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Abstract

We consider the problem of the estimation of the position and
of the moment of beginning of emission of a source by observations
from K detectors on the plane. We propose the conditions of identifia-
bility and construct a linear estimator of unknown parameters. Then
we verify the consistency and describe the limit distribution of this
estimator.
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1 Introduction

Consider the following model of observations: we have K detectors located
on the plane at the points Dk, k = 1, . . . , K, with coordinates Dk = (xk, yk),
k = 1, . . . , K, respectively. At some point S0 with coordinates D0 = (x0, y0)
we have a source which starts emission at the moment τ0.

We suppose that the values x0, y0 and τ0 are unknown and we want to
estimate the parameter ϑ0 = (x0, y0, τ0) by the observations ofK independent
stochastic processes XT = (XT

1 , . . . , X
T
K), where XT

k =
(
Xk(t), 0 ≤ t ≤ T

)
,

k = 1, . . . , K, are the observations recorded by the k-th detector.
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There are many real problems which can be described with the help of
such models. An example of such configuration with 5 detectors and a source
is given in Figure 1 below.

S0

D1

D2

D3

D4

D5

Figure 1: Observation model: S0 is the source, D1, . . . ,D5 are the detectors

For example, if we have a radioactive source at (x0, y0) which starts its
emission at the moment τ0, then the k-th detector receives an inhomogeneous
Poisson process XT

k =
(
Xk(t), 0 ≤ t ≤ T

)
with intensity function

λk(ϑ0, t) = Sk(t− τk) + λ0, 0 ≤ t ≤ T. (1)

Here λ0 > 0 is the intensity of the noise, and for k = 1, . . . , K, the “signals”
Sk(t) = 0 for t < 0 and Sk(t) > 0 for t > 0, and the parameter τk is the
moment of arrival of the signal at the k-th detector. We have

τk = τk(ϑ0) = τ0 + ν−1∥Dk −D0∥2, (2)

where ν > 0 is the rate of propagation of the signals and ∥·∥2 is the Eu-
clidean distance in R2. The functions Sk(·), k = 1, . . . , K, positions Dk,
k = 1, . . . , K, the parameters ν and λ0 are supposed to be known, and the
main problem is to estimate ϑ0 = (x0, y0, τ0) by the observations XT .

A similar statistical problem can be considered in the case where the
observations XT

k =
(
Xk(t), 0 ≤ t ≤ T

)
recorded by the k-th detector are

Gaussian processes

dXk(t) = Sk(t− τk)Yk(t)dt+ εσk(t)dWk(t), Xk(0) = 0, 0 ≤ t ≤ T, (3)

where ε ∈ (0, 1] is the level of noise, Sk(t) = 0 for t < 0, and Wk(·) are
independent Wiener processes. The moment of arriving τk is still defined by
the relation (2), and the (hidden Markov) stochastic processes Yk(·) satisfy
the linear equations

dYk(t) = fk(t)Yk(t)dt+ εbk(t)dVk(t), Yk(0) = y0 ̸= 0, 0 ≤ t ≤ T.
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Of course, there are many other stochastic models (different time series,
diffusion processes, etc.) for which similar problems can be considered.

We are interested in the situations where the estimation of ϑ0 is possible
with small errors (consistent estimation). Therefore we have to introduce
one or another type of asymptotics. In the case of inhomogeneous Poisson
processes, the intensities (1) can be replaced by the intensities

λk,n(ϑ0, t) = nSk

(
t− τk(ϑ0)

)
+ nλ0, 0 ≤ t ≤ T, (4)

where n → ∞, i.e., we have asymptotics of large signals.
If the observations are given by (3), then the consistent estimation of ϑ0

will be possible if we consider the asymptotics of small noise ε → 0.
The same mathematical models can be used in the following, somewhat

inverse, problem. Suppose that we have K emitters D1, . . . ,DK and a re-
ceiver S0 which records stochastic processes XT = (XT

1 , . . . , X
T
K). If the

emitters send weak optical signals, then XT
k =

(
Xk(t), 0 ≤ t ≤ T

)
are inho-

mogeneous Poisson processes with intensity functions (1), and the delays τk
are defined by (2). We have the same problem: how to estimate ϑ0 by the
observations XT ? For example, if τ0 is known, then we are in a situation
close to the GPS-localization problem.

Of course, if S0 receives the Gaussian signals (3) and τ0 is known, then
once more we are in the framework of GPS-localization problem.

The both statistical statements of the problems are evidently of essen-
tial importance for applications. The engineers are already working with
such models during decades but the detailed mathematical and statistical
study seems not to be well developed. We can mention here the works
[2],[6],[10],[11],[12] and references therein.

This work is a continuation of the study initiated in [1, 4, 5, 7, 9]. In
all these works except [1], it is supposed that τ0 is known and we have to
estimate ϑ0 = D0 = (x0, y0). Let us remind some of the results obtained in
these papers.

In the work [5], the observed processes are inhomogeneous Poisson pro-
cesses with the intensity functions (4). The functions Sk(·) are supposed to
be sufficiently smooth and this allow to verify that the maximum likelihood
estimator (MLE) ϑ̂n and the Bayesian estimators (BEs) ϑ̃n are consistent,
asymptotically normal:

√
n
(
ϑ̂n − ϑ0

)
=⇒ N

(
0, I(ϑ0)

−1
)

and
√
n
(
ϑ̃n − ϑ0

)
=⇒ N

(
0, I(ϑ0)

−1
)
,

and we also have the convergence of polynomial moments and the asymptotic
efficiency of both the estimators. Here I(ϑ0) is the Fisher information matrix.
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In the work [4], it was supposed that the front of the signals has cusp-type
singularity in 0, i.e., Sk(t) = a|t|κ1I{t≥0} + o(t), where κ ∈ (0, 1/2). It was
shown that the BEs are consistent, converge in distribution:

n
1

2κ+1

(
ϑ̃n − ϑ0

)
=⇒ ζ1,

we have the convergence of polynomial moments, and the BEs are asymptot-
ically efficient. Here ζ1 is some random vector defined with the help of the
fBm.

The case of signals with change-point type singularity in 0 (discontinuous
intensity), i.e., Sk(t) = a1I{t≥0} + o(t), was studied in the work [7]. It was
proved that the BEs are consistent, converge in distribution:

n
(
ϑ̃n − ϑ0

)
=⇒ ζ2,

we have the convergence of polynomial moments and the BEs are asymptot-
ically efficient. Here ζ2 is some random vector defined with the help of two
homogeneous Poisson processes.

All three convergences can be joint in the following writing:

ϑ̃n = ϑ0 + φnζn, φn → 0, ζn =⇒ ζ,

with different rates φn → 0 and limit distributions ζ.
The work [9] is also devoted to the problem of estimation of ϑ0 = (x0, y0),

but the observations are now given by (3). The properties of the MLE ϑ̂ε and
of the BEs ϑ̃ε are again studied in the three cases (similar to those above)
in the asymptotic ε → 0. These estimators have three different rates of
convergence too and their limit distributions can be written in symbolic way
as follows:

ϑ̃ε = ϑ0 + φεζε, φε → 0, ζε =⇒ ζ.

There are two approach for estimation ϑ0 = (x0, y0, τ0). One is to collect
all the data XT and, using this data, calculate the likelihood ratio and then
the MLE and the BEs of ϑ0. This approach was used in the works [5, 4, 7, 9].
Another approach can be described as follows. Suppose that on the base of
the observations recorded by each detector, we first estimate the moments
τk(ϑ0), k = 1, . . . , K, of arriving of the signals at the detectors, and then
the obtained estimators, say τ1,n, . . . , τK,n, are transmitted to the center of
data treatment, where using these values the estimator of ϑ0 is constructed.
Note that all the information needed for the consistent estimation of ϑ0 is
contained in the moments of arriving of the signals.

The study of estimators in the case of unknown τ0 and unknown position
D0 = (x0, y0) was initiated in the work [1], where the vector ϑ0 = (x0, y0, τ0)
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was estimated with the help of the second approach and the least squares
estimator (LSE). The equation obtained there for the estimator of ϑ0 was
nonlinear, and in order to reduce it to a linear system, the parameter space
was extended introducing one more component as follows. Introduce an
unknown vector γ = (γ1, γ2, γ3, γ4), where

γ1 = x0, γ2 = y0, γ3 = τ0, γ4 =
1

2

(
x2
0 + y20 − ν2τ 20

)
.

Now the equation for γ is linear and the LSE can be easily calculated and
studied. The conditions proposed there allowed to prove the consistency of
this estimator.

For simplicity of exposition we consider below the Gaussian model of
observations.

2 Estimation of ϑ0: first approach

Remind the model of observations. We have K detectors D1, . . . ,DK located
on the plane at the points D1, . . . , DK , where Dk = (xk, yk), and a source S0

located at the point D0 = (x0, y0). The source S0 starts emitting signals at
some unknown moment τ0, and the detectors receive signals Sk

(
t − τk(ϑ0)

)
at the moments τ1(ϑ0), . . . , τK(ϑ0) in presence of white Gaussian noise. The
observations are XT = (XT

1 , . . . , X
T
K), where XT

k =
(
Xk(t), 0 ≤ t ≤ T

)
and

dXk(t) = Sk

(
t− τk(ϑ0)

)
dt+ εσk(t)dWk(t), Xk(0) = 0, 0 ≤ t ≤ T. (5)

Here ϑ0 = (x0, y0, τ0) and τk(ϑ0) is defined by the relation (2). In our state-
ment of the problem we suppose that during the observation time [0, T ] all
the detectors receive signals.

We suppose that the functions Sk(·) and σk(·), the positions D1, . . . , DK

of the detectors and the signal propagation rate ν > 0 are known. The
region Θ of possible values of ϑ0 is also known, but its definition needs a
special study, which will be discussed later in this work. The set Θ is open,
bounded and convex subset ofR3. Here we note that for a given configuration
of detectors D1, . . . , DK , the region D0 of possible values of D0 = (x0, y0) and
the interval T0 of possible values of τ0 are related. Let us denote

rm = min
k=1,...,K

inf
D0∈D0

∥Dk −D0∥2, rM = max
k=1,...,K

sup
D0∈D0

∥Dk −D0∥2,

τm = ν−1rm and τM = ν−1rM . Then we obviously have T0 ⊂ (−τm, T − τM).
We have to estimate ϑ0 ∈ Θ by the observations XT . The signals are

supposed to be bounded and the functions σk(·) separated from 0. Therefore,
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the corresponding measures are equivalent and the likelihood ratio function
is given by

L
(
ϑ,XT

)
= exp

{
K∑
k=1

∫ T

τk(ϑ)
) Sk

(
t− τk(ϑ)

)
ε2σ2

k(t)
dXk(t)

−
K∑
k=1

∫ T

τk(ϑ)
) Sk

(
t− τk(ϑ)

)2
2ε2σk(t)2

dt

}
, ϑ ∈ Θ.

The MLE ϑ̂ε is defined by the relation

L
(
ϑ̂ε, X

T
)
= sup

ϑ∈Θ
L
(
ϑ,XT

)
.

If we suppose that ϑ0 is a random vector with prior density p(ϑ), ϑ ∈ Θ,
then the BE for quadratic loss function is the conditional expectation

ϑ̃ε =

∫
Θ

ϑ p
(
ϑ
∣∣XT

)
dϑ, p

(
ϑ
∣∣XT

)
=

p(ϑ)L
(
ϑ,XT

)∫
Θ
p(ϑ)L

(
ϑ,XT

)
dϑ

.

We suppose that the function p(·) is continuous and strictly positive on Θ.
Let us denote ∥·∥3 the Euclidian norm in R3 and put

G(ϑ, ϑ0) =
K∑
k=1

∫ T

τk(ϑ)∧τk(ϑ0)

[
Sk

(
t− τk(ϑ)

)
− Sk

(
t− τk(ϑ0)

)]2
σk(t)

−2 dt,

gK(µ) = inf
ϑ0∈K

inf
∥ϑ−ϑ0∥3>µ

G(ϑ, ϑ0).

Introduce the following condition.

I. (Identifiability) For any compact K ⊂ Θ and any µ > 0 we have

gK(µ) > 0. (6)

This is, in some sense, the main condition in this work and we will discuss
the sufficient conditions providing (6) later.

We suppose as well that the following condition is fulfilled too.

R. (Regularity) The functions Sk(·), k = 1, . . . , K have two continuous
derivatives, Sk(t) = 0 for t ≤ 0 and Sk(t) ̸= 0 for t > 0, k = 1, . . . , K.

Note that

∂τk(ϑ0)

∂x0

= − xk − x0

ν∥Dk −D0∥
= −mk,x

ν
,

∂τk(ϑ0)

∂y0
= −mk,y

ν
and

∂τk(ϑ0)

∂τ0
= 1
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with obvious notation. Here (mk,x,mk,y) is a unit vector which shows the
direction from the source S0 to the k-th detector Dk.

We introduce as well Ik = Ik(ϑ) by

Ik(ϑ) =

∫ T

τk(ϑ)

S ′
k

(
t− τk(ϑ)

)2
ν2σk(t)2

dt, k = 1, . . . , K.

The Fisher information matrix in our problem is

I(ϑ) =

 ∑K
k=1 m

2
k,xIk

∑K
k=1 mk,xmk,yIk ν

∑K
k=1 mk,xIk∑K

k=1 mk,xmk,yIk
∑K

k=1 m
2
k,yIk ν

∑K
k=1 mk,yIk

ν
∑K

k=1 mk,xIk ν
∑K

k=1 mk,xIk ν2
∑K

k=1 Ik

 .

This matrix can re-written as follows. Let us denote RK
∗ the space of K

dimensional vectors a = (a1, . . . , aK)
⊤ with the scalar product and the cor-

responding norm defined by the relations

⟨a,b⟩∗ =
K∑
k=1

akbkIk, ∥a∥∗ =
K∑
k=1

a2kIk.

Then using the vectors mx = (m1,x, . . . ,mK,x)
⊤, my = (m1,y, . . . ,mK,y)

⊤ and
n = (ν, . . . , ν)⊤, we can write

I(ϑ) =

 ∥mx∥2∗ ⟨mx,my⟩∗ ⟨mx,n⟩∗
⟨mx,my⟩∗ ∥my∥2∗ ⟨my,n⟩∗
⟨mx,n⟩∗ ⟨my,n⟩∗ ∥n∥2∗

 .

Hence the Fisher information matrix is the Gram matrix. Recall that here
mx = mx(ϑ), my = my(ϑ) and Ik = Ik(ϑ).

The next is condition is the following.

N. (Non degeneracy) The Fisher information matrix is uniformly non
degenerate:

inf
ϑ∈Θ

inf
e : ∥e∥3=1

e⊤I(ϑ)e > 0. (7)

As it is proved below, the family of measures which corresponds to our
statistical experiment is locally asymptotically normal, and therefore we have
the Hajek-Le Cam lower bound: for any estimator ϑ̄ε, it holds

lim
δ→0

lim
ε→0

sup
∥ϑ−ϑ0∥3≤δ

ε−2Eϑ∥ϑ̄ε − ϑ∥23 ≥ Eϑ0∥ζ∥23,
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where ζ ∼ N
(
0, I(ϑ0)

−1
)
(see, e.g., [8]). We call an estimator ϑ∗

ε asymptoti-
cally efficient if for all ϑ0 ∈ Θ we have

lim
δ→0

lim
ε→0

sup
∥ϑ−ϑ0∥3≤δ

ε−2 Eϑ∥ϑ∗
ε − ϑ∥23 = Eϑ0∥ζ∥23,

Theorem 1. Let the conditions I, R and N be fulfilled. Then the MLE ϑ̂ε

and the BEs ϑ̃ε are uniformly consistent, uniformly on compacts asymptoti-
cally normal:

ϑ̂ε − ϑ0

ε
=⇒ ζ and

ϑ̃ε − ϑ0

ε
=⇒ ζ, ζ ∼ N

(
0, I(ϑ0)

−1
)
,

we have the uniform on compacts convergence of polynomial moments: for
any p > 0, it holds

ε−p Eϑ0∥ϑ̂ε − ϑ0∥p3 −→ Eϑ0∥ζ∥
p
3 and ε−pEϑ0∥ϑ̃ε − ϑ0∥p3 −→ Eϑ0∥ζ∥

p
3,

and both the estimators are asymptotically efficient.

Proof. The desired properties of the estimators follow from Theorem 3.5.1
of [8] if we check the conditions 1–3 of this theorem. The conditions 1 and 2
for our model are obviously fulfilled. In order to verify the condition 3, we
change the variables ϑ = ϑ0+ εu, u ∈ Uε = {u : ϑ0+ εu ∈ Θ}. Remark that
this statistical experiment is regular [8]. The normalized likelihood ratio

Zε(u) =
L
(
ϑ0 + εu,XT

)
L
(
ϑ0, XT

) , u ∈ Uε,

admits the representation

Zε(u) = exp

{
u⊤∆ε

(
ϑ0, X

T
)
− 1

2
u⊤I(ϑ0)u+ rε

}
,

where rε
P−−→ 0 and

∆ε

(
ϑ0, X

T
)
=

K∑
k=1

∫ T

τk(ϑ0)

Ṡk

(
t− τk(ϑ0)

)
εσk(t)2

[
dXk(t)− Sk

(
t− τk(ϑ0)

)
dt
]

=
K∑
k=1

∫ T

τk(ϑ0)

Ṡk

(
t− τk(ϑ0)

)
σk(t)

dWk(t) ∼ N
(
0, I(ϑ0)

)
.

Here we denoted

Ṡk

(
t− τk(ϑ0)

)
=

∂Sk

(
t− τk(ϑ0)

)
∂ϑ0

.
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Further, using Taylor formula we can write

G(ϑ0 + εu, ϑ0)

ε2
=

K∑
k=1

∫ T

τk(ϑ0)
)(u⊤ ∂Sk

(
t− τk(ϑ0)

)
∂ϑ0

)2

σk(t)
−2 dt

(
1 + o(1)

)
= u⊤I(ϑ0)u (1 + o(1)).

Hence we can find δ > 0 such that, for ∥ϑ− ϑ0∥3 = ε∥u∥3 < δ, it holds

G(ϑ0 + εu, ϑ0)

ε2
≥ 1

2
u⊤I(ϑ0)u ≥ κ1

2
∥u∥23,

where we denoted
κ1 = inf

ϑ∈Θ
inf

e : ∥e∥3=1
e⊤I(ϑ)e > 0

from condition (7). For ε∥u∥3 > δ, by condition (6) we can write

G(ϑ0 + εu, ϑ0)

ε2
≥ gK(δ)

ε2
≥ κ2∥u∥23.

The last inequality was obtained as follows. The set Θ being bounded, we
can write

sup
ϑ1,ϑ2∈Θ

∥ϑ1 − ϑ2∥ ≤ D

with some D > 0. Hence, for ε∥u∥3 > δ, we have ε2∥u∥23 ≤ D2 and

gK(δ)

ε2
≥ gK(δ)

D2
∥u∥23 = κ2∥u∥23.

Now we put κ = κ1 ∧ κ2, and for u ∈ Uε, we obtain the estimate

G(ϑ0 + εu, ϑ0)

ε2
≥ κ∥u∥23.

So, the conditions (3.5.13) and (3.5.14) of [8] are fulfilled with any λ(ε) → ∞
such that ελ(ε) → 0 (for example, we can take λ(ε) = ε−1/2).

3 Identifiability conditions

In this section we discuss possible configurations D1, . . . , DK of the detectors
D1, . . . ,DK , positions D0 of the source S0 and moments τ0 of the emission
start. We denote ρ(·, ·) the Euclidian distance in the plane and, for simplicity,
suppose that the signal propagation speed ν is equal to 1.
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Recall that by the identifiability condition I, the function g(µ) > 0 for
any compact K and any (small) µ > 0. If for some ϑ ∈ Θ and some µ > 0
satisfying ∥ϑ− ϑ0∥3 ≥ µ > 0 we have

K∑
k=1

∫ T

τk(ϑ0)∧τk(ϑ)

[
Sk

(
t− τk(ϑ)

)
− Sk

(
t− τk(ϑ0)

)]2
σk(t)2

dt = 0,

then we obtain the equalities

τ1(ϑ) = τ1(ϑ0), . . . , τK(ϑ) = τK(ϑ0),

because by the condition R we have Sk(t) = 0 for t < 0 and Sk(t) ̸= 0
for t > 0. Surely, in such situation the consistent estimation is impossible,
because for two different values of unknown parameter we obtain the same
statistical model.

We see that the question of identifiability is reduced to the following one:
when having τ1(ϑ), . . . , τK(ϑ) is it possible to find ϑ? More precisely, what
are the configurations of detectors D1, . . . , DK , positions D0 of source and
the moments τ0, which allow to identify ϑ0 by τ1(ϑ), . . . , τK(ϑ).

A necessary and sufficient (geometric) condition

Let us recall that a (non-degenerate) hyperbola branch is the locus of a
point D for which ρ(F2, D) − ρ(F1, D) = δ, where F1 and F2 are two given
points (foci), and δ ∈

(
0, ρ(F1, F2)

)
is a given constant. Recall also that

an affine transformation of the plane preserve conics (and, in particular,
hyperbola branches), lines and convexity property.

Theorem 2. A system with K detectors located at points D1, . . . , DK ∈ R2

will be identifiable (without further restrictions on D0 and τ0) if and only if
the detectors are not located on a same (non-degenerate) hyperbola branch or
line.

Proof. If the detectors are on the same line, any two points symmetric with
respect to this line will give the same arrival times at the detectors. Further,
if there exists a hyperbola branch passing through all the detectors, denoting
F1 and F2 the foci of the hyperbola, we have ρ(F2, Dk) = ρ(F1, Dk) + δ,
where δ does not depend on the choice of the detector Dk (cf. Figure 2). So,
if the source can be located at F2 (e.g., if the arrival time at Dk is equal to
the distance between Dk and F2, and the emission time is 0), it can also be
located at Fk (with emission time δ).

Inversely, if there exist two possible combinations of sources and emission
times, then the detectors are on a hyperbola branch having these sources as

10



●

●

F2 F1

D1

D2

ρ1 + δ

ρ2 + δ

ρ1

ρ2

Figure 2: Detectors on a hyperbola branch

foci, and the difference of the distances to foci equal to the difference of the
emission times (it degenerates to a line if the difference of the emission times
is 0).

Non-identifiability with three detectors

Proposition 1. A system with 3 (or less) detectors located at arbitrary points
D1, D2, D3 ∈ R2 will not be identifiable (without further restrictions on D0

and τ0).

Proof. If the detectors are aligned, then there is clearly no identifiability (cf.
Theorem 2).

Otherwise, one can clearly find an affine transformation of the plane map-
ping the points D1, D2, D3 to, say, points (1, 1), (2, 1/2), (3, 1/3). The latters
lay on the positive branch of the hyperbola xy = 1, and hence the points
D1, D2, D3 also lay on a hyperbola branch. So, there is no identifiability
according to Theorem 2.

Identifiability and non-identifiability with four detectors

Theorem 3. We consider a system with 4 detectors located at the points
D1, D2, D3, D4 ∈ R2. We distinguish the 5 following cases (cf. Figure 3):

a) the 4 detectors are aligned;

b) there exist 3 aligned detectors, while the fourth detector is not on the
same line;

11



c) the detectors are in general linear position (i.e., any 3 of them are not
aligned) and form a non-convex quadrilateral;

d) the detectors are in general linear position and form a parallelogram;

e) all the remaining cases, that is, the detectors are in general linear posi-
tion and form a convex quadrilateral which is not a parallelogram (i.e.,
at least two opposite sides of the quadrilateral lay on intersecting lines).

●

●

●

●

a)

●

●
●

●

b)

●

●

●
●

●

c)

●

●
●

●
●

d)

●

●

●

●
●

e)

Figure 3: Cases a) – e)

The system is identifiable (without further restrictions on D0 and τ0) in the
cases b), c) and d), and is not identifiable in the cases a) and e).

Proof. The case a) is immediate (cf. Theorem 2).
In the case b) the detectors are not aligned, so it is sufficient to notice

that they can neither lay on a same hyperbola branch (since otherwise, this
hyperbola would be intersected by a line in 3 different points, which is not
possible) and apply Theorem 2.

In the case c) the detectors are also not aligned, so it is again sufficient
to show that they can neither lay on a same hyperbola branch. Indeed, if
they were on a same hyperbola branch, the quadrilateral would be convex
(the “interior” of a hyperbola branch being convex itself).

Now we turn to the proof of the case d). In this case, since any parallel-
ogram can be mapped to the unit square [0, 1]2 by an affine transformation,
it is sufficient to show that the points (0, 0), (0, 1), (1, 0), (1, 1) cannot lay on
a same hyperbola branch.

Recall that the general equation of a conic is

Ax2 +Bxy + Cy2 + Fx+Gy +H = 0, (8)

and that this conic will be a (possibly degenerate) hyperbola if and only if
its discriminant ∆ = B2 − 4AC > 0.

Requiring the points (0, 0), (0, 1), (1, 0), (1, 1) satisfy the equation (8) im-
plies H = 0, G = −C, F = −A and B = 0. If A = 0, the equation (8)
becomes Cy2 − Cy = 0, and the conic degenerates to the pair of lines y = 0

12



and y = 1. So we can suppose that A ̸= 0 and, dividing by A and denoting
M = −C/A, the equation (8) becomes

x2 −My2 − x+My = 0,

and it will be a (possibly degenerate) hyperbola if and only if M > 0.
If M = 1, this hyperbola degenerates to a pair of lines x = y and x = −y

(cf. Figure 4, solid plot).
If M > 1, the points (0, 0) and (1, 0) will lay on one of the branches of

the hyperbola, and the points (0, 1) and (1, 1) on another. Indeed, it is not
difficult to see that substituting, for example, y = 1/2 in the equation (8)
yields the quadratic equation x2−x+M/4 = 0, which has no solution, since
its discriminant equals 1 − M < 0. So, the line y = 1/2 does not intersect
the hyperbola, and hence separates its branches (cf. Figure 4, dashed plot).

Similarly, if M < 1, the points (0, 0) and (0, 1) will lay on one of the
branches of the hyperbola, and the points (1, 0) and (1, 1) on another, since,
for example, the line x = 1/2 does not intersect the hyperbola, and hence
separates its branches (cf. Figure 4, dotted plot).

−2 −1 0 1 2 3

−2

−1

0

1

2

3

●

●

●

●

Figure 4: M = 1 (solid), M > 1 (dashed) and M < 1 (dotted) in the case d)

So, in all the three situations the detectors does not lay on a same hyper-
bola branch, which proves the case d).

13



It remains to prove the case e). First we give an heuristic (though non
rigorous) proof. Somewhat similarly to the case d), the general equation of
the conic passing through our four points will be driven by one parameter
(saym). Recall that at least two opposite sides of the quadrilateral formed by
our points lay on intersecting lines. This pair of lines (which is a degenerate
hyperbola, cf. Figure 5, solid plot) corresponds to some value m = m0 of
the parameter. In the vicinity of m0 the conic will remain a hyperbola, but
the branches will be positioned differently on each side of m0 (cf. Figure 5,
dashed and dotted plots), and one of them will contain the four detectors.

−2 0 2 4

−2

0

2

4

●

●
●

●

Figure 5: Case e)

To make this proof rigorous, first let us note that with an affine trans-
formation we can map the detectors to the points (0, 0), (0, 1), (1, 0), (α, β),
where α ∈ (0, 1), β ∈ (0, 1] and (since the quadrilateral must stay convex)
β > 1− α.

Requiring the points (0, 0), (0, 1), (1, 0), (1, 1) satisfy the general equa-
tion (8) of a conic implies H = 0, G = −C, F = −A and B = A 1−α

β
+C 1−β

α
.

Dividing by A (we can suppose that A ̸= 0) and denoting m = C/A, we

14



obtain the equation

x2 +

(
1− α

β
+m

1− β

α

)
xy +my2 − x−my = 0. (9)

Note that for m = 0, this conic degenerates to a pair of lines intersecting at
(0, γ) with γ = β

1−α
> 1 (cf. Figure 5, solid plot).

The discriminant of the conic (9) is

∆(m) =

(
1− α

β
+m

1− β

α

)2

− 4m.

This function ∆ is continuous, and we have ∆(0) =
(
1−α
β

)2
> 0. Hence,

for m sufficiently close to 0, this conic is a hyperbola. So, it is enough to
show that for m > 0 (and sufficiently small), our four points lay on the same
branch of this hyperbola (cf. Figure 5, dashed plot).

For this, let us verify that the line y = γ does not intersects the conic (9).
Substituting y = γ = β

1−α
in the equation (9), we obtain the following

quadratic equation (with respect to x):

x2 +m
β(1− β)

α(1− α)
x+m

(
β

1− α

)(
β

1− α
− 1

)
= 0.

Its discriminant is given by

m2 β
2(1− β)2

α2(1− α)2
− 4m

(
β

1− α

)(
β

1− α
− 1

)
= am2 − bm = am

(
m− b

a

)
with evident notations a, b > 0. So, for m ∈ (0, b/a), this discriminant is
negative, and hence the line y = γ does not intersects the conic (9), which
concludes the proof.

4 Estimation of ϑ0: second approach

We have the same K detectors D1, . . . ,DK located on the plane at the points
D1, . . . , DK , and a source S0 located at the point D0 = (x0, y0). At some
moment τ0 the source starts emission and the detectors receive the mea-
surements XT = (XT

1 , . . . , X
T
K), where XT

k =
(
Xk(t), 0 ≤ t ≤ T

)
satisfy

the equations (5). As above, we have to estimate ϑ0 = (x0, y0, τ0) by the
observations XT .

In this second approach the strategy of estimation is the following. First,
on the base of observations XT

k recorded by the k-th detector, we construct

15



an estimator τ ∗k,ε of the moment τ0,k = τk(ϑ0) ∈ Tk of the arrival of the signal
at the detector. Here Tk is the set of admissible moments of arrival at the k-
th detector. Then, having all the estimators τ ∗k,ε, k = 1, . . . , K, we construct
an estimator ϑ∗

ε = (x∗
ε, y

∗
ε , τ

∗
ε ) of ϑ0 = (x0, y0, τ0).

Therefore, we have K independent problems of estimation of τ0,k by the
observations

dXk(t) = Sk(t− τ0,k)dt+ εσk(t)dWk(t), Xk(0) = 0, 0 ≤ t ≤ T,

where Sk(t) = 0 for t < 0, and Wk(·) are independent Wiener processes.
We suppose that Sk(·) and σk(·) are bounded known functions, and that the
functions σk(·) are separated from 0. This model of observations and the
properties of the MLE and of the BEs are well known. The identifiability
conditions in these problems are: for any µ > 0, we have

gk(µ) = inf
|τk−τ0,k|≥µ

∫ T

τ0,k∧τk

[
Sk(t− τk)− Sk(t− τ0,k)

]2
σk(t)2

dt > 0. (10)

Let us recall the asymptotic (ε → 0) properties of the MLE τ̂k,ε and of the
BEs τ̃k,ε supposing that the condition (10) is fulfilled for all k.

If the functions Sk(·) have two continuous derivatives and the Fisher
information is uniformly positive:

inf
τk∈Tk

Ik(τk) > 0, Ik(τk) =

∫ T

τk

S ′
k(t− τk)

2

σk(t)2
dt,

then the MLE τ̂k,ε and the BEs τ̃k,ε are consistent, asymptotically normal:

τ̂k,ε − τ0,k
ε

=⇒ ξ1 and
τ̃k,ε − τ0,k

ε
=⇒ ξ1, ξ1 ∼ N

(
0, Ik(τ0,k)

−1
)
, (11)

the polynomial moments converge, and both the estimators are asymptoti-
cally efficient (see Theorem 3.5.1 in [8]).

If the functions Sk(·) have cusp-type singularities, i.e., for small values
of t we have Sk(t) = ak|t|κ1I{t≥0} + o(t), where κ ∈ (0, 1/2), then the MLE
and the BEs have different limit distributions:

τ̂k,ε − τ0,k

ε
2

2κ+1

=⇒ ξ2 and
τ̃k,ε − τ0,k

ε
2

2κ+1

=⇒ ξ3,

the polynomial moments converge and the BEs are asymptotically efficient
(see [3]). Note that the random variables ξ2 and ξ3 are defined with the help
of the fBm.
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If the functions Sk(·) have change-point type singularities, i.e., for small
values of t we have Sk(t) = ak1I{t≥0} + o(t), then the MLE and the BEs once
more have different limit distributions:

τ̂k,ε − τ0,k
ε2

=⇒ ξ4 and
τ̃k,ε − τ0,k

ε2
=⇒ ξ5, (12)

the polynomial moments converge and the BEs are asymptotically efficient
(see Theorems 6.2.2 and 6.2.3 in [8]). The random variables ξ4 and ξ5 are
defined with the help of a two-sided Wiener process.

The convergences (11)–(12) can be unified as follows:

τ̂k,ε − τ0,k
φε

= ξ̂k,ε,
τ̃k,ε − τ0,k

φε

= ξ̃k,ε, ξ̂k,ε =⇒ ξ̂k, ξ̃k,ε =⇒ ξ̃k,

where φε → 0 and ξ̂k, ξ̃k are corresponding rates and limits.
We do not consider these particular models with different regularity con-

ditions, but suppose that we already have some estimators τ ∗k,ε, k = 1, . . . , K,
of the parameters τ0,k, k = 1, . . . , K, which have the above properties, that
is,

τ ∗k,ε − τ0,k

φε

=⇒ ξ∗k and Eϑ0

∣∣∣∣τ ∗k,ε − τ0,k

φε

∣∣∣∣p −→ Eϑ0 |ξ∗k|p (13)

for any p > 0.
Our goal is to find conditions on the configuration of detectorsD1, . . . , DK

and the position of the source D0 which allow to construct a computationally
simple consistent estimator ϑ∗

ε of ϑ0 by the “observations” τ ∗k,ε, k = 1, . . . , K.
Suppose that we can observe τ0,1, . . . , τ0,K . Then the parameters x0, y0

and τ0 satisfy the equations

(xk − x0)
2 + (yk − y0)

2 = ν2(τ0,k − τ0)
2, k = 1, . . . , K.

Hence

x2
k + y2k + x2

0 + y20 − 2xkx0 − 2yky0 = ν2τ 20,k + ν2τ 20 − 2ν2τ0,kτ0.

This is a non linear equation with respect to ϑ0. Introduce the notations

γ1 = x0, γ2 = y0, γ3 = τ0, γ4 =
1

2
(ν2τ 20 − x2

0 − y20),

zk =
1

2
(x2

k + y2k − ν2τ 20,k)

a1,k = xk, a2,k = yk, a◦3,k = −ν2τ0,k, a4,k = 1.

17



We embed the initial problem with unknown three dimensional parameter
(γ1, γ2, γ3) in another problem with unknown parameter γ = (γ1, γ2, γ3, γ4)
satisfying the system of equation

a1,kγ1 + a2,kγ2 + a◦3,kγ3 + a4,kγ4 = zk, k = 1, . . . , K.

Let us replace a◦3,k and zk by the “observable” values a3,k = −ν2τ ∗k,ε and

zk,ε =
1
2
(x2

k + y2k − ν2τ ∗2k,ε). Then we obtain the system of equations

a1,kγ1 + a2,kγ2 + a3,kγ3 + a4,kγ4 = zk,ε, k = 1, . . . , K.

We define an estimator γ∗
ε = (γ1,ε, γ2,ε, γ3,ε, γ4,ε) using the least squares

method:

γ∗
ε = argmin

γ

K∑
k=1

[
zk,ε −

4∑
j=1

aj,kγj

]2
.

Introducing the vector Zε = (Z1,ε, . . . , Z4,ε)
⊤ and the matrix Aε = (Ai,j)4×4

by

Zj,ε =
K∑
k=1

aj,kzk,ε and Ai,j =
K∑
k=1

ai,kaj,k,

we have
γ∗
ε = A−1

ε Zε.

We denote A0 the limit of the matrix Aε with

a3,k = −ν2τk,ε = −ν2τ0,k − φεν
2ξ∗k,ε −→ a◦3,k = −ν2τ0,k.

Remark that A0 = A0(ϑ0) because the term

a◦3,k = −ν2τ0 − ν
[
(xk − x0)

2 + (yk − y0)
2
]1/2

.

We also have
Aε = A0(ϑ0) + φεBε,

where the matrix Bε = (Bi,j)4×4 has zero elements except

B3,j = −ν2

K∑
k=1

ξ∗k,εaj,k, j ̸= 3, Bi,3 = −ν2

K∑
k=1

ξ∗k,εai,k, i ̸= 3,

B3,3 = ν4

K∑
k=1

[
2τ0,kξ

∗
k,ε + φε(ξ

∗
k,ε)

2
]
= 2ν4

K∑
k=1

τ0,kξ
∗
k,ε +O(φε).
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Let us denote ξ∗ = (ξ∗1 , . . . , ξ
∗
K)

⊤, where ξ∗k, k = 1, . . . , K, are indepen-
dent random variables from (13), and denote B0(ξ

∗, ϑ0) the matrix obtained
from Bε by replacing in its elements ξ∗k,ε, k = 1, . . . , K, by ξ∗k, k = 1, . . . , K,
and also putting O(φε) = 0 in the expression of B3,3. Then we can write

Bε =⇒ B0(ξ
∗, ϑ0).

Introduce the random matrix

C0(ξ
∗, ϑ0) = A0(ϑ0)

−1 B0(ξ
∗, ϑ0)A0(ϑ0)

−1

and random vector

ζ∗ = A0(ϑ0)
−1 Y − C0(ξ

∗, ϑ0) z,

where z = (z1, . . . , zK)
⊤ and Y = (τ0,1ξ

∗
1 , . . . , τ0,Kξ

∗
K)

⊤.

We need the following condition:

A. The configuration of detectors D1, . . . , DK and the set Θ are such that
the matrix A0 = A0(ϑ) is uniformly non degenerate:

inf
ϑ0∈Θ

inf
e : ∥e∥4=1

e⊤A0(ϑ0)e > 0.

Remark that under this condition we have the equality

A0(ϑ0)
−1z = γ. (14)

Theorem 4. Suppose that the conditions (13) and A are fulfilled. Then the
estimator γ∗

ε is consistent and we have the convergence in distribution

γ∗
ε − γ

φε

=⇒ ζ∗. (15)

Proof. We have the representation

γ∗
ε = A0(ϑ0)

−1z +
(
A−1

ε − A0(ϑ0)
−1
)
z + A−1

ε (Zε − z).

Therefore, using (14) we get

φ−1
ε (γ∗

ε − γ) = φ−1
ε

(
A−1

ε − A0(ϑ0)
−1
)
z + A−1

ε φ−1
ε (Zε − z).

We have expansion

zk,ε =
1

2

[
x2
k + y2k − ν2(τ0,k + φεξ

∗
k,ε)

2
]
= zk − ν2τ0,kξ

∗
k,εφε

(
1 +O(φε)

)
.
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Hence
φ−1
ε (Zε − z) = −ν2 Yε

(
1 +O(φε)

)
,

where Yε = (τ0,1ξ
∗
1,ε, . . . , τ0,Kξ

∗
K,ε)

⊤ =⇒ Y , and we obtain the convergence

A−1
ε φ−1

ε (Zε − z) =⇒ A0(ϑ0)
−1Y.

Further, we have[
A0(ϑ0) + φεBε

]−1
=
[
A0(ϑ0)

(
I+ φεA0(ϑ0)

−1Bε

)]−1

=
[
I− φεA0(ϑ0)

−1Bε

]
A0(ϑ0)

−1 +O(φ2
ε)

= A0(ϑ0)
−1 − φεA0(ϑ0)

−1BεA0(ϑ0)
−1 +O(φ2

ε).

Hence

φ−1
ε

([
A0(ϑ0) + φεBε

]−1 − A0(ϑ0)
−1
)
z = −A0(ϑ0)

−1BεA0(ϑ0)
−1z +O(φε)

=⇒ −C0(ξ
∗, ϑ0)z.

So, the convergence (15) is proved.

Remark that in the work [11] a similar approach of estimation was con-
sidered but the limit behavior of errors was not studied.

5 Example with four detectors

In this section we consider the problem of localizing the source and finding
its emission time by combining measurements collected from four detectors
arranged on a rectangle. This topology is common in localization applications
(see, for instance, [11]).

In the work [1], it was shown that if the moment of emission τ0 is un-
known, at least four detectors are needed in order to localize the source (see
also Section 3), and that in this situation it will be located at the point
of intersection of three hyperbolas. Intersecting hyperbolas numerically is a
strongly nonlinear problem with high computational costs, but we avoid such
difficulties by using the geometric properties of a rectangle, and show that
with the help of four detectors arranged in a rectangle we can obtain exact
expressions for ϑ0 = (x0, y0, τ0), where as before (x0, y0) is the position of the
source and τ0 is the moment of the beginning of the emission. We determine
the location of the source and its time of emission by evaluating the differ-
ence in arrival time of signals at four spatially separated detectors, whose
positions are D1 =

(
−a

2
,− b

2

)
, D2 =

(
a
2
,− b

2

)
, D3 =

(
−a

2
, b
2

)
and D4 =

(
a
2
, b
2

)
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Figure 6: Rectangular grid of four detectors

(see Figure 6). Also, for simplicity, we suppose that the signal propagation
speed ν is equal to 1.

As above we suppose that we already have the estimators τ ∗1,ε, . . . , τ
∗
4,ε

satisfying the relations (13). To introduce the estimator ϑ∗
ε = (x∗

0,ε, y
∗
0,ε, τ

∗
0,ε)

of ϑ0, we first suppose that these estimators are “without errors”, that is,
τ ∗1,ε = τ0,1, . . . , τ

∗
4,ε = τ0,4, and obtain explicit expressions for the “estimators”

(true values)

x0 = Φx(τ0,1, . . . , τ0,4), y0 = Φy(τ0,1, . . . , τ0,4) and τ0 = Φτ (τ0,1, . . . , τ0,4).

Then we replace τ0,1, . . . , τ0,4 by “observations” τ ∗1,ε, . . . , τ
∗
4,ε, and after slight

modification of functions Φx(·), Φy(·) and Φτ (·), obtain the estimator of
substitution ϑ∗

ε = (x∗
0,ε, y

∗
0,ε, τ

∗
0,ε) of ϑ0. The asymptotic properties of the

estimator ϑ∗
ε follow directly from these expressions.

In order to simplify the notations, we denote in what follows τk = τ0,k,
k = 1, . . . , 4.

Proposition 2. Denote ∆ = τ1 − τ2 − τ3 + τ4.

1. We have ∆ = 0 if and only if the source is located on one of the
coordinate axes.

2. If ∆ ̸= 0, we have
x0 =

(τ1−τ2) (τ3−τ4) (τ3+τ4−τ1−τ2)
2a∆

y0 =
(τ1−τ3) (τ2−τ4) (τ2+τ4−τ1−τ3)

2a∆

τ0 =
τ21−τ22−τ23+τ24

2∆
.
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3. If ∆ = 0, one of the following situations happens:

• τ1 = τ3 and τ2 = τ4 ̸= τ1, then
x0 =

τ1−τ2
2

√
a2+b2−(τ1−τ2)2

a2−(τ1−τ2)2

y0 = 0

τ0 = τ1 −
√(

x0 +
a
2

)2
+ b2

4
,

• τ1 = τ2 and τ3 = τ4 ̸= τ1, then
x0 = 0

y0 =
τ1−τ3

2

√
a2+b2−(τ1−τ3)2

a2−(τ1−τ3)2

τ0 = τ1 −
√(

y0 +
b
2

)2
+ a2

4
,

• all τi are equal, then

(x0, y0) = (0, 0) and τ0 = τ1 −
√
a2 + b2

2
.

Proof. Combining the reception times with the unknown emission time τ0,
we obtain the following system of equations

(S)



(
x0 +

a
2

)2
+
(
y0 +

b
2

)2
= (τ1 − τ0)

2 (16)(
x0 − a

2

)2
+
(
y0 +

b
2

)2
= (τ2 − τ0)

2 (17)(
x0 +

a
2

)2
+
(
y0 − b

2

)2
= (τ3 − τ0)

2 (18)(
x0 − a

2

)2
+
(
y0 − b

2

)2
= (τ4 − τ0)

2. (19)

Notice that the sum of the left hand sides of the equations (16) and (19) is
equal to the sum of the left hand sides of the equations (17) and (18). Hence,
we have

(τ1 − τ0)
2 − (τ2 − τ0)

2 − (τ3 − τ0)
2 + (τ4 − τ0)

2 = 0, (20)

or equivalently
2∆τ0 = τ 21 − τ 21 − τ 23 + τ 24 . (21)

We notice that if ∆ ̸= 0, the equation (20) admits the solution

τ0 =
τ 21 − τ 22 − τ 23 + τ 24

2∆
.

22



Plugging this value into the system (S), we then obtain

x0 =
(τ1 − τ2) (τ3 − τ4) (τ3 + τ4 − τ1 − τ2)

2a∆

and

y0 =
(τ1 − τ3) (τ2 − τ4) (τ2 + τ4 − τ1 − τ3)

2a∆
.

Let us now consider the case ∆ = 0. In this case, using (21), we get

τ 21 − τ 22 − τ 23 + τ 24 = 0,

or equivalently

(τ1 − τ2) (τ1 + τ2) + (τ4 − τ3) (τ4 + τ3) = 0.

Using ∆ = 0, we also have τ4 − τ3 = τ2 − τ1, and we can write

(τ1 − τ2) (τ1 − τ3 + τ2 − τ4) = 0.

Further, as τ2 − τ4 = τ1 − τ3, we finally obtain

2(τ1 − τ2)(τ1 − τ3) = 0.

It then follows that we must have τ1 = τ2 and/or τ1 = τ3, that is, x0 = 0
and/or y0 = 0. Consequently, the set of source points for which ∆ = 0 forms
a cross centered at the origin (see Figure 6).

Let us now determine the time of emission of the source and its coordi-
nates when it is located on this cross. We will consider the case y0 = 0 only
(the case x0 = 0 can be treated in a similar way). Due to the configuration
of detectors, if y0 = 0, we have τ1 = τ3 and τ2 = τ4. Thus, the system of
equations (S) can be replaced by the system

(S ′)


(
x0 +

a
2

)2
+ b2

4
= (τ1 − τ0)

2(
x0 − a

2

)2
+ b2

4
= (τ2 − τ0)

2.

From the first equation, taking into account that τ1 ≥ τ0, we obtain

τ0 = τ1 −
√(

x0 +
a

2

)2
+

b2

4
. (22)

Subtracting the second equation of the system (S ′) from the first yields

2ax0 = (τ1 − τ0)
2 − (τ2 − τ0)

2.
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Replacing the value of τ0 found in (22) and denoting β = τ1 − τ2, we get

2ax0 + β2 = 2β

√(
x0 +

a

2

)2
+

b2

4
.

Elevating both sides of the equation to the square, we obtain

4 (a2 − β2) x2
0 = β2(a2 + b2 − β2).

Remark that β = τ1 − τ2 = ρ(D1, D0)− ρ(D2, D0), and hence

|β| < ρ(D1, D2) = a

thanks to the triangle inequality and the fact that the points D0, D1 and D2

are not aligned. So, a2 + b2 − β2 > a2 − β2 > 0, and thus

x0 = ±β

2

√
a2 + b2 − β2

a2 − β2
.

If β = 0, all τi are equal, and we have x0 = 0. Otherwise, in order to
choose the sign of x0, let us first note that if β > 0, then τ1 > τ2, and
hence ρ(D1, D0) > ρ(D2, D0), which yields x0 > 0. Similarly, if τ1 < τ2, we
get x0 < 0. So, β and x0 have the same sign, and we finally get

x0 =
τ1 − τ2

2

√
a2 + b2 − (τ1 − τ2)2

a2 − (τ1 − τ2)2
,

which concludes the proof.

Let us now consider the construction of the estimator of substitution.
Denote ∆ε = τ ∗1,ε − τ ∗2,ε − τ ∗3,ε + τ ∗4,ε and remark that

φ−1
ε (∆ε −∆) = ξ∗1,ε − ξ∗2,ε − ξ∗3,ε + ξ∗4,ε =⇒ ξ∗1 − ξ∗2 − ξ∗3 + ξ∗4 .

We have

x∗
0,ε =

(τ ∗1,ε − τ ∗2,ε) (τ
∗
3,ε − τ ∗4,ε) (τ

∗
3,ε + τ ∗4,ε − τ ∗1,ε − τ ∗2,ε)

2a∆ε

1I{Mc}

+
τ ∗1,ε − τ ∗2,ε

2

√
a2 + b2 − (τ ∗1,ε − τ ∗2,ε)

2

a2 − (τ ∗1,ε − τ ∗2,ε)
2

1I{M,N1,3,N2,4,N c
1,4},

y∗0,ε =
(τ ∗1,ε − τ ∗3,ε) (τ

∗
2,ε − τ ∗4,ε) (τ

∗
2,ε + τ ∗4,ε − τ ∗1,ε − τ ∗3,ε)

2a∆ε

1I{Mc}

+
τ ∗1,ε − τ ∗3,ε

2

√
a2 + b2 − (τ ∗1,ε − τ ∗3,ε)

2

a2 − (τ ∗1,ε − τ ∗3,ε)
2

1I{M,N1,2,N3,4,N c
1,4}
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and

τ ∗0,ε =
τ ∗21,ε − τ ∗22,ε − τ ∗23,ε + τ ∗24,ε

2∆ε

1I{Mc}

+

(
τ ∗1,ε −

√(
x0 +

a

2

)2
+

b2

4

)
1I{M,N1,3,N2,4,N c

1,4}

+

(
τ ∗1,ε −

√(
y0 +

b

2

)2
+

a2

4

)
1I{M,N1,2,N3,4,N c

1,4}.

Here, the sets M = Mε and Ni,j = Ni,j;ε, i, j = 1, 2, 3, 4, are defined by

Mε =
{
|∆ε| ≤ φ1/2

ε

}
and Ni,j;ε =

{
|τ ∗i,ε − τ ∗j,ε| ≤ φ1/2

ε

}
.

Proposition 3. Suppose that the conditions (13) are fulfilled. Then, the
estimator ϑ∗

ε = (x∗
0,ε, y

∗
0,ε, τ

∗
0,ε) is consistent:

x∗
0,ε

P−−→ x0, y∗0,ε
P−−→ y0, τ ∗0,ε

P−−→ τ0,

and we have the convergence in distribution

φ−1
ε (ϑ∗

ε − ϑ0) =⇒ ζ∗. (23)

Here the vector ζ∗ = (ζ∗1 , ζ
∗
2 , ζ

∗
3 ) has the components

ζ∗i = ci,1ξ
∗
1 + ci,2ξ

∗
2 + ci,3ξ

∗
3 + ci,4ξ

∗
4 , i = 1, 2, 3, (24)

with deterministic coefficients ci,k.

Proof. Suppose that ∆ ̸= 0. Then, for any p > 0, we have

Pϑ0(Mε) = Pϑ0

(
|∆ε −∆+∆| ≤ φ1/2

ε

)
≤ Pϑ0

(
|∆| − |∆ε −∆| ≤ φ1/2

ε

)
= Pϑ0

(
|∆ε −∆| ≥ |∆| − φ1/2

ε

)
≤ Pϑ0

(
|∆ε −∆| ≥ 1

2
|∆|
)

≤ 2p

|∆|p
Eϑ0 |∆ε −∆|p ≤ C

|∆|p
φp
ε −→ 0. (25)

Therefore, for ∆ ̸= 0, we have

Pϑ0(Mc
ε) ≥ 1− C

|∆|p
φp
ε −→ 1 (26)

and

Pϑ0(Mε,N1,3;ε,N2,4;ε,N c
1,4;ε) ≤ Pϑ0(Mc

ε) ≤
C

|∆|p
φp
ε −→ 0. (27)
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If ∆ = 0, we can write

Pϑ0(Mc
ε) = Pϑ0

(
|τ ∗1,ε − τ1 − τ ∗2,ε + τ2 − τ ∗3,ε + τ3 + τ ∗4,ε − τ4| ≤ φ1/2

ε

)
≥ 1−Pϑ0

(
|τ ∗1,ε − τ1|+ |τ ∗2,ε − τ2|+ |τ ∗3,ε − τ3|+ |τ ∗4,ε − τ4| > φ1/2

ε

)
= 1−Pϑ0

(
|ξ∗1,ε|+ |ξ∗2,ε|+ |ξ∗3,ε|+ |ξ∗4,ε| > φ−1/2

ε

)
≥ 1− Cφp/2

ε , (28)

where we used Tchebyshev’s inequality and the boundedness of the expecta-
tions in (13).

Further, if τi ̸= τj, we have similarly the estimate

Pϑ0(Ni,j;ε) = Pϑ0

(
|τ ∗i,ε − τi − τ ∗j,ε + τj + τi − τj| ≤ φ1/2

ε

)
≤ Pϑ0

(
|τi − τj| − |τ ∗i,ε − τi| − |τ ∗j,ε − τj| ≤ φ1/2

ε

)
≤ Pϑ0

(
|τ ∗i,ε − τi|+ |τ ∗j,ε − τj| ≥ |τi − τj| − φ1/2

ε

)
≤ C

|τi − τj|p
φp
ε −→ 0. (29)

Finally, if τi = τj, we obtain the estimate

Pϑ0(Ni,j;ε) ≥ 1− Cφp/2
ε . (30)

Now, the consistency of ϑ∗
ε follows from the consistency of the estima-

tors τ ∗k,ε, k = 1, . . . , 4, and the obtained estimates (25)–(30).
The explicit expression (24) for the limit distribution of φ−1

ε (ϑ∗
ε − ϑ0)

in (23) can be obtained from the expressions of the estimators x∗
0,ε, y

∗
0,ε, τ

∗
0,ε

given above, the representations τ ∗k,ε = τk + φεξ
∗
k,ε, Taylor formula and the

limits (13). We do not give it here because the calculations are elementary
but rather cumbersome.
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