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The article reveals possibilities of using Hermite polynomials and related Hermite–Weber
functions to solve a wide range of problems in mathematical physics. The obtained properties of
the considered functions allow for constructing solutions for problems of wave dynamics. The
solution of the Schrödinger integral equation constructed on their basis is highly accurate since,
in this case, waves of matter can freely pass along the entire real axis, and there is no need for
“matching” solutions on the finite interval.
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1. Introduction
Orthogonal polynomials or special functions are used in numerous physical and

engineering problems which contain differential and integral equations. Many methods
for solving them are based on Hermite polynomials, i.e. a classical sequence of
orthogonal polynomials [1]. The fact that a number of Hermite polynomials forms
a basis makes it possible to arrange various functions in a series, which facilitates
solutions of many problems [2, 3]. Hermite polynomials played a decisive role in
the theory of light fluctuations and quantum states and, in particular, in problems
of coastal hydrodynamics and meteorology [4].
In addition, the method of decomposition into Hermite polynomials is used

in biological and epidemiological sciences. The epidemiological SIR model which
estimates the number of people who can become infected was calculated in this
way. Hermite polynomials provide a possibility for reducing a three-dimensional
system of ordinary nonlinear differential equations to a system of nonlinear algebraic
equations [5].
The use of Hermite polynomials has also found a place in economic problems.

J. Perote et al. [6–8] use the Hermite polynomial methods to describe behaviour of
financial variables.
*This work was supported by a grant from the Russian Foundation for Basic Research (Project No. 19-51-

44002).
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Also, these polynomials can model non-Gaussian excitations which reflect models
of numerous phenomena surrounding us. The wind pressure in areas of flow
separation on the surfaces of buildings usually has non-Gaussian characteristics, as
well as modelling wind speed in complex areas [9]. Additionally, polynomials can
be applied in the field of engineering marine structures when assessing the reliability
of a hull beam for floating, production, storage, and unloading blocks [10]. Such
problems are solved using the Hermite impulse model of nonlinear non-Gaussian
random oscillations [11].
Expansion in Hermite polynomials greatly facilitates solutions of integro-differential

[12] and integral equations. These polynomials are certainly useful for solving any
problems in which a solution is defined on the entire real axis. Such problems result
from analyzing processes of reflection and passage of waves through given potential
barriers. In other words, these are Schrödinger wave dynamics problems. Solving
these problems allows to find the probability of passage of atoms and molecules in
the form of de Broglie waves through various membranes. Theoretical works [13–20]
consider the passage of de Broglie waves through ultrathin membranes based on
the solutions determined on the segment and using the “matching” conditions at
its ends. Practical works [21–26] on single-layer materials adapt them to quantum
screening. The work given in [27] presents a numerical solution of the Schrödinger
equation for a tunable potential barrier. The authors of [28] investigate enrichment
of helium by resonant tunnelling through biolayers.

2. The Schrödinger differential and integral equations
The differential equation for the Schrödinger wave function 𝜓(𝑥) in the one-

dimensional case is given as

𝑑2𝜓

𝑑𝑥2
+
[
𝑘2 − 2𝑚𝑈 (𝑥)

]
𝜓 = 0, 𝑘 =

√
2𝑚𝐸. (1)

It describes the passage of a particle with a mass of 𝑚 and energy 𝐸 through
a potential barrier noted as 𝑈 (𝑥). The boundary condition at a great distance consists
of two parts:

𝜓 ' 𝑒𝑖𝑘𝑥 + 𝐴𝑒−𝑖𝑘𝑥(𝑥 → −∞), 𝜓 ' 𝐵𝑒𝑖𝑘𝑥(𝑥 → ∞). (2)

This means that for large negative values of 𝑥 the function 𝜓(𝑥) represents the
sum of the incident and the reflected waves; and for large positive values of 𝑥

it approaches the plane passing wave. Thus, to solve the problem it is necessary
to find two linearly independent solutions of the homogeneous differential equation
given in (1) (numerically or analytically) and then match these solutions so that the
boundary conditions given in (2) [29–31] are satisfied. This is a common way of
dealing with the problem of material particles passing through a potential barrier. In
this case, the function 𝜓(𝑥) appears to be complex; however, it is not this function
that has the physical meaning, but the square of its module 𝜌 = |𝜓(𝑥) |2 which is
equal to the density of probability that the particle is found in the section 𝑥 = const.
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If only the graph of the function 𝜌(𝑥) is under consideration, it appears to be
strongly oscillating in the region where the incident and the reflected waves exist
simultaneously. Such a graph complicates the interpretation of calculations since it
is practically impossible to correctly separate the amplitudes of the incident and the
reflected waves.
However, the differential equation given in (1) is closely related to the Schrödinger

integral equation introduced in [32]. It has the following form,

𝜓(𝑥) − 𝑚

𝑖𝑘

∞∫
−∞

𝑒𝑖𝑘 |𝑥−𝑥0 |𝑈 (𝑥0)𝜓(𝑥0)𝑑𝑥0 = 𝑒𝑖𝑘𝑥 . (3)

Eq. (3) and (1) are equivalent in the sense that if Eq. (3) is twice differentiated
with respect to the variable 𝑥, Eq. (1) is obtained. However, the inhomogeneous
integral equation given in (3) also contains boundary conditions (2). This can be
seen if Eq. (3) is written in a more detailed form,

𝜓(𝑥) = 𝑒𝑖𝑘𝑥
[
1 + 𝑚

𝑖𝑘

𝑥∫
−∞

𝑒𝑖𝑘𝑥0𝑈 (𝑥0)𝜓(𝑥0)𝑑𝑥0
]
+ 𝑒−𝑖𝑘𝑥

[
𝑚

𝑖𝑘

∞∫
𝑥

𝑒𝑖𝑘𝑥0𝑈 (𝑥0)𝜓(𝑥0)𝑑𝑥0
]
. (4)

In square brackets there are the amplitudes of the incident and reflected waves:

𝑎passed = 1 +
𝑚

𝑖𝑘

𝑥∫
−∞

𝑒𝑖𝑘𝑥0𝑈 (𝑥0)𝜓(𝑥0)𝑑𝑥0,

𝑎reflected =
𝑚

𝑖𝑘

∞∫
𝑥

𝑒𝑖𝑘𝑥0𝑈 (𝑥0)𝜓(𝑥0)𝑑𝑥0. (5)

This corresponds to the boundary conditions in (2) since for large positive values
of 𝑥 the reflected wave disappears, and for large negative values of 𝑥 the sum of
the incident and the reflected waves is obtained. Then the transmission coefficient
𝜌passed and the reflection coefficient 𝜌reflected are defined as follows:

𝜌passed = |apassed |2, 𝜌reflected = |areflected |2. (6)

In addition, for each value of 𝑥 the following is true,

𝜌passed + 𝜌reflected = 1. (7)

It is clear that, when interpreting the calculation results, it is preferable to
separately construct the graphs of amplitude squares for the incident and the
reflected waves. Naturally, in order to use formula (4) it is necessary to obtain the
corresponding solution of 𝜓(𝑥), either with the integral equation given in (3), or
with the boundary value problem formulated in (1), (2).
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3. Brief information from the theory of polynomials and Hermite functions
Hermite polynomials He𝑛 (𝑥) were introduced as early as 1864. At present,

information concerning them is published in classical monographs and mathematical
reference books [33–36]. The polynomial He𝑛 (𝑥) is a polynomial of degree 𝑛 in 𝑥

with integer coefficients which contains only terms of the same parity as 𝑥𝑛. The
explicit expressions for the first Hermite polynomials are:

He0 = 1, He1(𝑥) = 𝑥, He2(𝑥) = 𝑥2 − 1, He3(𝑥) = 𝑥3 − 3𝑥,
He4(𝑥) = 𝑥4 − 6𝑥2 + 3, He5(𝑥) = 𝑥5 − 10𝑥3 + 15𝑥,

He6(𝑥) = 𝑥6 − 15𝑥4 + 45𝑥2 − 15, (8)

He7(𝑥) = 𝑥7 − 21𝑥5 + 105𝑥3 − 105𝑥.
For the generating function and the Rodrigues formula resulting from it we get

𝑒𝑡 𝑥−𝑡
2/2 =

∞∑︁
𝑛=0
He𝑛 (𝑥)

𝑡𝑛

𝑛!
, He𝑛 (𝑥) = (−1)𝑛𝑒𝑥2/2 𝑑

𝑛

𝑑𝑥𝑛
𝑒−𝑥

2/2. (9)

Hermite polynomials can also be written in the form of the determinant [38]

He𝑛 (𝑥) =

�������������

𝑥 𝑛 − 1 0 0 ... 0
1 𝑥 𝑛 − 2 0 ... 0
0 1 𝑥 𝑛 − 3 ... 0
0 0 1 𝑥 ... 0
... ... ... ... ... ...

0 0 0 0 ... 𝑥

�������������
. (10)

Moreover, formula (10) is most suitable for practical calculations of coefficients of
high-order Hermite polynomials. Algorithmically, formula (10) can be implemented
using the following simple program in the MatLab system:
f u n c t i o n p=He ( n )
c=n −1 : −1 : 1 ; s=ones ( 1 , n −1 ) ;
M=d i ag ( c , 1 ) + d i ag ( s , − 1 ) ;
p=po ly (M) ;
end
It lists coefficients 𝑝 for the Hermite polynomial He𝑛 (𝑥) of the 𝑛-th order. It should
be noted that 𝑛-th order Hermite polynomials have 𝑛 simple real roots which are
pairwise symmetric with respect to the origin and do not exceed

√︁
𝑛(𝑛 − 1)/2 in

the absolute value.
In problems of mathematical physics there are applied Hermite functions 𝐷𝑛 (𝑥)

which are connected with Hermite polynomials and are given by the expression

𝐷𝑛 (𝑥) =
𝑒𝑥
2/4He𝑛 (𝑥)√︁
𝑛!
√
2𝜋

. (11)
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These functions are easily calculated and form a complete orthogonal and
normalized system on the entire real axis [37],

∞∫
−∞

𝐷𝑛 (𝑥)𝐷𝑚(𝑥)𝑑𝑥 =
{
0, 𝑛 ≠ 𝑚,

1, 𝑛 = 𝑚.
(12)

This orthogonality property of the basis elements is not unique to the Hermite
polynomials. Some other functions, for instance

𝐷𝑛 (𝑥) =

√︄
𝑛!

Γ(𝑛 + 𝑣 + 1)

(
𝑑𝑦

𝑑𝑥

)
𝑒−𝑦/2𝐿𝑣

𝑛 (𝑦),

where 𝐿𝑣
𝑛 (𝑦) is the Laguerre polynomial with 𝑣 > −1 and 𝑦(𝑥) = 𝑒𝑥/𝑎 have also

this property. Another example is

𝐷𝑛 (𝑥) = 𝐴𝑛

(
𝑑𝑦

𝑑𝑥

)
(1 − 𝑦)𝜇/2(1 + 𝑦)𝑣/2𝑃 (𝜇,𝑣)

𝑛 (𝑦),

where 𝑃
(𝜇,𝑣)
𝑛 (𝑦) is the Jacobi polynomial with 𝜇, 𝑣 > −1, 𝐴𝑛 is a normalization

constant and 𝑦(𝑥) = tanh( 𝑥
𝑎
).

This feature of Hermite functions allows determining the expansion coefficients
of arbitrary functions in a series with respect to Hermite functions reducing them
to calculations of the integral

𝑓 (𝑥) =
∞∑︁
𝑛=0

𝐶𝑛𝐷𝑛 (𝑥), 𝐶𝑛 =

∞∫
−∞

𝑓 (𝜇)𝐷𝑛 (𝜇)𝑑𝜇. (13)

The functions 𝐷𝑛 (𝑥) satisfy the Weber differential equation

𝐷
′′
𝑛 (𝑥) =

[
𝑥2

4
−
(
𝑛 + 1
2

)]
𝐷𝑛 (𝑥). (14)

The following recurrence relations hold for them:
𝐷𝑛+1(𝑥) − 𝑥𝐷𝑛 (𝑥) + 𝑛𝐷𝑛−1(𝑥) = 0,
2𝐷

′
𝑛 (𝑥) + 𝑥𝐷𝑛 (𝑥) − 2𝑛𝐷𝑛−1(𝑥) = 0. (15)

It is also easy to show that
𝑑𝑚

𝑑𝑥𝑚

[
𝑒−𝑥

2/4𝐷𝑛 (𝑥)
]
= (−1)𝑚𝑒−𝑥2/4𝐷𝑛+𝑚(𝑥). (16)

Thus, the derivatives of Hermite functions are expressed in terms of the same
functions.
Fig. 1 shows the graphs of the first six Hermite functions which are calculated

by the formula (11).
Fig. 2 shows similar Hermite functions of higher order,
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Fig. 1. Graphs of the first six Hermite functions.
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Fig. 2. Graphs of functions 𝐷21 (𝑥) , 𝐷41 (𝑥) and 𝐷61 (𝑥) .

Considering such graphs of the functions 𝐷𝑛 (𝑥) it is rather difficult to imagine that
these functions form an orthonormal system on the entire material axis. Nevertheless,
a numerical verification shows the correctness of the formula (12).

Note. The formulae given above are taken from the book by J. Kampé de
Fériet [38] and they correspond to the so-called mathematical or probability Hermite
polynomials. However, it should be borne in mind that in the famous reference
book by I. S. Gradshtein and I. M. Ryzhik [39], as well as in the works given
in [40–42], instead of the polynomials He𝑛 (𝑥) they use other polynomials H𝑛 (𝑥)
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which are also called Hermite polynomials. Both these Hermite polynomial systems
are related by the relation: H𝑛 (𝑥) =

√
2𝑛He𝑛 (𝑥

√
2).

4. Solving the Schrödinger integral equation
Using the expansion formulae given in (13) we will find a solution to integral

equation (3) in the form of a segment of a series with unknown coefficients 𝐶𝑛 in
Hermite functions:

𝜓(𝑥) =
𝑁∑︁
𝑛=0

𝐶𝑛𝐷𝑛 (𝑥),

𝑒𝑖𝑘 |𝑥−𝑥0 | =
𝑁∑︁
𝑛=0

𝐷𝑛 (𝑥)
∞∫

−∞

𝑒𝑖𝑘 |𝜇−𝑥0 |𝐷𝑛 (𝜇)𝑑𝜇, (17)

𝑒𝑖𝑘𝑥 =

𝑁∑︁
𝑛=0

𝐷𝑛 (𝑥)
∞∫

−∞

𝑒𝑖𝑘𝜇𝐷𝑛 (𝜇)𝑑𝜇,

𝑁 is an integer large enough to approximate the function. Typically there is a max-
imum integer 𝑁max beyond which numerical calculation will experience convergence
problems and the accuracy of the results starts to be reduced. Introducing (17) into
integral equation (3) and equating the terms for identical functions 𝐷𝑛 (𝑥) we obtain

𝐶𝑛 −
𝑚

𝑖𝑘

∞∫
−∞

∞∫
−∞

𝑈 (𝑥0)𝜓(𝑥0)𝑒𝑖𝑘 |𝜇−𝑥0 |𝐷𝑛 (𝜇)𝑑𝜇𝑑𝑥0 =
∞∫

−∞

𝑒𝑖𝑘𝜇𝐷𝑛 (𝜇)𝑑𝜇. (18)

Further, with an account of the equality 𝜓(𝑥0) =
∑𝑁

𝑟=0𝐶𝑟𝐷𝑟 (𝑥0), expression (18)
takes the form

𝐶𝑛 −
𝑚

𝑖𝑘

𝑁∑︁
𝑟=0

𝐶𝑟

[ ∞∫
−∞

∞∫
−∞

𝑈 (𝑥0)𝑒𝑖𝑘 |𝜇−𝑥0 |𝐷𝑛 (𝜇)𝐷𝑟 (𝑥0)𝑑𝜇𝑑𝑥0
]
=

∞∫
−∞

𝑒𝑖𝑘𝜇𝐷𝑛 (𝜇)𝑑𝜇. (19)

Here the double integral (in square brackets) can be considered as a square matrix G
of order 𝑁; and the right-hand side as a column vector F. That is, the following
notation should be introduced:

G(𝑘, 𝑛, 𝑟) =
∞∫

−∞

∞∫
−∞

𝑈 (𝑥0)𝑒𝑖𝑘 |𝜇−𝑥0 |𝐷𝑛 (𝜇)𝐷𝑟 (𝑥0)𝑑𝜇𝑑𝑥0, (20)

F(𝑘, 𝑛) =
∞∫

−∞

𝑒𝑖𝑘𝜇𝐷𝑛 (𝜇)𝑑𝜇. (21)
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In this case, equality (19) is a system of linear algebraic equations for determining
the column vector, which is composed of the desired coefficients 𝐶𝑛 in the expansion
of the function 𝜓. In the matrix notation, this system of equations has the form[

E𝑁 − 𝑚

𝑖𝑘
G
]
C = F. (22)

Here E𝑁 is the (𝑁 + 1) × (𝑁 + 1) identity matrix.
The question of solving integral equation (3) is, thus, reduced to the most

accurate calculation of the integrals in formula (20).
Many integrals containing Hermite functions are calculated explicitly. A list of

such integrals is contained in the reference book by I. S. Gradshtein and I. M.
Ryzhik [39, p. 851]. Among them is the mentioned above vector F, i.e.

F(𝑘, 𝑛) =
∞∫

−∞

𝑒𝑖𝑘𝜇𝐷𝑛 (𝜇)𝑑𝜇 =
√
4𝜋𝑖𝑛𝐷𝑛 (2𝑘). (23)

Formula (23) is easily verified in various ways and can be derived independently.
It shows that the Fourier spectrum of the Hermite function is expressed in terms
of the Hermite function of the same order.
The following integral can be explicitly presented in the same way,

∞∫
−∞

𝑒𝑖𝑘 |𝜇−𝑥0 |𝐷𝑛 (𝜇)𝑑𝜇 =

𝑥0∫
−∞

𝑒𝑖𝑘 (𝑥0−𝜇)𝐷𝑛 (𝜇)𝑑𝜇 +
∞∫

𝑥0

𝑒𝑖𝑘 (𝜇−𝑥0)𝐷𝑛 (𝜇)𝑑𝜇. (24)

After further transformations, taking into account formula (23), it can be written as
∞∫

−∞

𝑒𝑖𝑘 |𝜇−𝑥0 |𝐷𝑛 (𝜇)𝑑𝜇 =
√
4𝜋𝑖𝑛𝐷𝑛 (2𝑘)𝑒−𝑖𝑘𝑥0 + 2𝑖𝑆𝑛 (𝑥0), (25)

where 𝑆𝑛 (𝑥0) =
𝑥0∫

−∞
s𝑖𝑛𝑘 (𝑥0−𝜇)𝐷𝑛 (𝜇)𝑑𝜇. The integral given in (25) is not completely

expressed explicitly; the convolution 𝑆𝑛 (𝑥0) is also added and it is usually easily
and fairly accurately calculated numerically.
Thus, the elements of the matrix G and the vector F of the right-hand side in

formula (22) are now represented in the following form:

G(𝑘, 𝑛, 𝑟) =
∞∫

−∞

𝑈 (𝑥0)𝐷𝑟 (𝑥0)
[√
4𝜋𝑖𝑛𝐷𝑛 (2𝑘)𝑒−𝑖𝑘𝑥0 + 2𝑖𝑆𝑛 (𝑥0)

]
𝑑𝑥0,

F(𝑘, 𝑛) =
√
4𝜋𝑖𝑛𝐷𝑛 (2𝑘). (26)

Here it is necessary to calculate only the one-dimensional integral that takes into
account the shape of the potential barrier, which can be solved numerically. However,
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it can still be calculated with high accuracy since the integration region is limited
by the width of the barrier. There are other calculation methods that are very
successful in dealing with such regular short-range potentials. For example, the
𝑅-matrix method [43], which is nonalgebraic, but also other algebraic approaches
like the 𝐽-matrix method [44].
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Fig. 3. Graphs of potential barrier 𝑈 (𝑥) and amplitudes of transmitted 𝜌passed and reflected 𝜌reflected waves.
Initial data: 𝑚 = 3, 𝐸 = 0.25, 𝑘 =

√
2𝑚𝐸 = 1.2247.

The mass is expressed in units related to the mass of the hydrogen atom.
Therefore, 𝑚 = 3 corresponds to the helium isotope — helion. The dimensionless
energy of the passing particle 𝐸 = 0.25 corresponds to temperature of 12.5 K.
Fig. 3 shows one of the results of solving the Schrödinger equation using Hermite

functions. First, the matrix G and the right-hand side of F are calculated by formulae
(4). Then the expansion coefficients 𝐶𝑛 are found as a solution of the system of
linear algebraic equations (22). After this, the desired function 𝜓(𝑥) and the density
distribution of the incident 𝜌passed and the reflected 𝜌reflected de Broglie waves are
obtained using formulae (6).
The graph of the potential barrier shape is indicated in Fig. 3 by a thickened line,

and the density distribution of the reflected wave 𝜌reflected is represented as a dashed
line. Calculations in Fig. 3 show how the dimples at the ends of the potential
barrier affect the passage and reflection of particles. In addition, the well-known
fact that the sum of the transmission and reflection coefficients is equal to unity is
confirmed.

5. Conclusion
An analysis of the available solutions of problems related to the passage of de

Broglie waves through given potential barriers shows that all the suggested solutions
are connected with the use of numerical procedures implemented on a finite interval
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of variation of the independent variable. Moreover, the conditions of “matching”
the obtained distributions with asymptotic values of the desired function and its
derivative are necessarily used.
In such works questions concerning the size of the calculation interval, the

correctness of the assumption about the equality of the desired function and its
derivative to some external values, as well as the influence of the introduced
restrictions and assumptions on the final result remain unsolved.
In the calculation example presented in this paper, there is a consideration of

a barrier composed of two “Mexican hats”. The mentioned shape of the barrier
corresponds to a monolayer of porous graphene or boron nitride which are used
in problems of isotope separation. In processes of wave separation of particles that
are close in physical properties and differ only in mass, the selectivity of mixture
separation can be increased only due to the resonant passage of individual components.
In this case, de Broglie waves move along the entire real axis and the contribution

of the errors introduced by the “matching” conditions at the ends of the computational
interval can be fatal concerning the selective arrangement of membrane monolayers.
In this regard, the present work suggests a quasi-analytic solution of the

Schrödinger integral equation. This equation is defined on the entire real axis
and contains a combination of the incident and the reflected waves on the left
boundary and the transmitted wave at large positive values of the argument.
The desire for a more accurate description of the solution behaviour is also

expressed in the fact that almost all improper integrals in the proposed procedure
for constructing the solution are calculated analytically. A particular significance is
given to the assertion that the Fourier spectrum of the Hermite function is expressed
in terms of the Hermite function of the same order. In addition, the derivatives of
Hermite functions are expressed through the same functions of a different order.
Moreover, an increase in the order corresponds to the order of the derivative.
The coefficient matrix of the constructed solution includes integrals that depend

on the shape of the barrier. In the considered example they are calculated only
numerically. However, the accuracy of calculations for these integrals can be arbitrarily
high since the nonzero integrands are limited by the width of the barrier under
consideration.
Thus, the use of Hermite polynomials greatly simplifies the problem of solving

the Schrödinger integral equation and allows for finding a solution that is more
accurate than the “matching” method.
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