCV (Open Source 

Computer Vision), which brings important tools for real time detection (Bradski and 

Kaehler, 2008). All these elements were applied with a methodical data acquisition 

detailed in the Primary Research, Methodology and Ethics chapter and methods to avoid 

overfitting, in order to distinguish the Lámh signs and create an accurate  and generalised 
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detection and classification of the signs in real time for all possible circumstances. Hence, 

this Lámh sign detection tool could potentially pave the creation of an interface with users, 

in order to generate a learning and reinforcement tool for communication partners, being 

teachers, nurses, special needs assistants, speech therapists or the Lámh user’s family 

members and friends. Consequently, the promotion of the constant training of Lámh signs 

would promote the inclusion of individuals in natural settings (Dolly and Noble, 2018). 
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6. Validity 

As per Machine Learning benchmark measurements, the validity of the final result 

was given by the use of the loss function of the model, which indicates the discrepancy 

between the prediction and the actual classification of the labeled gestures, and the 

accuracy of the model - sum of true positive and true negative predictions divided by the 

sum of all predictions. These measures was applied to the split training and testing data 

and, if their loss and accuracy did not demonstrate a behaviour of overfitting or 

underfitting. If this criteria is not attended, the previous steps carried out by the study must 

be reviewed with the possibility of requiring further studies 

Once the model was validated in terms of having no overfitting or underfitting, then 

the most appropriate and generalised models were selected for a real time detection 

procedure described in the chapter Primary Research, Methodology and Ethics, and the 

actual accurate detections of the best models were counted and finally compared 

amongst themselves so a single best model could be chosen. 
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7. Sampling Strategy 

The sampling strategy of this research is judgment sampling. Once the population 

of this study is a potential Lámh user, which ultimately could be anyone, the choice of this 

non-probabilistic and qualitative sampling method is related to the nature of the expected 

outcome and its expected purpose: to accurately detect Lámh language signs. Under this 

main objective, the source of the data must come from experts of the matter (Etikan, 

Abubakar Musa and Sunusi Alkassim, 2016), that, in the context of this research, have a 

holistic knowledge of the Lámh language and can reproduce the signs precisely. The 

characterization of judgment sampling resides on the fact that an expert of the matter was 

selected as the representative group by the author.  

Thus, videos and pictures were produced using as reference the gestures and 

signs by a professional that utilises Lámh language on their daily basis. The specialist 

voluntarily agreed to share their knowledge and to be used as the sources for the image 

production of this study. This is detailed in the Primary Research, Methodology and Ethics 

chapter. 
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8. Primary Research, Methodology and Ethics 

This study opted for the visual-based data acquisition rather than the sensorial-

based approach in accordance with the matters raised in the literature review: a visual-

based approach is more accessible for a communication partner than a model based on 

sensor inputs. Considering a visual-based data input for the model, as previously 

discussed in the objectives and in the literature review, due to the specificity of the Lámh 

sign language, the images that show the reproduction of the signs must be generated by 

the author.  

Therefore, a primary research was carried out to produce the required data. This 

research was assisted by a volunteer that works as an aim support worker with an autistic 

child on their daily routine. Moreover, the representative of Lámh Development Office of 

an Institute of Technology in Ireland contributed to this research by giving access to the 

complete online Lámh content. As a consequence, the volunteer could consult the online 

content provided by the representative of Lámh in case they wanted to confirm they were 

performing the signs correctly by following the steps provided in the videos and written 

instructions. 

In relation to the words chosen for the project, the twenty signs are based on the 

top twenty words of the core Lámh vocabulary for children with Down Syndrome in 

primary schools in Ireland developed by Frizelle and Lyons (2022). These words can be 

found in Appendix A. This methodology would be closer to the in-depth interview concept, 

although it is not directly structured in a question and answer structure. 

When dealing with such primary research, it is crucial to consider the ethical 

implications involved: the dataset generated cannot be shared out of the academic 

environment in which this research is inserted. Firstly, the identity of the volunteer should 
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be protected since it is their right to remain anonymous and it is also the volunteer’s right 

to entirely understand their role in the study, the final objectives of the research and the 

type of data that was going to be generated with their help. An advantage of the skeletal 

data in relation to the picture data in the ethical perspective is that there is no risk of 

exposing the volunteer’s visual identity. Even though, the volunteer signed a Participant 

Consent Form confirming the scope of the project was properly explained to them, 

agreeing with the proposed methodology and attesting their awareness that the final data 

generated would not store their image and their names would not be shared.  

Secondly, the copyrights of Lámh belong to the Health Service Executive (HSE) in 

Ireland. Therefore, the Lámh representative was reached out to be made aware of the 

existence of this research and it was agreed that the ownership of the final machine 

learning code and the dataset capturing the signs made by the volunteers will not be 

claimed by the author as a strict condition to progress with the research. Moreover, an 

NDA was signed by the author of this study to confirm that the complete Lámh lecturing 

material shared with the author by the Lámh representative will not be shared with 

external people that are not related to this study since the content is an intellectual 

property that belongs to Lámh - Communication Augmentation Sign System Ltd. 

The movements of the volunteer were captured in order to obtain forty five videos 

with 40 valid frames per volunteer per sign. Since the proposed model aims to distinguish 

twenty different signs, 36,000 frames were generated as primary data. It is important to 

enhance that the forty five videos of each sign were equally split in three categories: 15 

videos in which the volunteer was between 2.5 and 3 meters away from the laptop 

camera, 15 videos in which they were between 1.5 and 2 meters away from the laptop 
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camera and 15 videos in which they were less than 1 meter away from the laptop camera. 

This is due to the fact that the ‘z’ variable, or the depth of the landmark in the video, is 

one of the variables calculated for pose, hand and face landmarks of the MediaPipe 

library. Moreover, the distance to the camera changes the pose landmarks that would 

show up: the closer distance to the camera would eventually not capture the elbows, 

whereas the medium distance would get elbows at all times and the farther distance to 

the camera would also capture the hips. Thus, different depths needed to be recorded 

per sign in an attempt to create an augmented strategy that would make the data more 

comprehensive for a final model. As proposed by Nunnari, España-Bonet and Avramidis 

(2021), the augmentation of skeletal motion data would be related to a variation in the 

camera framing conditions. Therefore, methods of image rotation, image flip and PCA 

colour augmentation were not applicable in the chosen context. 

As a consequence of the skeletal data collection, a numpy array was concatenated 

based on the landmarks generated by MediaPipe Holistic for the left hand, the right hand, 

the pose and the face. The pose generates 33 landmarks and each one of them contain 

the x, y – which are automatically normalized by the MediaPipe function in accordance to 

the width and height of the frame – and z coordinates and the visibility, which varies from 

0 to 1 in a non-binary way; the left hand and the right hand generate 21 landmarks each 

with x, y and z coordinates; the face generates 468 landmarks with x, y and z coordinates. 

Flattening the appended arrays of all landmarks and concatenating the resulting arrays 

of each body component, the final result is a single dimensional array of 1,662 inputs. As 

previously introduced in the literature review, this brings an optimization of the machine 

learning models in comparison to arrays originated from image pixels, which are two 
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dimensional for black and white images and three dimensional for RGB images. 

Furthermore, the calculation of normalized x, y and z coordinates given by MediaPipe 

save several data preparation steps listed by Ercolano and Rossi (2021), like establishing 

coordinate references and normalizing the obtained coordinates. 

The face landmarks were included in the calculations because, although the signs 

are mainly generated by the movement of arms, hands and fingers, Frizelle and Lyons 

(2022) enhance that KWS languages like Lámh differ from natural sign systems because 

the spoken word is combined with the gestural sign. Therefore, the movements of the 

volunteer were captured alongside the spoken word, turning the face landmarks important 

variables of the applied methodology. It is also important to enhance that, in the case of 

Lámh language, for the single hand signs, there is a determined hand to perform the sign, 

this means that a right hand sign should not be performed with the left hand. This reduces 

the permutations required to perform each sign. This makes a data preparation step of 

skeletal data described by Ercolano and Rossi (2021) as symmetrization inappropriate 

for this context since mirroring the one hand signs would lead to incorrect signing. 

The programmed integration between Open CV and MediaPipe Holistic allowed a 

real time landmark capture per frame. The latter used the default inputs from Media Pipe 

Holistic (min_detection_confidence=0.5 and min_tracking_confidence=0.5). The 1662 

landmarks were stored in separated folders for each of the 40 frames per sign. The final 

data was stored in 20 folders – one folder for each sign – and each of these folders 

contained 40 other folders – one for each frame – with numpy arrays with 1662 landmark 

numerical representations. Looping through these folders and appending the numpy 

arrays saved, the result is a three dimensional array A x F x L in which A stands for the 
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number of actions – in this case the number of different signs times the number of times 

each sign was repeated by the signer –, F is the number of frames and L is the standard 

number of landmarks of MediaPipe Holistic. Therefore, 900 x 40 x 1,662.  

If the manipulated data were associated with RGB pixels represented by arrays, 

the Landmark dimension would be replaced by 3 other dimensions: W x H x C, in which 

W is the width of the image, D is the height and C are the 3 RGB colours. Moreover, the 

consequence of the reduction of dimensions of the skeletal data when comparing to pixel 

based data becomes evident when building a Convolutional Neural Network, for example. 

In this study, a 1D CNN is required instead of a 3D CNN (RBG pixels) or a 2D CNN (black 

and white pixels) which were explored by other studies. 

In this sense, the skeletal model is less dependent of the quality of the captured 

image and the features of the different signers, and more dependent on the efficiency of 

the skeletal landmark capture. Putting into a context of limited resources, volunteers and 

time, the skeletal data becomes then pivotal for one’s achievements in such computer 

vision study.  

 

Figure 1: Demonstration of data collection integrating MediaPipe and OpenCV – ‘Hello’ 
Lámh Sign (Source: Personal Collection) 
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Once the data was collected following the procedures described, several models 

of machine learning were applied based on the successful techniques of sign language 

detection assessed and compared in the literature review. Support Vector Machine was 

applied with cross validation function of 10 folds and combination of different 

hyperparameters: kernels poly, RBF and sigmoid – which are non-linear kernels; C 0.1, 

1, 10 and 100; gamma 10, 1, 0.1, 0.01, 0.001. This means that the cross validation 

function applied 60 combinations of Support Vector Machine hyperparameters for 10 

folds, leading to 600 fits, in order to determine the most appropriate in terms of the 

accuracy in relation of the increase of variable C, which is directly related to the error 

acceptance by the SVM model. The data was split in 80% for training and 20% for testing. 

To apply the previously mentioned 3 dimensional array 900 x 40 x 1662 (A x F x L) to the 

Support Vector Machine, a vectorial transformation was required. This Machine Learning 

Model would accept the following format: A x V in which A is, as defined before, the 

number of actions – in this case the number of different signs times the number of times 

each sign was repeated by the signer –, whereas V is the vector that represents the whole 

action concatenating the 40 frames per action together, so it would be the presented F 

(number of frames) times L (number of landmarks). Using the reshape function of the 

numpy library, the data 900 x 40 x 1662 was transformed into 900 x 66,480. No 

transformation was required for the labels, as they remained with the encoded 900 labels 

between the range 0 and 19. After all the cross validations were carried out, the average 

results of each hyperparameter combination was stored in a csv file for further plots. The 

Support Vector Machine models were compared using the mean accuracy score – which 

is a standard choice in the scikit-learn library for classification problems. 
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Moreover, the Support Vector Machine most appropriate choice was compared 

with different deep neural network models applied to the data. These neural networks 

were based either in Convolutional Neural Network 1D with Max Pooling layers, or Long 

Short Term Memory or a combination of both as some successful models enhanced in 

the Literature Review achieved good results by adding both layers to their architecture 

when classifying sign language gestures or other sequential actions. Since there is no 

consensus regarding the best architecture of Neural Networks, the first Neural Network 

models applied started with the simplest architecture, with one layer of CNN or LSTM – 

32 nodes respectively – and, once these were tested, other models were tested by 

increasing the number of layers one by one for every new model so the impact of 

additional layers  in the final accuracy and loss could be verified. It is important to enhance 

that, except for the output layer, all the other layers used relu as the activation function 

since it is considered a standard activation function as defined by Alzubaidi et al. (2021). 

The activation function of the output layer was softmax as this is the acvation function of 

multiclassification Neural Networks.  

For every new layer added, the latter had the double number of nodes of the 

previous layer. In the case of overfitting models, dropout layers of 20% have been added 

to the models in variable positions of the architecture in order to identify whether the 

overfitting aspect would be controlled. For the Neural Network models, the data was also 

split in 80% for training and 20% for testing. All Neural Networks were compiled with 

‘accuracy’ as the metric – Grandini, Bagli, and Visani (2020) define accuracy as a popular 

multiclass metric and is used when the weight of each class is not relevant, which is the 

case –, ‘categorical_crossentropy’ as the loss since the labels were one-hot encoded – 
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converging with the softmax activation function in the output layer – and Adapative 

Moment Estimation (Adam) as the gradient optimizer, which was originated in the study 

by Kingma and Ba (2014) and is widely used in machine learning models that deal with 

large datasets. As the authors define, Adam joins two advantages of other gradient 

optimizers – it deals with sparse gradients and is able to manage non-stationary 

objectives. To fit the model, the only parameter changed was the number of epochs. 

Some experimentations were firstly applied to determine an appropriate value for the 

number of epochs and it was defined that 500 epochs allowed the development of all the 

models to the point in which the behaviour of the models and their trends could be 

correctly verified. 

After the best models were chosen, they were experimentally applied using again 

Open CV and Media Pipe Holistic exactly as the data collection setup. However, instead 

of storing the arrays, they would be appended and transformed to be submitted to the 

chosen models in order to generate a real time Lámh language classifier. The criteria 

adopted in this study was the threshold of 0.9 and each prediction that would pass the 

chosen threshold would be stored in an array. If the last 10 predictions of the array 

corresponded to the same label, the classification would be displayed on screen. This 

measure allows the displayed predictions to be more stable, since they need to fulfill a 

high threshold requirement and must remain constant for at least 10 accurate predictions. 

As enhanced previously, the design of the written content on the Open CV page was not 

a concern as it would deviate from the main objectives of the research. The main models 

were applied in this real time context so their final performance could be assessed, adding 

an additional analysis layer to the experimentation.  
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The SVM interface and the Neural Network interface in OpenCV were conceived 

with a difference as the softmax output of the Neural Network architecture led to a real 

time probability display on screen in which the user is able to follow how the probabilities 

are distributed for each one of the twenty words as colorful bars representing the words 

change their sizes proportionally to the change of the probabilities outputted from the 

Neural Network model and, when the model achieved the threshold and twenty sequential 

prediction requirements, the classification would finally be displayed on the top of the 

OpenCV window. In contrast, the SVM model only has a single classification as output 

and therefore the probability interface was removed and only the final result after the 

requirement fulfillment was displayed on the top of the OpenCV window. The signer 

executed the same signs again in real time and the accuracy of the classification of the 

final models was analysed. For each model, the signs were categorised in three statuses: 

‘Detected’, ‘Detected with reservations’ and ‘Not Detected’. Additional comments were 

added for the signs that were detected with reservations and not detected in order to 

compare the models and the dataset together, since the dataset was generated by this 

research as primary data and it was not validated in previous studies. The real time 

detection also assessed the behaviour of the models when the designer was not carrying 

out any apparent sign. 

It is important to highlight that this last step of applying the model in practical real 

time detections and taking conclusions from this practical experiment is not something 

common to be observed in discussion sections from articles of computer vision as they 

tend to stop at the confusion matrixes of the split test data and assess where the false 

positives and false negatives were observed. However, going beyond the training and 
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testing relation is important considering the proposed research question and the primary 

objective: ultimately, a successful model applied in practice would be an ideal tool for 

Lámh language training purposes. Therefore, considering that the data was also 

generated by this research itself and was not validated in previous studies, successful 

training and testing relations are not enough to attest the success of the machine learning 

model. By applying the models in a real time detection, the generalization of the model 

can be really tested in an actual execution. Notes were taken for each sign done in a 

certain distance to the camera and in different angles of the camera in order to exhausted 

the real possibilities. 

All the coding of the research was executed in a windows laptop Intel(R) Core(TM) 

i5-8250U CPU 1.60GHz with 8GB of RAM. The study did not count on a hardware with 

GPU to carry out any step of the methodology. 
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9. Timeframe and Supervisor Meetings 

The tasks of this project have been fulfilled within the stipulated time frame, from 

16th of May until 19th of August. Hence, the tasks have been distributed chronologically 

based on the proposed secondary objectives established in the Objective chapter as per 

Table 1. 

Table 1: Gantt chart representing time frame of each task 

 

Week 

Starting on 16/05/2022 in week 1 

Ending on 19/08/2022 in week 14 

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Data collection                             

Set data augmentation strategies 
                            

Apply different Machine Learning 
models and choose the most 
generalised and accurate one                             

Generate final artifact                             

Elaborate the written discussion 
and conclusion of the project 

                            

(Source: Personal collection) 

 

 The meetings with the supervisor were carried out on the days 1st of June, 8th of 

June, 22nd of June, 18th of July and 08th of August. In the meetings, the research question, 
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problem definition, novelty and methodology of the research were the main themes 

discussed in order to successfully fulfil the tasks within the proposed timeframe. 
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10. Results and Discussion 

After the methodology was applied to gather the dataset, the final document 

containing the numpy arrays contained 562 Megabytes of data. As discussed in the 

Primary Research, Methodology and Ethics chapter, the main augmentation of the data 

was made in the development of the data itself when changing the distance of the signer 

to the webcam camera in 3 different ranges in order to variate the depth of the data but 

also slightly change the x and y coordinates, as well as bringing different pose landmarks 

to the camera frame. 

The first Neural Network applied to the mentioned collected data contained a single 

CNN 1D layer with 32 nodes, followed by a Max Pooling 1D layer, a flattening layer and 

dense layer with 32 nodes. This first model generated a clear overfitting relation between 

training and testing results, which can be observed in both the accuracy and loss plots. 

The accuracy ended with 77.22% for training and 39.44% for testing, whereas the loss 

ended 0.61 for training and 4.326 for testing. 

  

Figure 2: Single CNN (32 nodes) – Training and Testing Accuracy (Source: Personal 
Collection) 
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Figure 3: Single CNN (32 nodes) – Training and Testing Loss (Source: Personal 
Collection) 

 

When the second model was tested adding one more layer of CNN 1D with 64 nodes, 

the architecture was: CNN 1D with 32 nodes, Mac Pooling 1D layer, CNN 1D with 64 

nodes, Max Pooling 1D layer, the flattening layer and dense layer of 32 nodes. Although 

it was overfitting since it could be observed a certain gap in the distance of the training 

results to the testing results as the epochs progressed – mainly in the loss plot –, it was 

perceived that both accuracy and loss showed better results with an overfitting severely 

more discrete. The training accuracy was 100% whereas the testing accuracy was 

89.44%. The training loss was 0.003 and the testing loss was 0.487. 
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Figure 4: Double CNN (32 and 64 nodes) – Training and Testing Accuracy (Source: 
Personal Collection) 

 

Figure 5: Double CNN (32 and 64 nodes) – Training and Testing Loss (Source: 
Personal Collection) 

 

Since an improvement was noted by increasing the CNN layers but the overfitting 

aspect was still present, a simple method of drop out layer was added to the latter 

architecture. After the CNN 1D and Max Pooling 1D layers, a single Drop Out layer of 0.2 

was added. This addition proved to be efficient as it narrowed the distance between 

training and testing accuracy, although the training accuracy and loss were still too high 
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and too low respectively. The training accuracy was 100% whereas the testing accuracy 

was 94.44%. The loss values were more discrepant as the training loss was 0.0002 and 

the testing loss was 0.3416. The effect of the dropout layer is noticeable on the plots 

where it can be seen a constant drop of the accuracy values and a constant sharp 

increase of the loss during the epoch progression as an attempt to control to overfitting 

aspect of the model. 

 

Figure 6: Double CNN (32 and 64 nodes) and 0.2 Dropout – Training and Testing 
Accuracy (Source: Personal Collection) 

 

 

Figure 7: Double CNN (32 and 64 nodes) and 0.2 Dropout – Training and Testing Loss 
(Source: Personal Collection) 
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Finally, a last CCN model was attempted adding a third CNN 1D layer with a Max 

Pooling 1D layer. The architecture was set up as CNN 1D with 32 nodes, Max Pooling 

1D layer, CNN 1D with 64 nodes, Max Pooling 1D layer, CNN 1D with 128 nodes, Max 

Pooling 1D layer, the flattening layer and a dense layer with 32 nodes. Although the 

simple increase from 1 CNN layer to 2 improved the accuracy and loss as well as the 

overfitting aspect of the model, the same could not be said for the addition of a third layer 

with 128 nodes. The final training accuracy was 100% and the testing accuracy was 

86.67%, whereas the training loss was 0.001 and the testing loss was 1.007. These 

results alongside the gaps showed between the testing and training curves show a model 

that overfits more than both the previous models with two CNN 1ID layers. 

 

Figure 8: Triple CNN (32, 64 and 128 nodes) – Training and Testing Accuracy (Source: 
Personal Collection) 
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Figure 9: Triple CNN (32, 64 and 128 nodes) – Training and Testing Loss (Source: 
Personal Collection) 

 

After the CNN models were analysed, the LSTM models were applied with the same 

training and testing data split. The first LSTM model started with a single LSTM with 32 

nodes and dense layer with 32 nodes. As it can be seen in the accuracy and loss plots, 

as opposed to the CNN models, it clearly showed signs of underfitting with a training 

accuracy of 11.67% and testing accuracy of 6.11%, whereas the training loss was 3.118 

and the testing loss was 3.187. 

 

 

Figure 10: Single LSTM (32 nodes) – Training and Testing Accuracy (Source: Personal 
Collection) 
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Figure 11: Single LSTM (32 nodes) – Training and Testing Loss (Source: Personal 
Collection) 

 

By adding a second LSTM layer of 64 nodes to the architecture, the tight aspect 

between the training and testing curves from the previous model remained, but with much 

better results, demonstrating no signs of overfitting or underfitting. The training accuracy 

was 87.36% and the testing accuracy was 80.00%, whereas the training loss was 0.4069 

and the testing loss was 0.6955. 

 

Figure 12: Double LSTM (32 and 64 nodes) – Training and Testing Accuracy (Source: 
Personal Collection) 
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Figure 13: Double LSTM (32 and 64 nodes) – Training and Testing Loss (Source: 
Personal Collection) 

 

When adding one more dense layer now with 64 nodes to the previous model, 

although it shows better accuracy and lower loss, the overfitting features become 

noticeable, mainly analysing the loss plot. The training accuracy reached 100% and 

testing accuracy 93.89%, whereas the training loss was 0.0025 an the testing loss was 

0.3489. 

 

Figure 14: Double LSTM (32 and 64 nodes) and Double Dense Layer (32 and 64 
nodes) – Training and Testing Accuracy (Source: Personal Collection) 
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Figure 15: Double LSTM (32 and 64 nodes) and Double Dense Layer (32 and 64 
nodes) – Training and Testing Loss (Source: Personal Collection) 

 

By training a model with three LSTM layers with 32 nodes, 64 nodes and 128 nodes 

respectively and a dense layer  of 32 nodes, interestingly the performance of accuracy 

and loss is even worse than the single LSTM layer previously described, demonstrating 

that the model became too big for the dataset in context. The training accuracy was 5.69% 

and the testing accuracy was 2.22%, whereas the training loss was 2.993 and the testing 

loss was 3.018. 

 

Figure 16: Triple LSTM (32, 64 and 128 nodes) – Training and Testing Accuracy 
(Source: Personal Collection) 
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Figure 17: Triple LSTM (32, 64 and 128 nodes) – Training and Testing Loss (Source: 
Personal Collection) 

 

The finds when exploring the CNN or LSTM models converge directly to the literature 

understanding in the field of Neural Networks and Deep Learning: large datasets require 

larger Neural Networks so the chosen model can perform better. This can be noticed on 

the fact that the CNN model with two CNN 1D layers outperformed the CNN model with 

a single CNN 1D layer, as well as the LSTM model with 2 LSTM layers outperformed the 

LSTM model with a single LSTM layer.  

However, as pointed in the Literature Review in the discussions of Huang et al. (2017) 

and He et al. (2016), too large Neural Networks lead to an increase of the error if no 

solution is added to the architecture. This could be perceived, in the case of the studied 

dataset, when applying the third layer to the CNN model or the LSTM model. Although 

the CNN model with three CNN 1D layers showed better results than the model with a 

single CNN 1D layer, the former showed clearer signs of overfitting when compared to 

the model with two CNN layers, whereas the LSTM model with three LSTM layers showed 

sever underfitting and the LSTM model with two LSTM layers showed no sign of 

underfitting or overfitting, being a promising model to be chosen. This leads to a 
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supposition that a greater dataset could lead to an also greater architecture for a better 

model, also indicating that there is no definitive model or architecture in the machine 

learning field as a whole. 

As per discussion in the literature review, the addition of the LSTM layers after the 

CNN layers may contribute to the overall result of the model as the LSTM would, in theory, 

address the temporal aspect of the data whereas the CNN layers address the spatial 

aspect. Therefore, different architectures involving these mathematical resources were 

tested. The first one was a single CNN 1D layer with 32 nodes, a Max Pooling 1D layer, 

a single LSTM with 32 nodes and dense layer 32 nodes. It can be noticed that the 

flattening layer is not required as the input of the LSTM layer requires the same 

dimensions as the 1D-CNN output, not requiring any vectorial transformation. It is also 

perceived that the model shows a configuration similar to the two layer LSTM previously 

applied until the epoch 200, showing close training and testing curves for both accuracy 

and loss, but from the 200th epoch the testing accuracy started to decreased with a 

training accuracy of 100% and similarly the testing loss started to increase with training 

loss close to zero, enhancing the overfitting behaviour of the model. The final training 

accuracy after 500 epochs was 100% and the testing accuracy was 95%, whereas the 

training loss was 0.00005 and the testing loss was 0.3162. 
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Figure 18: Single CNN (32 nodes) and Single LSTM (32 nodes) – Training and Testing 
Accuracy (Source: Personal Collection) 

 

 

Figure 19: Single CNN (32 nodes) and Single LSTM (32 nodes) – Training and Testing 
Loss (Source: Personal Collection) 
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Considering the promising results of the previous model if the overfitting aspect is 

controlled, a dropout layer of 0.2 was included after the Max Pooling 1D layer and before 

the LSTM layer, another dropout layer of 0.2 was added after the LSTM layer and a third 

dropout layer of 0.2 was added after the dense layer. Although this attempt does not 

overfit like the single CNN with single LSTM without dropout, it still overfits and the 

number of dropout layers interferes in the final accuracy and loss of the model as a 

consequence. The final training accuracy was 79,03% and testing accuracy was 53,89%, 

whereas the training loss was 0.5428 and the testing loss was 2.097. 

 

Figure 20: Single CNN (32 nodes), 0.2 Dropout, Single LSTM (32 nodes), 0.2 Dropout, 
Dense Layer and 0.2 Dropout – Training and Testing Accuracy (Source: Personal 
Collection) 
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Figure 21: Single CNN (32 nodes), 0.2 Dropout, Single LSTM (32 nodes), 0.2 Dropout, 
Dense Layer and 0.2 Dropout – Training and Testing Loss (Source: Personal 
Collection) 

 

Based on the results of the previous model that used dropout layer but they did not 

correct the overfitting and even compromised the accuracy and loss values, another 

attempt was carried out having only a single dropout layer of 0.2 after the Max Pooling 

1D layer. The results, as it can be seen in the plots of the accuracy and the loss, indeed 

were improved and the overfitting aspect is not perceived like in the other models as the 

relation between training and testing did not get perceptively wider through the 

progression of the epochs. The training accuracy was 99.31% and the testing accuracy 

was 94.44%, whereas the training loss was 0.0302 and the testing loss was 0.2778. 
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Figure 22: Single CNN (32 nodes), 0.2 Dropout and Single LSTM (32 nodes)  – Training 
and Testing Accuracy (Source: Personal Collection) 

 

 

Figure 23: Single CNN (32 nodes), 0.2 Dropout and Single LSTM (32 nodes)  – Training 
and Testing Loss (Source: Personal Collection) 

 

Since other attempts could be carried out to achieve better results, another model was 

applied by adding one CNN 1D layer with 64 nodes and one LSTM 1D layer also with 64 

nodes. The architecture was: two CNN 1D with 32 nodes and 64 nodes respectively and 

a  MaxPooling 1D layer after each CNN layer, two LSTM with 32 nodes and 64 nodes 
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and a dense layer of 32 nodes. As it can be mainly perceived on the behaviour of the 

model after the 100th epoch of the loss plot, this model overfits even more than the one 

with a single layer of 1D-CNN with a single layer of LSTM, with training accuracy of 100% 

and testing accuracy of 93.89% whereas the training loss was 0.0000002 and the testing 

loss was 1.079. 

 

Figure 24: Double CNN (32 and 64 nodes) and Double LSTM (32 and 64 nodes)  – 
Training and Testing Accuracy (Source: Personal Collection) 

 

 

Figure 25: Double CNN (32 and 64 nodes) and Double LSTM (32 and 64 nodes)  – 
Training and Testing Loss (Source: Personal Collection) 
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However, considering that a single addition of a dropout layer after the Max Pooling 

1D layer was able to clearly improve the model that contained a single 1D-CNN with a 

single LSTM layer, the same was attempted in the architecture with two CNN layers and 

two LSTM layers by adding a single dropout of 0.2 between the last Max Pooling 1D Layer 

and the first LSTM. The final plots show  balanced accuracy and loss graphs with a gap 

between training and testing that narrows down with the progression of the epochs, 

becoming a promising model to be chosen for the studied dataset. The training accuracy 

was 99.86% and the testing accuracy was 93.33%, whereas the training loss was 0.0035 

and the testing loss was 0.1791. The results are better than another promising model, the 

LSTM model with two LSTM layers only, but the latter still may be considered more 

generalised as the relation of training and testing is even tighter. 

 

Figure 26: Double CNN (32 and 64 nodes), 0.2 Dropout and Double LSTM (32 and 64 
nodes)  – Training and Testing Accuracy (Source: Personal Collection) 
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Figure 27: Double CNN (32 and 64 nodes), 0.2 Dropout and Double LSTM (32 and 64 
nodes)  – Training and Testing Loss (Source: Personal Collection) 

 

After assessing different Neural Network architectures and models, Support Vector 

Machine was applied to the dataset after the vectorial transformation described in the 

Primary Research, Methodology and Ethics chapter. From all the SVM  hyperparameters 

applied in the cross validation of 10 folds, the graphs enhance an overfitting for all the 

cases of poly kernel since the relation between training and testing is constant with the 

progression of C, being the training accuracy constant in 100% and the testing in 96.8%. 

The results of the sigmoid kernel show clear underfitting, with results below 10% for 

training and testing. In the case of the RBF kernel, most of the plots with different gamma 

values demonstrate an overfitting with the increase of C variable, since there is a 

considerable discrepancy between the training curve and the testing curve – even greater 

than the poly kernel ones. However, one of the cases of RBF kernel, with gamma equal 

0.001, could be considered a strong candidate as one of the final models, since the mean 

accuracy of the cross validation narrows down as  C increases, going from 0.964 of 
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training and 0.894 of testing with C equal 1 to 100% of training and 96.5% of testing for 

C equal 10, the latter values remain constant for C equal 100. This behaviour between 

training and testing show less overfitting features than the poly kernel accuracies, which 

remained constant as 0.968 for testing and 100% for training. However, this also points 

to a change of approach, since a very low width (gamma) for RBF points to a linear 

behaviour. Therefore, another cross validation was applied specifically for the SVM with 

linear kernel with 10 folds. The results of this cross validation are similar to the polynomial 

kernel: a constant training score in 100% and a constant testing score of 95.6%. It may 

be concluded that, although the RBF function with low gamma is similar to a the linear 

kernel, the plots of mean accuracy of the training and testing for both kernels showed 

different behaviours, being that the RBF showed less overfitting features than the SVM 

with linear kernel. 

 

Figure 28: Poly SVM with Different Gamma Plots – Training and Testing Accuracy 
(Source: Personal Collection) 
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Figure 29: RBF SVM with Different Gamma Plots – Training and Testing Accuracy 
(Source: Personal Collection) 

 

 
Figure 30: Sigmoid SVM with Different Gamma Plots – Training and Testing Accuracy 
(Source: Personal Collection) 

 

 
Figure 31: Linear SVM – Training and Testing Accuracy (Source: Personal Collection) 
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Considering all the models assessed, the SVM with ‘rbf’ kernel and gamma equal 

0.001 was the model amongst the SVM ones that showed less overfitting attributes since 

the relation between training and testing accuracy gets narrower as the variable C 

increases. Therefore, this was the SVM model chosen to be compared with the Neural 

Networks. In regards to the Neural Networks, the model with 2 LSTM layers was the ones 

that demonstrated less overfitting features, the model with two CNN layers, a dropout 

layer and two LSTM layers also did not demonstrate overfitting as the other models and 

generated higher accuracy and lower loss when comparing to the 2 LSTM layer model. 

Therefore, both were selected amongst the Neural Network layers. 

Table 2: Accuracy and Loss of the selected Machine Learning Models 

Model Accuracy 
Training 

Accuracy 
Testing 

Loss Training Loss Testing 

Double CNN + Dropout 
+ Double LSTM 

99.86% 93.33% 0.0035 0.1791 

Double LSTM 87.36% 80.00% 0.4069 0.6955 

SVM RBF 
Gamma = 0.001 
C = 10 

100% 96.5% - - 

(Source: Personal collection) 

 

Once all the models were analysed, the final chosen models were applied in a real 

time Open CV interface to detect how well the signs would be classified. For the final 

artifact, the libraries gTTS and playsound were also integrated to create and play an mp3 

file that corresponds to the detected word. The tables 3, 4 and 5 show the analysis of 

each sign for the three selected models, whilst table 6 shows a summary of the number 

of signs split into the three categories described in the Primary Research, Methology and 

Ethics chapter: ‘Detected’, ‘Detected with reservations’ and ‘Not detected’.  
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It can be noticed that the model with 2 LSTM layers had lower number of different 

sign detections comparing to the SVM ‘rbf’ and the model with 2 CCN layers, dropout and 

2 LSTM layers, it could be a consequence of the former being the model with lower 

accuracy of training and testing amongst the three, reflecting in the precision of the 

classifications in real time when comparing to the other two models with higher accuracy. 

Between the other two models, that had the same amount of signs precisely detected (8 

signs), the model with 2 CCN layers, dropout and 2 LSTM layers had more signs detected 

with reservations, so it would tend to be the best model amongst the three final models, 

although none of them were able to detect all signs precisely. 

There are other relevant points that these analyses raise. The first one is the fact 

that the signs ‘to want’, ‘jigsaw’ and ‘girl’ were not correctly classified by any of the models 

in the real time detection. ‘To want’ is a sign that is visually very similar to ‘to sit’ – both of 

them place the right fingers crossways on the left fingers in front of the chest, the 

difference is in the direction of the movement. Even the Neural Network models with 

LSTM were not able to differ the movements and tended to pick ‘to sit’. Similarly, the other 

words that could not be identified by any model, ‘jigsaw’ and ‘girl’ were considered similar 

to ‘to play’ and ‘hello’ respectively. Differently from ‘to want’ and ‘to sit’, ‘jigsaw’ and ‘to 

play’ are not similar beside the fact that they are generated with two hands in front of the 

chest. ‘Girl’ and ‘hello’ are also not similar if fully compared, although the sign of ‘girl’ 

starts with the right hand close to the forehead, like the sign ‘hello’. For these three cases 

– ‘to want’, ‘jigsaw’ and ‘girl’ – additional data would be beneficial to help the models to 

differentiate them of other signs that the models are struggling to distinguish them from. 
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Another point that can be noticed between the two models that performed better 

in the real time scenario is that the SVM struggled to identify several signs with two hands, 

classifying some of them as ‘to play’, whereas the Neural Network with CNN and LSTM 

struggled with one hand signs that are generated on the same area of the body with the 

right hand, ‘you’ and ‘good’, and these were easily detected by the SVM. Further studies 

would be required to determine whether this is a coincidence or there are intrinsic features 

of each model that helps them to manage certain skeletal limbs better than others. 

Table 3: Two LSTM layers – Detection Status of each sign 

Sign Detection Status Comments 

To play Detected with 
reservations 

Model also picks ‘to sit’, which is not a similar sign, 
although both signs use the two hands. 
 

To look Detected with 
reservations 

Model tends to pick ‘hello’, which is a sign in the 
same area of the body, using the right hand close to 
the right side of the face. 

To sit Detected  

To go Detected with 
reservations 

The model eventually struggles to distinguish ‘to go’ 
and ‘hello’ . 

You Detected with 
reservations 

The model eventually struggles to distinguish ‘you’ 
and ‘please’ when the right hand is too close to the 
chest. 

Good Not detected The model picks ‘you’ or ‘please’, which are other 
one-hand signs close to the chest 

What Detected with 
reservations 

Rarely selected, model tends to pick ‘to play’ or ‘book’ 
depending on the angle of the camera 

Time Detected with 
reservations 

Selected in a specific position when the landmarks of 
both hands are clearly captured by MediaPipe 

Thank you Detected with 
reservations 

Sometimes the probability of ‘thank you’ increases, 
but the model tends to pick the signs ‘you’ and 
‘please’, which are not very similar to ‘thank you’ 

Book Detected with 
reservations 

Easily detected when the webcam angle is greater 
than 45 degrees. When the laptop angle is 45 
degrees or less, the model can identify book, 
although it also selects other two-hand signs like 
‘jigsaw’ and ‘to play’ 

Hello Detected  

To want Not detected The model picks either ‘to sit’, which is very similar, or 
‘you, which is not similar 

Me Not detected The model picks other one-hand signs at chest level 
like ‘you’ or ‘please’ 

Girl Not detected The model can only detect ‘hello’ 
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Box Not detected Other two-hand signs picked, like ‘to play’ or ‘book’ 

To show Not detected The model tends to pick other two-hand signs, like 
‘jigsaw’ or ‘book’ 

Table Not detected The model detects a very different sign: ‘you’ 

Jigsaw Detected with 
reservations 

Similarly to ‘thank you’, the probability of ‘jigsaw’ 
increases when the sign is carried out, but the 
detection never fulfills the threshold requirements, 
and the model may select other two-hand signs like 
‘to play’ and ‘book’ 

Game Detected with 
reservations 

Game is a sign similar to ‘to play’ and, probably 
because of that, shows the same problem of ‘to play’, 
in which the model may also pick ‘to sit’. However, 
game is more complex than ‘to play’, with more 
gesture variation, so game never fulfills the threshold 
to be selected. Therefore, the model tends to pick 
either ‘to play’ or ‘to sit’ 

Please Detected  

(Source: Personal collection) 
 

Table 4: Two 1-D CNN + 0.2 Dropout + Two LSTM layers – Detection Status of each 
sign 

Sign Detection Status Comments 

To play Detected  

To look Detected with 
reservations 

Detected easily when the angle of the webcam is 
greater than 45 degrees, if the angle is 45 degrees or 
less, the model picks the word ‘hello’ 

To sit Detected  

To go Detected  

You Not detected The model tends to pick either ‘please’ or ‘to want’, 
which are not similar models 

Good Not detected The model tends to pick either ‘please’ or ‘to want’, 
which are not similar models 

What Not detected The model chooses other two-hand signs, ‘to play’ or 
‘to show’ 

Time Detected with 
reservations 

Detected in a specific position. Until this position is 
found, other two-hand signs are detected, like ‘to 
play’, ‘to show’ or ‘box’ 

Thank you Detected  

Book Detected  

Hello Detected  

To want Not detected The model’s probabilities are distributed between ‘to 
sit’, which is a very similar sign, and ‘to play’ another 
two-hand sign 

Me Detected with 
reservations 

Since the model tends to pick ‘me’ when there is no 
movement of the hands at chest level, this detection 
may be compromised 

Girl Not detected The model tends to pick the sign ‘hello’ 
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Box Detected with 
reservations 

Detected when the laptop angle is greater than 45 
degrees 

To show Detected  

Table Detected with 
reservations 

Detected when the laptop angle is equal or less than 
45 degrees 

Jigsaw Not Detected Other two-hand signs chosen like ‘to show’ or ‘to play’ 

Game Detected with 
reservations 

Detected when the angle of the laptop is equal or less 
than 45 degrees 

Please Detected  

(Source: Personal collection) 
 

Table 5: SVM RBF (GAMMA = 0.001) – Detection Status of each sign 

Sign Detection Status Comments 

To play Detected  

To look Detected with 
reservations 

Detected easily when the signer is close to the left 
side of the frame, otherwise the model detects ‘hello’ 

To sit Detected  

To go Detected  

You Detected  

Good Detected with 
reservations 

Detected easily when the signer is close to the right 
side of the frame, otherwise the model detects ‘hello’ 

What Not detected The model chooses other two-hand signs, ‘to play’ or 
‘to show’ 

Time Detected  

Thank you Detected with 
reservations 

Sometimes the model detects the word ‘you’ 

Book Not detected Other two-hand signs are detected instead, ‘time’ and 
‘to play’ 

Hello Detected  

To want Not detected The model tends to pick either ‘to sit’ or ‘to play’ 

Me Detected  

Girl Not detected The model tends to pick the sign ‘hello’ 

Box Not detected The model picks ‘to play’ or ‘book’ 

To show Not detected The model picks ‘to play’ 

Table Not detected The model picks ‘to play’ 

Jigsaw Not detected The model picks ‘to play’ 

Game Not detected The model picks ‘to play’ 

Please Detected  

(Source: Personal collection) 

Table 6: Summary of detection statuses per machine learning model 

Model Detected Detected with 
reservations 

Not Detected 

Double CNN + Dropout 
+ Double LSTM 

8 6 6 

Double LSTM 3 10 7 
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SVM RBF 
Gamma = 0.001 
C = 10 

8 3 9 

(Source: Personal collection) 
 

In relation to the behaviour of the models when no action was carried out by the 

signer, the two layer LSTM picked the word ‘girl’ in the still position when only arms, chest 

and face were showed. If the hips were also showed in still position, the model picked ‘to 

want’. If the hips and the hands are showed with the elbows, the model picked the word 

‘box’. If just the face and the chest landmarks are showed, the model does not pick a final 

word, but the probabilities for ‘to want’ and ‘to show’ tend to increase.  

The Neural Network model with 2 CNN layers, dropout and two LSTM layers 

picked tended to pick the word ‘me’ and eventually ‘girl’ when the signer was in still 

position not showing hands or hips tends to pick the word ‘me’ and eventually ‘girl’. If the 

hips were also showed in still position, the model ‘table’ or ‘hello’. If the hips and the hands 

were showed with the elbows, it picked the word ‘jigsaw’ or ‘to sit’. If just the face and the 

chest landmarks were showed, the model picked the word ‘me’, while the probability of 

‘girl’ could also increase. 

Finally, the SVM model picked ‘to want’ when the signer was in a still position not 

showing hands or hips. If the hips were also showed in still position, the word ‘to want’ 

was still selected. If the hips and the hands were showed with the elbows, the model 

picked several words, like ‘to sit’, ‘table’, ‘game’ . If just the face and the chest landmarks 

are showed, the model picks either the sign ‘hello’ or the sign ‘to want’. 

It can be concluded then that all three models had unstable classifications when 

no actual sign was generated by the signer, requiring workarounds not to generate 
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mistaken classifications. One alternative for that would be the creation of a separate 

status in the dataset called ‘no action’ for example. A new assessment would need to be 

made with all the studied models to confirm whether the addition of this new action would 

stabilize the classifications when no action is being performed or if this addition could 

affect the classification of the other signs. In relation to all the signs, none of the three 

models were able to classify precisely the three signs, being the Neural Network with 2 

CNN layers, dropout and 2 LSTM layers the one that achieved better classifications – 

fourteen different signs if the signs detected and the signs detected with reservations are 

considered, being 8 signs precisely detected. As it could be seen above, some signs were 

not detected by any model – ‘jigsaw’, ‘to want’ and ‘girl’ – and would require a special 

attention during the management of the motion capture. Other signs that this final model 

could not classify, ‘you’ and ‘good’ were also not classified, although the SVM model 

detected these two signs in real time, which may indicate that the Neural Network may 

require additional data for these two cases to be able to properly distinguish them. 

However, in general, the most problematic matter was the specific laptop angle 

required to detect some words and the distance that the signer needed to be from the 

laptop camera to generate accurate signs – in the real time detection, all final models had 

no accuracy to classify the signs when the signer was distant enough to show the hip 

landmark or even the leg landmarks. These elements enhance the need of additional data 

augmentation. Lu et al. (2016) and Meng et al. (2019) propose skeletal offset as a data 

augmentation strategy and, considering that the angle of the camera and the depth of the 

signer interfered in the final classification of some words and also that the MediaPipe 

numpy arrays are mainly composed of x, y and z coordinates, a new experiment could be 
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carried out applying a programmed function that should multiply the existing data but 

changing all the x coordinates and/or all the y coordinates and/or all z coordinates in small 

offsets between 0.05 and 0.2, for example. Since the MediaPipe data is alredy 

normalized, a special attention would need to be given to the logic of the skeletal 

landmarks that go beyond the value 1 or below 0, which are the limits of the MediaPipe 

normalization for the coordinates. 
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11. Conclusions and Future Research 

This study was able to achieve the recognition of different Lámh language signs 

by applying machine learning models and deep neural network architectures on a 

database generated by capturing landmarks of a signer using the MediaPipe python 

library. Amongst all the applied models, although the model of two LSTM layers (with 32 

and 64 nodes respectively and a 32 nodes dense layer) and the rbf SVM with width 0.001 

and C=10 demonstrated a good behaviour between the increase of training and testing 

alongside high accuracy (90% and 100% of training accuracy respectively), they did not 

generate an actual real time detection tool that could accurately predict most of the signs 

in real time. The neural network model with 2 layers of convolutional neural network (with 

32 and 64 nodes respectively), 2 layers of long short term memory  (with 32 and 64 nodes 

respectively) and a 32 nodes dense layer equally had a good performance 99,86% of 

training accuracy and 93,33% of testing accuracy with lower signs of overfitting when 

comparing to previous models. Furthermore, the model showed a better performance 

than the other two when executed in an actual real time detection, being able to correctly 

classify 11 of the 20 words in different circumstances. 

Thus, the secondary and primary objectives could be fulfilled since it is possible to 

generate a tool that will recognise Lámh language signs. As a consequence, the research 

question is also answered once this machine learning tool created an opportunity to be 

explored by communication partners. This study does not propose the ending of the 

human to human interactions, but the training and improvement of the communication 

partners – being professionals of the social sector or family and friends – so they can 

remember or expand their Lámh vocabulary in an attempt to promote a better 
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communication with the Lámh users. However, there are points that must be corrected 

and improved in the final model which lead to future work endeavours.  

The final chosen model is not ideal as the words that are properly recognised (‘to 

play', 'to look', 'to sit', 'to go', ‘time’, ‘thank you’, ‘book’, 'hello', ‘me’, 'box', 'to show', 'table', 

‘game’, 'please',) are better recognised with certain angles of the webcam and within 

certain distances from the webcam. When the user is too distant from the webcam and 

the landmarks of the hips or legs are included in the numerical array, the classifications 

of the real time detection get unstable and drastically inaccurate when compared to other 

angles. Moreover, the model should have satisfactorily predicted all the proposed 20 

signs. These elements lead to three corrections in the methodology. 

The first element is the size of the dataset. Similarly to the issue faced by Bagby 

et al. (2021) when creating a model to classify ASL signs, the greater the variety of signs, 

the greater the dataset must be so the machine learning model has more content to 

distinguish each sign. This would be a workaround for the signs that were too similar and 

therefore  the model struggled to classify them, like the signs ‘to play’, ‘what’ and ‘game’, 

or ‘to want’ and ‘to sit’, as examples of similar signs with two hands that the final model 

did not perform well tending to choose the sign ‘to play’, and ‘you’, ‘me’ and ‘good’ as 

examples of signs with one hand that the model would tend to choose ‘me’. The increase 

of the dataset with more data should also contemplate more inputs with different poses 

of the body, including the hips or the legs present in more inputs since the final model 

performed badly when other parts of the body below the chest also appeared and the 

ideal model should aim for generalised scenarios. 
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The second element is a work that could benefit not only this computer vision 

project, but the computer vision area as a whole. Authors like Lu et al. (2016) and Meng 

et al. (2019) discuss offset and data augmentation alternatives of skeletal data aiming to 

improve the accuracy of their studied machine learning model based on well-known 

RBGD datasets like NTU RGB+D. However, the offset of skeletal data should also be 

explored in cases like the one of this research which generated its own dataset: although 

there were models that performed well when classifying the existing Lámh signs, the 

created dataset was not comprehensive enough for the final user experience. Thus, the 

augmentation of the MediaPipe Skeletal data through controlled offsets in the normalised 

coordinates would enhance the generalisation of the dataset and of the final machine 

learning model as a consequence. This methodology correction could be a potential 

correction to the inaccuracies of the chosen model when the webcam was set in an angle 

that was too different from the angle used to build the trained dataset. However, this would 

need to be experimented in further studies. 

The third element that could be corrected in the proposed methodology of this 

study is to address the softmax probability distribution amongst the classes in the Neural 

Network models when there is no action being performed. When there was no action 

during the actual experimentation of the models, the Support Vector Machine model 

tended to not generate any classification because of the imposed threshold of 0.9 and 

requirement of 20 consecutive repeated classifications. However, the same could not be 

observed in the Neural Network models as they tended to pick one of the classifications 

even when the user was not performing any action. A suggested workaround that can be 

experimented is to add a condition in which the classification of the model will be replaced 
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by a new “no action” status if no landmarks of the hands can be perceived. Other solutions 

should be assed as the previous one requires that the user hides their hand to not 

stimulate a classification from the Neural Network models. A more comprehensive 

dataset could also correct the mentioned issue. 

If the three methodology corrections above are executed and potentially generate 

a better real time Lámh language classifier, two further branches would be crucial for the 

consolidation of this tool in the Lámh sector: a first approach should aim for the 

accessibility of the machine learning tool, exploring the integration of the tool with web 

and software interfaces in order to turn them into actual alternatives for a variety of users; 

the second approach should assess the user experience impact, in which the machine 

learning tool, adapted to an accessible user interface, would be tested with professionals 

of the Lámh and speech therapy sectors so their opinions, suggestions an concerns can 

be raised and potentially generate corrections to the real time Lámh language detector. 

In a social perspective, the initiative of this research by itself is a great contribution 

to the Lámh language sector in Ireland in terms of the promotion of technologies and 

alternatives that can assist the area. During the development of the project, the 

methodologies and objectives of the research were displayed and explained to the 

representatives of the language, special needs assistants and speech therapists in order 

to stimulate their participation. This intersection between the data analytics sector and the 

social care sector brought curiosity and widened the involved professionals’ awareness 

of how machine learning can contribute and develop unexpected solutions even to an 

AAC mechanism like Lámh, which is in essence an unassisted communication tool. Such 

integration and knowledge exchange between sectors was most certainly the best 
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contribution of this research above all technical achievements that were fulfilled through 

the project. 

All in all, this research was able to conciliate the data analytics background with 

the social concern by integrating the most relevant academic literature related to Lámh 

language and AAC with the state of the art in regards to sign language detection and 

classification in the machine learning researches of other sign languages and motion 

recognition. This intends to challenge the current computer vision studies in a positive 

way, specially the areas towards Alternative and Augmented Communication. The 

problem definition must ultimately be user oriented and, although an outstanding progress 

has been perceived in the existing machine learning models and solutions within the last 

two decades, very little attention is given to the integration of these advanced 

technologies with a greater variety of languages as there are several existing KWS 

languages, like Lámh, which contain an expressive number of users that could benefit 

from the machine learning advances, but at the moment there are no studies of proposed 

tools to help the promotion of these languages and the user experience. The research 

carried out by Alexanderson and Beskow (2015) must be mentioned as they promoted a 

methodology for Swedish KWS motion capture with a final intention to create a game 

avatar. In relation to researches that are more focused in the machine learning aspect, 

improving and outperforming the existing state of the art will always be an important 

validation and scientific pursuit, but the final intention of this research is to open the 

discussion and highlight the importance of putting the practical social benefits as the 

major priority of the computer vision studies and experiments. 
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Appendix A 

Top twenty words of the core school-based vocabulary built by Frizelle  and Lyons 

(2022): 

Table 7: Vocabulary based on study carried out by Frizelle and Lyons (2022) in 
alphabetical order from the left to the right 

Vocabulary 

PLAY, TO 

LOOK, TO 

SIT, TO 

GO, TO 

YOU 

GOOD 

WHAT? 

TIME 

THANK YOU 

BOOK 

HELLO/HOW ARE 
YOU? 

WANT, TO 

I/ME 

GIRL 

BOX 

SHOW, TO 

TABLE 

JIGSAW 

GAME 

PLEASE 

(Modified from source: Frizelle and Lyons 2022, p. 8) 
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