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Abstract: We propose a new approach that allows one to reduce nonlinear equations on Lie groups
to equations with a fewer number of independent variables for finding particular solutions of the
nonlinear equations. The main idea is to apply the method of noncommutative integration to the
linear part of a nonlinear equation, which allows one to find bases in the space of solutions of linear
partial differential equations with a set of noncommuting symmetry operators. The approach is
implemented for the generalized nonlinear Schrödinger equation on a Lie group in curved space
with local cubic nonlinearity. General formalism is illustrated by the example of the noncommutative
reduction of the nonstationary nonlinear Schrödinger equation on the motion group E(2) of the
two-dimensional plane R2. In this particular case, we come to the usual (1+ 1)-dimensional nonlinear
Schrödinger equation with the soliton solution. Another example provides the noncommutative
reduction of the stationary multidimensional nonlinear Schrödinger equation on the four-dimensional
exponential solvable group.

Keywords: nonlinear Schrödinger equation; noncommutative integration; Lie groups; induced
representations; orbit method
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1. Introduction

The Lie group theory provides powerful methods for studying linear and nonlinear
differential equations in mathematical physics. Generally, for the equation with a symmetry
group, one can efficiently find and classify group invariant solutions and conservation laws,
and generate new solutions from those already found (see, for example, the well-known
books of Ovsyannikov, Ibragimov, Olver [1–3], and many others).

Remarkable potentialities for finding explicit solutions are opened up when an equa-
tion can be represented directly in terms of the coordinates of a Lie group. For example,
equations on a curved space with a simply transitive motion group can be represented as
equations on a Lie group manifold. We call such an equation the equation on the Lie group.
Some aspects of the integrability of nonlinear equations on Lie groups are the subject of the
present work.

Here, we propose a new approach based on the Lie group theory that allows one
to reduce a nonlinear equation presented in terms of a Lie group to an equation with a
fewer number of independent variables using the noncommutative ansatz of the work [4],
which is determined by the linear part of the nonlinear equation. The noncommutative
integration method (NIM) has been proposed for linear partial differential equations (PDEs)
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in Ref. [4]. Following this method, one can find a basis for the solution space of the linear
equation admitting a set of noncommuting symmetry operators related to the Lie group
of the invariance of the equation. Then, the noncommutative reduction of a nonlinear
equation on a Lie group yields families of particular solutions containing the parameters
(“quantum numbers”) of the basis of solutions to the corresponding linear equation. We
describe the proposed noncommutative reduction for the nonlinear Schrödinger equation
(NLSE) in curved space with local cubic nonlinearity and the simply transitive motion
group written in terms of the Lie group. The general formalism is illustrated by the
examples of the noncommutative reduction of the multidimensional NLSE on the Lie group
E(2) of the two-dimensional plane R2, and on the four-dimensional exponential solvable
group. A family of particular solutions of the NLSE on the Lie group obtained within the
framework of our approch contains the parameters of solutions of the corresponding linear
Schrödinger equation.

The nonlinear Schrödinger equation is one of the fundamental equations in nonlinear
theoretical physics and mathematics. It arises in a number of nonlinear models of various
physical phenomena and in a wide range of applications. As an example, we recall the
theory of optical pulse propagation in nonlinear media [5,6]. In the theory of Bose–Einstein
condensates, the NLSE is referred to as the Gross–Pitaevskii equation (GPE) [7–9]. The
(1 + 1) dimensional NLSE is integrable within the framework of the soliton theory (see, e.g.,
Ref. [10] and references therein).

The approach proposed here expands the possibilities of constructing exact solutions
of field equations in curved spaces in addition to the method of separation of variables,
which is widely used in general relativity (see, e.g., recent papers [11,12] and references
therein) and cosmology [13–16].

We also emphasize that here we consider the noncommutative reduction of nonlinear
equations with local nonlinearity in contrast to the papers [4,17,18] where NIM was applied
to equations with a nonlocal nonlinearity of convolution type.

The paper is structured as follows. In Section 2, we present the required concepts
and definitions from the theory of Lie groups, and introduce notations and the problem
setup. In Section 3, we describe a special representation of the Lie algebra, which is
constructed using the orbit method. Then, we apply an ansatz for the noncommutative
reduction of the nonlinear Schrödinger equation on the Lie group. Section 4 illustrates a
general approach using the example of the noncommutative reduction of the nonstationary
nonlinear Schrödinger Equation (8) on the motion group E(2) of the two-dimensional plane
R2. In this particular case, we come to the usual (1 + 1)-dimensional NLSE with the soliton
solution. In Section 5, the noncommutative reduction of the stationary multidimensional
NLSE is studied in the case of the four-dimensional exponential solvable group. In Section 6,
our concluding remarks are given.

2. Notations and the Problem Setup

In this section, we briefly review the required concepts and definitions from Lie group
theory and introduce the technical notations.

Let G be an n-dimensional Lie group, its Lie algebra g be the tangent space at the
group unity e ∈ G, and {ea} be a fixed basis in the linear space g (a, b, c = 1, . . . , n). The Lie
group G acts on itself as the left, Lg̃(g) = ϕ(g̃, g)−, and the right, Rg̃(g) = ϕ(g, g̃)−, is a
translation, where ϕ(g, g̃) is a composition function, and g, g̃ ∈ G.The differentials of the
left and right translations determine the left-invariant, ξX(g) = (Lg)∗X, the right-invariant,
ηX(g) = −(Rg)∗X, and vector fields on the Lie group G (X ∈ g). Additionally, we have

[ξX , ξY] = ξ[X,Y], [ηX , ηY] = η[X,Y], [ξX , ηY] = 0, X, Y ∈ g, (1)

where [X, Y] is the commutator of X, Y ∈ g.
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Let {eb} be the dual basis to {ea} in the Lie algebra g, 〈eb, ea〉 = δb
a , and the brackets 〈·, ·〉

denote the natural pairing of a 1-form and a vector. Then, the left-invariant, ωX(g) = (Lg)∗X,
the right-invariant, σX(g) = −(Rg)∗X, and the Maurer–Cartan 1-forms satisfy the equations

dωa = −1
2

Ca
bcωb ∧ωc, dσa = −1

2
Ca

bcσb ∧ σc, Ca
bc = [eb, ec]

a. (2)

The implicit summation over repeated indices is assumed.
We take as the basis the right-invariant vector fields ηa(g) = ηea(g), and the dual right-

invariant 1-forms σa(g) = σea
(g) as the moving frame on G, and introduce the right-invariant

metric
ds2 = gµν(g)dgµdgν, µ, ν = 1, . . . , n, (3)

where gµ are local coordinates on G. The metric tensor gµν(g) of the right-invariant metric (3)
is expanded over a moving frame with a constant symmetric matrix Gab:

gµν(g) = Gabσa
µ(g)σb

ν (g), gµν(g) = Gabη
µ
a (g)ην

b (g), GacGcb = δa
b . (4)

The Christoffel symbols of the symmetric connection consistent with the metric ds2 on
the Lie group G are defined in terms of the metric tensor (4) as

Γρ
νµ(g) =

1
2

gρτ(g)
(
∂νgτµ(g) + ∂µgµτ(g)− ∂τ gνµ(g)

)
, ∂ν ≡

∂

∂gν
. (5)

Substituting (4) in (5) and taking into account the Maurer–Cartan Equation (2), we get
(see Ref. [19]):

Γρ
νµ(g) = Γa

bdσb
ν (g)σd

µ(g)ηρ
a (g) + η

ρ
a (g)

∂σa
ν(g)

∂gµ ,

Γa
bd(g) = −1

2
Ca

bd −
1
2

Gac(GebCe
dc + GedCe

bc).

To simplify the presentation, we consider unimodular Lie groups when the left Haar
measure dµL(g) coincides with the right Haar measure on the Lie group G: dµR(g) =
dµL(g) = dµ(g).

Now, we can consider differential equations on Lie groups. The Schrödinger equation
on a unimodular Lie group G with the metric (3) for the wave function ψ = ψ(t, g) has
the form

ih̄
∂ψ

∂t
= − h̄2

2m
∆Gψ, (6)

where h̄ is the Planck constant, m (> 0) is the mass of the particle, and t is the time. The
Laplace operator ∆G on the Lie group G is a quadratic polynomial in the right-invariant
vector fields:

− h̄2∆G = H(−ih̄η), H( f ) = Gab fa fb. (7)

The operator ∆ is a symmetric operator with respect to the Riemannian measure

dµ(g) =
√

detgµνdg =
√

Gdµ(g), G = det(Gab).

A linear differential operator X(g) = X(g, ∂g) commuting with the operator H(η) on
some space of functions,

[X(g), H(η)] = 0,

leaves invariant the set of solutions to the equation and it is the symmetry operator of
Equation (6). From Equation (1), one can easily see that the linear Equation (6) admits a set
of left-invariant vector fields ξa as symmetry operators. It can be shown that the Laplace
operator on an n-dimensional manifold admitting a set of n linearly independent symmetry
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operators of the first order can always be represented locally in the form (7) up to a constant
factor for some Lie groups G with a right-invariant metric [20].

In this paper, we consider the following nonlinear Schrödinger Equation (6) on the Lie
group G:

ih̄
∂ψ

∂t
= − h̄2

2m
∆Gψ + U(g, ψ)ψ. (8)

Note that the nonlinearity U(g, ψ) does not admit ξa as symmetry operators of
Equation (8). When G = R3, we have U(g, ψ) = |ψ|2 and (8) is the well-known nonlinear
Schrödinger equation (see, e.g., refs. [7–10], and references therein).

We will show that the NIM is effective for solving Equation (8) under some restrictions on
the Lie group G.

3. Noncommutative Reduction of the Nonlinear Schrödinger Equation

The approach for the noncommutative reduction of Equation (8) is based on a special
representation of the Lie algebra g constructed in terms of the orbit method. We also need a
suitable direct and inverse Fourier transform on the Lie group G.

First, we recall some necessary definitions from the orbit method that will be used
hereinafter.

The degenerate Poisson–Lie bracket,

{φ, ψ}( f ) = 〈 f , [dφ( f ), dψ( f )]〉 = Cc
ab fc

∂φ( f )
∂ fa

∂ψ( f )
∂ fb

, φ, ψ ∈ C∞(g∗), (9)

endows the space g∗ with a Poisson structure [21]. Here, fa are the coordinates of a linear
functional f = faea ∈ g∗ relative to the dual basis {ea}. The number indg of functionally
independent Casimir functions Kµ( f ) with respect to the bracket (9) is called the index of
the Lie algebra g, µ = 1, . . . , indg.

A coadjoint representation Ad∗: G× g∗ → g∗ splits g∗ into coadjoint orbits (K-orbits).
The restriction of the bracket (9) to an orbit is nondegenerate and coincides with the Poisson
bracket generated by the Kirillov symplectic form ωλ [21]. Orbits of maximum dimension
dimO(0) = dimg− indg are called nondegenerate [21,22].

LetOλ be a nondegenerate K-orbit passing through the covector λ ∈ g∗. Using Kirillov’s
orbit method [22], we construct a unitary irreducible representation of the Lie group G
with respect to a given orbit. This representation can be constructed if for the functional λ
there exists a subalgebra h ⊂ gC in the complex extension gC of the Lie algebra g satisfying
the conditions:

〈λ, [h, h]〉 = 0, dimh = dimg− 1
2

dimOλ. (10)

The subalgebra h is called the polarization of the functional λ. Equation (10) assumes
that the functionals from g∗ can be prolonged to gC by linearity. In this paper, to simplify
the presentation, we restrict ourselves to the case when h is the real polarization.

Next, we introduce a special coordinate system on the Lie group G compatible with
nondegenerate K-orbits of G. Let H be a closed subgroup in a Lie group G, and h be the
Lie algebra of H. The Lie group acts on the right homogeneous space Q ' G/H : q′ = qg
and defines a principal bundle with the base Q, fibers H, and the canonical projection
π : G → Q. Choose a basis {eα} in the subalgebra h and a basis {e′a} in the complementary
subspace m = h⊥. In some trivializing neighborhood V0 of the unit of the Lie group G, we
introduce the local coordinates of the second kind

g(q, h) =
(

ehdimhedimhehdimh−1edimh−1 . . . eh1e1

)(
e

qdim Qe′
dim Q e

qdim Q−1e′
dim Q−1 . . . eq1e′

1

)
.

We fix a section s : Q→ G of the principal bundle of G by the equality

g(q, h) = hs(q).
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The left-invariant vector fields on G in local coordinates (q, h) have the form

ξX(q, h) = ξa
X(q)∂qa + ξα

X(q, h)∂hα ,

where αX(q) = ξa
X(q)∂qa are the generators of the group action on the homogeneous

space Q.
According to the orbit method [21], we introduce a unitary one-dimensional irreducible

representation of the Lie group G, which in a neighborhood of V0 is given by

Uλ(eX) = exp
(

i
h̄
〈λ, X〉

)
, X ∈ h. (11)

The representation of the Lie group G corresponding to the orbit Oλ is induced by the
one-dimensional representation

(Tλ
g ψ)(q) = ∆−1/2

H (h(q, g))Uλ(h(q, g))ψ(qg) = Uλ+ih̄β(h(q, g))ψ(qg), (12)

βα = −1
2

Tr
(

adff

∣∣
h

)
,

where ∆H(g) = detAdh is the module of the subgroup H, h ∈ H; eH is the unit element in
the Lie group H. The function h(q, g) in (12) is a factor of the homogeneous space Q:

s(q)g = h(q, g)s(qg), h(q, e) = 1.

Let L2(Q, h, λ) denote the space of functions defined on Q where the representation (12)
acts. Restriction of the left-invariant vector fields ξX(g) on the homogeneous space Q,
which reads

`X(q, ∂q, λ) =

([
Uλ+ih̄β(h)

]−1
ξX(g)Uλ+ih̄β(h)

)∣∣∣∣
h=eH

, (13)

[`X(q, ∂q, λ), `Y(q, ∂q, λ)] = `[X,Y](q, ∂q, λ), X, Y ∈ g.

The representation (12) is unitary with respect to the scalar product in the space of
functions L2(Q, h, λ):

(ψ1, ψ2) =
∫

Q
ψ1(q)ψ2(q)dµ(q), dµ(q) = ρ(q)dq1 . . . dql . (14)

The function ρ(q) is determined from the condition that the operators −i`X(q, ∂q, λ)
are Hermitian with respect to the given scalar product (14).

The irreducible representation of the Lie algebra g by linear operators of the first
order (13) depending on dim Q = dimOλ/2 = (dim g− indg)/2 variables is called the
λ-representation of the Lie algebra g. It was introduced in Ref. [4].

The explicit form of the λ-representation operators is determined by left-invariant
vector fields in the trivialization domain V0 of the principal bundle G:

`X(q, ∂q, λ) = ξa
X(q)∂qa +

i
h̄

ξα
X(q, eH)(λα + ih̄βα).

Let us introduce the direct and inverse generalized Fourier transform, which is the essential
point of the noncommutative integration method. The representation operators (12) can be
rewritten in the integral form as

(Tλ
g ψ)(q) =

∫
Q ψ(q′)Dλ

qq′(g)dµ(q),

Dλ
qq′(g) = ∆−1/2

H (h(q, g))Uλ(h(q, g))δ(qg, q′),



Universe 2022, 8, 445 6 of 13

where δ(q, q′) is a generalized delta function with respect to the measure dµ(q). The
generalized kernels Dλ

qq′(g) of this representation have the properties

Dλ
qq′(g1g2) =

∫
Q

Dλ
qq′′(g1)D

λ
q′′q′(g2)dµ(q′′), g1, g2 ∈ G,

Dλ
qq′(g) = Dλ

q′q(g−1), Dλ
qq′(e) = δ(q, q′),

and satisfy the system of equations(
ηX(g) + `X(q, ∂q, λ)

)
Dλ

qq′(g) = 0,
(

ξX(g) + `X(q′, ∂q′ , λ)
)
Dλ

qq′(g) = 0. (15)

Note that the functions Dλ
qq′(g) are defined globally on the whole Lie group G if the

K-orbit Oλ is integer in the sense of Kirillov’s definition [22].
The set of generalized functions Dλ

qq′(g) satisfying the system of Equation (15) has the
properties of completeness and orthogonality for a certain choice of the measure dµ(λ) in
parameter space J: ∫

G
D λ̃

q̃q̃′(g)Dλ
qq′(g)dµ(g) = δ(q, q̃)δ(q̃′, q′)δ(λ̃, λ), (16)∫

Q×Q×J
Dλ

qq′(g̃)Dλ
qq′(g)dµ(q)dµ(λ) = δ(g̃, g), (17)

where δ(g) is the generalized Dirac delta function with respect to the right Haar measure
dµ(g) on the Lie group G.

Consider the function space L(G, dµ(g)) of functions of the form

ψ(g) =
∫

Q
ψ(q, q′, λ)Dλ

qq′

(
g−1

)
dµ(q′)dµ(q)dµ(λ), (18)

where the function ψ(q, q′, λ) with respect to the variables q and q′ belongs to the space
L2(Q, h, λ). From (16) and (17), we can write the inverse transform as

ψ(q, q′, λ) =
∫

G
ψλ(g)Dλ

qq′(g−1)dµ(g). (19)

It follows from (18) and (19) that the action of the operators ξX(g) and ηX(g) on the
function ψλ(g) from L2(G, λ, dµ(g)) corresponds to the action of the operators `†

X(q, ∂q, λ)
and `X(q′, ∂q′ , λ) on the function ψ(q, q′, λ):

ξX(g)ψλ(g)⇐⇒ `†
X(q, ∂q, λ)ψ(q, q′, λ),

ηX(g)ψλ(g)⇐⇒ `X(q′, ∂q′ , λ)ψ(q, q′, λ). (20)

The functions (18) are eigenfunctions for the Casimir operators K(s)
µ (ih̄ξ) = K(s)

µ (−ih̄η):

K(s)
µ (ih̄ξ)ψλ(g)⇐⇒ κ

(s)
µ (λ)ψ(q, q′, λ),

K(s)
µ (−ih̄`(q′, ∂q′ , λ)) = κ

(s)
µ (λ), κ

(s)
µ (λ) = κ

(s)
µ (λ), lim

h̄→0
κ
(s)
µ (λ) = ω

(s)
µ (λ).

As a result of the generalized Fourier transform (18), the left and right fields are
converted to λ-representations, and the Casimir operators become constants.

This fact is core to the method of noncommutative integration of linear differential
equations on Lie groups. The method allows one to reduce the original linear differential
equation

− h̄2∆Gψ(g; q, λ) = Λ2ψ(g; q, λ), Λ = const (21)



Universe 2022, 8, 445 7 of 13

with the number of independent variables g equal to dim g to the equation

H(−ih̄`(q′, ∂q′ , λ))ψ(q′; q, λ) = Λ2ψ(q′; q, λ)

with a fewer number of independent variables q′ that is equal to (dim g− indg)/2 using
the ansatz

ψλ(g; q, λ) = Uλ+ih̄β(h(q, g−1))ψ(qg−1; q, λ) (22)

parameterized by q and λ. In view of (17), the set of functions (22) parameterized by q, λ
and Λ forms a complete set of solutions to the Equation (21).

Then, we apply the ansatz of the form (22) to the noncommutative reduction of the
nonlinear Schrödinger Equation (8). Let us look for a solution of (8) in the form

ψλ(t, g; q) = Uλ+ih̄β(h(q, g−1))ψ(t, qg−1; q, λ).

In view of the relations (20), the linear part of the Equation (8) can be written as(
ih̄

∂

∂t
+

h̄2

2m
∆G

)
ψλ(t, g; q) =

Uλ+ih̄β(h(q, g−1))×

× 1
2m

[
ih̄

∂

∂t
+ H(−ih̄`(q′, ∂q′ , λ))

]
ψ(t, q′; q, λ)

∣∣∣∣
q′=qg−1

,

and
∣∣ψλ(t, g; q)

∣∣2 reads∣∣∣ψλ(t, g; q)
∣∣∣2 =

∣∣∣Uλ+ih̄βh(q, g−1)
∣∣∣2∣∣∣ψ(t, qg−1; q, λ)

∣∣∣2 =

= e−2h(q,g)βα

∣∣∣Uλh(q, g−1)
∣∣∣2∣∣∣ψ(t, qg−1; q, λ)

∣∣∣2.

For the real polarization h, in view of the Formula (11), |Uλ(h(q, g−1))| = 1. Then, we
have ∣∣∣ψλ(t, g; q)

∣∣∣2 = e−2h(q,g)βα

∣∣∣ψ(t, qg−1; q, λ)
∣∣∣2.

We only consider the Lie groups G for which

e−2h(q,g)βα = κ2(q). (23)

The condition (23) is satisfied if the covector β is zero. Thus, under the condition (23),
we obtain the reduced nonlinear Schrödinger equation[

ih̄
∂

∂t
+

1
2m

H(−ih̄`(q′, ∂q′ , λ))

]
ψ(t, q′; q, λ)+

+ U
(

κ2(q)
∣∣ψ(t, q′; q, λ)

∣∣2)ψ(t, q′; q, λ) = 0

with the fewer number of independent variables q′.

4. The Three-Dimensional Group E(2)

Here, we consider an example of noncommutative reduction of the nonlinear Schrödinger
Equation (8) on the motion group E(2) of the two-dimensional plane R2. The three-
dimensional Lie algebra e(2) of E(2) is determined by the commutation relations [e1, e3] =
−e2, [e2, e3] = e1 relative to the fixed basis {e1, e2, e3}.
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The left-invariant and the right-invariant vector fields on a E(2) have the form

ξ1 = ∂x, ξ2 = ∂y, ξ3 = y∂x − x∂y + ∂α,

η1 = − cos α∂x + sin α∂y,

η2 = − sin α∂x − cos α∂y, η3 = −∂α

with respect to the canonical coordinates (x, y, α) of the second kind:

g = (x, y, α) = eαe3 eye2 exe1 , (x, y) ∈ R2, α ∈ [0, 2π).

The invariant measure on the group coincides with the Lebesgue measure dµ(g) =
dxdydα. The composition law of the group is

g1g2 = (x2 + x1 cos α2 + y1 sin α2, y2 − x1 sin α2 + y1 cos α2, α1 + α2),

g1 = (x1, y1, α1), g2 = (x2, y2, α2).

Each nondegenerate orbit is determined by the Casimir function K( f ) = f 2
1 + f 2

2 on
the dual space e∗(2) ' R3 and passes through the covector λ(j) = (j, 0, 0), j > 0, i.e.,

Oj = { f ∈ R3 | K( f ) = j2,¬( f1 = f2 = 0)},
dimOj = 2.

The λ-representation operators corresponding to the real polarization h = {e1, e2}
have the form

`1 = i
j
h̄

cos q, `2 = −i
j
h̄

sin q, `3 = ∂q, q ∈ [0; 2π).

The operators −ih̄`a are symmetric with respect to the measure dµ(q) = dq, and all
nondegenerate orbits are integer. Solving the system of Equation (15), we find the functions
Dλ

qq′(g−1), and the completeness and orthogonality conditions for them yield the following
measure dµ(λ):

Dλ
qq′(g−1) = exp

[
ij1
h̄
(y sin q− x cos q)

]
δ
(
q′ − q + α

)
,

dµ(λ) =
1

(2π)2 jdj.

Let us introduce the right-invariant metric given by the matrix (Gab) = diag(δ1, δ2, δ3).
In local coordinates, this metric can be written as

ds2 =
(

δ−1
1 cos2 α + δ−1

2 sin2 α
)

dx2+

+
(

δ−1
1 sin2 α + δ−1

2 cos2 α
)

dy2 + δ−1
3 dα2. (24)

The metric (24) has the nonzero scalar curvature R = δ3(δ1 − δ2)
2/(2δ1δ2), and the

corresponding Laplace operator reads

∆E(2) =
(

δ1 cos2 α + δ2 sin2 α
)

∂2
xx+(

δ1 sin2 α + δ2 cos2 α
)

∂2
yy + (δ2 − δ1) sin 2α∂2

xy + δ3∂2
αα.

For the nonlinear Schrödinger equation with the Laplace operator ∆E(2) and potential
V = V(α),
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ih̄
∂ψ

∂t
=

(
− h̄2

2m
∆E(2) + V(α)− ε|ψ|2

)
ψ, (25)

ψ(t, g; q, j) = exp
[

ij
h̄
(y sin q− x cos q)

]
ψ(t, q− α).

Then, for the function ψ(t, q′), Equation (25) yields the following reduced equation:

ih̄
∂ψ(t, q′)

∂t
+

h̄2

2m
δ3

∂2ψ(t, q′)
∂q′2

−

−
[

h̄2 j
2m

(
δ1 cos2 q′ + δ2 sin2 q′

)
+ V(q− q′)− ε

∣∣ψ(t, q′)
∣∣2]ψ(t, q′) = 0. (26)

It can be seen that in the particular case V(α) = 0, δ1 = δ2, δ3 = 1, Equation (26) takes
the form of the usual nonlinear Schrödinger equation and has the soliton solution

ψ(t, q′) =
h̄a√
εm

cosh−1[(q′ − vt
)]

exp
[

im
h̄

(
q′ − v

2

)
v− ih̄

2m

(
a2 − δ1n′2

)]
,

j = h̄n′, ε > 0.

The solution to the original Equation (25) has the form

ψ(t, g; q, n′) =
h̄a√
εm

cosh−1[(q− α− vt)]×

× exp
[

i(y sin q− x cos q)n′ +
im
h̄

(
q− α− v

2

)
v− ih̄

2m

(
a2 − δ1n′2

)]
.

Concluding this section, we note that the nonlinear Equation (8) on the Lie groups in-
cludes as a particular case the well-known classical (1+ 1)-dimensional nonlinear Schrödinger
equation integrable by the Inverse Scattering Transform method (e.g., Ref. [10]), and the
noncommutative reduction method proposed in this paper yields the one-soliton solution.
This case follows from the more general Equation (25) with a potential V(α), which can be
regarded as an example of the Gross–Pitaevskii equation [7].

5. The Four-Dimensional Solvable Exponential Group

Consider a four-dimensional solvable exponential group G. The Lie algebra g of G, with
respect to a fixed basis {e1, e2, e3, e4}, is defined by the commutation relations [e2, e3] = e1,
[e2, e4] = e2, [e3, e4] = −e3. The algebra index equals 2 and there are two Casimir functions

K1( f ) = f1, K2( f ) = f1 f4 − f3 f2, f ∈ g∗ ' R4.

In canonical coordinates of the second kind

g(x1, x2, x3, x4) = ex4e4 ex3e3 ex2e2 ex1e1 , x1 ∈ [0, 2π), (x2, x3, x4) ∈ R3,

the left-invariant and the right-invariant vector fields are given by

ξ1 = ∂x1 , ξ2 = ∂x3 , ξ3 = x2∂x1 + ∂x3 , ξ4 = x2∂x2 − x3∂x3 ,

η1 = ∂x1 , η2 = −ex4(x3∂x1 + ∂x2) η3 = −e−x4 ∂x3 , η4 = −∂x4 .

The invariant measure on the group coincides with the Lebesgue measure and is of the
form dµ(g) = dx1dx2dx3dx4. The subgroup G1 = {exp(e1x1)} of the Lie group G can be
either compact (x1 ∈ [0; 2π)) or noncompact (x1 ∈ R1). Let us choose the right-invariant
metric on the group as follows:
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ds2 = δ−1
1 dx1dx4 +

(
δ−1

2 dx3 − δ−1
1 x3dx4

)
dx2, (27)(

gab
)
= 2antidiag(δ1, δ2, δ2, δ1),

δ2 6= −δ1, δ1, δ2 = const.

The metric (27) is not flat because there is a nonzero component of the Ricci tensor
Rµν(g) : R44(g) = (δ2/δ1)

2/2. The Laplace operator of the metric (27) reads

∆G = 4δ1∂2
x1x4

+ 2δ2

(
2∂2

x2x3
+ 2x3∂2

x1x3
+ ∂x1

)
.

In this section, we will consider a stationary nonlinear Schrödinger equation of the
form

− h̄2

2m
∆Gψ(g) + εex4 |ψ(g)|2ψ(g) = Eψ(g), E > 0. (28)

There is a complete set of commuting symmetry operators {−ih̄ξ1,−ih̄ξ2, K2(−ih̄ξ)}
that allows one to perform a complete separation of variables in the linear Equation (28)
with ε = 0:

ψp1 p2 j2(g) = e
i
h̄ (p1x1+p2x2)

(
h̄

p2 + p1x3

)
1
2+

ij2
h̄p1 ϕp1 p2 j2

(
x4 + ln

p2 + p1x3

h̄

)
, (29)

− ih̄ξ1ψp1 p2 j2(g) = p1ψp1 p2 j2(g),

− ih̄ξ2ψp1 p2 j2(g) = p2ψp1 p2 j2(g),

K2(−ih̄ξ)ψp1 p2 j2(g) = j2ψp1 p2 j2(g).

Substituting the ansatz (29) into the Equation (28) with ε = 0, we get the ordinary
differential equation

2(δ1 + δ2)p1
dϕp1 p2 j2(z)

dz
− i

h̄
(2δ2 j2 + mE)ϕp1 p2 j2(z) = 0.

Nevertheless, it is not possible to reduce the nonlinear Equation (28) (when ε 6= 0)
because

ex4
∣∣ψp1 p2 j2(g)

∣∣2ψp1 p2 j2(g) =
ez

(p2 + p1x3)
2

∣∣ϕp1 p2 j2(z)
∣∣2 ϕp1 p2 j2(z)

and the expression ez/(p2 + p1x3)
2 depends on the variable x3.

Let us now carry out the noncommutative reduction. Each nondegenerate K-orbit
passes through the parameterized covector λ(j) = (j1, 0, 0, j2), j = (j1, j2) ∈ R2:

Oj = { f ∈ R4 | K( f ) = j1, K( f ) = j1 j2,¬( f1 = f2 = f = 0)},
dimOj = 2.

The λ-representation operators corresponding to nondegenerate K-orbits and real
polarization h = {e1, e3, e4} have the form

`1 = i
j1
h̄

, `2 = ∂q, `3 = i
j1
h̄

q, `4 = q∂q +
i
h̄

(
j2 − ih̄

1
2

)
,

K1(−ih̄`) = j1, K2(−ih̄`) = j1 j2,

where the covector β = (0, 0, 0,−1/2). The operators −ih̄`a are symmetric with respect to
the measure dµ(q) = dq, q ∈ Q ' R1.
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Solving the system of Equation (15), we obtain the functions Dλ
qq′(g−1), and the com-

pleteness and orthogonality conditions for them yield the following measure dµ(λ):

Dλ
qq′(g−1) = exp

(
−1

2
x4 −

ij1
h̄
(x3(q− x2) + x1)−

ij2
h̄

x4

)
δ
(
q′ + e−x4(x2 − q)

)
,

dµ(λ) =
1

(2π)3 j1dj1dj2.

Then, the noncommutative ansatz has the form

ψ(g; q, j1, j2) = e−x4/2 exp
(
− ij1

h̄
(x3(q− x2) + x1)−

ij2
h̄

x4

)
× (30)

× ψ
(
e−x4(q− x2)

)
.

Substituting (30) into (25), we obtain the ordinary differential equation

− n1h̄2

m

[
i(δ1 + δ2)

(
2q′

d
dq′

+ 1
)
− 2h̄δ2n2

]
ψ(q′)+

+ ε
∣∣ψ(q′)∣∣2ψ(q′) = Eψ(q′). (31)

In the linear case ε = 0, we have a solution

ψ(q′) =
1√
q′

exp

(
i
mE/(2h̄2)− δ1n1n2

(δ1 + δ2)n1
ln q′

)
, ε = 0.

We seek a solution of the Equation (31) in the form

ψ(q′) = f (q′) exp
(
iΦ(q′)

)
, (32)

where f (q′) and Φ(q′) are real functions. Substituting (32) in (31), we get the ODE system:

2
h̄2

m
(δ1 + δ2)j1q′ f ′(q′) + ε f (q′)3 cot φ(q′)+[

2
h̄2

m
(δ1 + δ2)j1

(
2q′φ′(q′) cot φ(q′) + 1

)
− E cot φ(q′)

]
f (q′) = 0,

2q′ f ′(q′) + f (q′) = 0.

The solution of this system yields

ψ(q′) =

√
h̄2

εm
2(δ1 + δ2)n1

q′
exp

{
i

[
c1

q′
+

mE/(2n1h̄2)− δ1n2

δ1 + δ2

]
ln q′ +

ln c1

2

}
. (33)

Substituting (33) into the expression (30), we obtain a set of particular solutions ψ(g)
of the nonlinear equation (25) that are parameterized by {q′, n1, n2} and c1. For this set of
solutions, the following equality holds:

|ψ(g)|2 =
2h̄2

εm
(δ1 + δ2)

∣∣∣∣ n1c1

q− x2

∣∣∣∣. (34)

Thus, the noncommutative reduction of the Equations (25)–(31) made it possible to
find a family of particular solutions of the original Equation (25). The solutions obtained
tend to infinity on the plane x2 = q and tend to zero as x2 → ±∞ that can be seen from (34).



Universe 2022, 8, 445 12 of 13

6. Conclusions

In this article, we considered an approach in which the noncommutative integration
method developed in Ref. [4] for finding bases for solution spaces of linear PDEs with
symmetries can be applied to constructing families of particular solutions of nonlinear equa-
tions on Lie groups by reducing the nonlinear equation to an equation with a fewer number
of independent variables. In terms of this approach, we study the generalized nonlinear
Schrödinger equation in curved space with local cubic nonlinearity on a Lie group.

The application of the noncommutative integration method to nonlinear equations
on Lie groups (under certain restrictions), allows finding families of particular solutions
parameterized by the eigenvalues of the noncommutative set of symmetry operators for
the linear part of the nonlinear equation under consideration. The nonlinear term in the
original nonlinear equation does not admit those symmetry operators that its linear part
admits. On the other hand, the noncommutative ansatz is determined only by the algebra
of symmetry operators of the linear part of the nonlinear equation. The special form of the
ansatz (22), because of its algebraic properties, allows us in a number of cases to carry out a
noncommutative reduction of the original nonlinear equation.

The parameters q and λ in the noncommutative ansatz (22) acquire a physical mean-
ing when comparing the solution of a nonlinear equation with the solution of its linear
counterpart, as was considered in Ref. [23].

In some cases, it is possible to carry out the noncommutative reduction to a nonlinear
equation with an external potential. In the case of the NLSE with a potential, we arrive at
the Gross–Pitaevskii equation, which is the model mean field equation in BEC theory [7–9].
This case is demonstrated by the example of the NLSE with the external potential (25) on the
three-dimensional Lie group E(2) in Section 4. With the special choice of the right-invariant
metric on the group E(2), we obtained the classical (1 + 1)-dimensional NLSE as a result of
noncommutative reduction. This made it possible to obtain a soliton-type solution for the
NLSE on the group E(2).

We also note that in this paper we consider the NLSE with local nonlinearity in
contrast to papers [24,25], where the noncommutative reduction was applied to nonlinear
equations with a nonlocal term of the convolution type. In those papers, the original
nonlocal nonlinear equation was reduced to a nonlocal nonlinear equation with a fewer
number of independent variables using the generalized Fourier transform.

The broad implication of the present research is that the noncommutative reduction
of the NLSE considered in this paper expands the possibilities of the exact integration
of nonlinear equations on Lie groups and, importantly, in multidimensional cases. The
proposed approach is more limited by the symmetries of the equation than by its specific
form. Therefore, our proposed version of noncommutative reduction can be applied to
other equations, among which the nonlinear relativistic equations are of particular interest,
for example, the nonlinear Dirac, sine–Gordon, and reaction–diffusion-type equations. In
addition, the problem of the search of nonlinear equations admitting a noncommutative
reduction naturally arises.
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