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Abstract
We consider drift estimation problems for high dimension ergodic diffusion processes in
nonparametric setting based on observations at discrete fixed time moments in the case when
diffusion coefficients are unknown. To this end on the basis of sequential analysis methods
we develop model selection procedures, for which we show non asymptotic sharp oracle
inequalities. Through the obtained inequalities we show that the constructed model selection
procedures are asymptotically efficient in adaptive setting, i.e. in the case when the model
regularity is unknown. For the first time for such problem, we found in the explicit form the
celebrated Pinsker constant which provides the sharp lower bound for the minimax squared
accuracy normalized with the optimal convergence rate. Then we show that the asymptotic
quadratic risk for the model selection procedure asymptotically coincides with the obtained
lower bound, i.e this means that the constructed procedure is efficient. Finally, on the basis
of the constructed model selection procedures in the framework of the big data models
we provide the efficient estimation without using the parameter dimension or any sparse
conditions.
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1 Introduction

1.1 Problem

In this paperwe consider the high dimensional diffusionmodel introduced in Fujimori (2019),
i.e. we study the diffusion process defined as

dyt =
⎛
⎝ψ0(yt )+

q∑
j=1

β jψ j (yt )

⎞
⎠ dt + b(yt ) dWt , 0 ≤ t ≤ T , (1.1)

where (ψ j )0≤ j≤q are known linearly independent functions, (Wt )t≥0 is a standard Wiener
process, (β j )1≤ j≤q are unknown parameters and b(·) is unknown diffusion coefficient. It is
assumed that observations are accessible only at the discrete time moments

(yt j
)1≤ j≤N , t j = jδ, (1.2)

where the frequency δ = δT ∈ (0, 1) and the sample size N = N (T ) are some functions of
T that will be specified later and such that δT → 0, N (T )→ +∞ as T → ∞. We study the
model (1.1) in big data setting (see, for example, Fujimori 2019; DeGregorio and Iacus 2012;
Galtchouk and Pergamenshchikov 2019), i.e. in the case when the parameter dimension is
greater than the number of observations, i.e. q > N . We remind, that for such model usually
one uses the LASSO algorithm or Dantzig selector (see, for example, Hastie et al. 2009).
But these methods can not be used if the the parameter dimension q is unknown or equals to
+∞. By this reason in this paper, similarly to Galtchouk and Pergamenshchikov (2019), we
study the model (1.1) in nonparametric setting, i.e.

dyt = S(yt ) dt + b(yt ) dWt , 0 ≤ t ≤ T . (1.3)

The problem is to estimate the function S(·) on the basis of the observations (1.2). Indeed, such
problems are important at various applications such that signal processing (Kutoyants 1977,
1984a, b; Bayisa et al. 2019), stochastic optimal control (Kabanov and Pergamenshchikov
2003), finance (Lamberton and Lapeyre 1996; Karatzas and Shreve 1998b) and etc. We
consider the quadratic risk defined, for any estimator Ŝ, as

Rϑ(Ŝ) = Eϑ ‖Ŝ − S‖2 and ‖ f ‖2 =
∫ x1

x0

| f (x)|2dx, (1.4)

where Eϑ is the expectation with respect to the distribution of the process (1.3) for the
functions ϑ = ϑ(·) = (S(·), b(·)) and x0 < x1 are some fixed points.

1.2 Motivations

Nonparametric estimation problems for S were studied in a number of papers in the case
of complete observations, that is when the whole trajectory (yt )0≤t≤T was observed. A
sufficiently complete survey one canfind, for example, inKutoyants (2003). It should be noted
that, for the first time, the famous Pinsker constant representing the asymptotic efficiency
property for nonparametric diffusion models was found by Dalalyan and Kutoyants (2002);
Dalalyan (2005) for a special weighted integral risk using very nice local time tool. In non
asymptotic setting Galtchouk and Pergamenshchikov (2001, 2004, 2005, 2006) developed
nonparametric sequential estimation methods for the models (1.3) on the basis of which in
Galtchouk and Pergamenshchikov (2011) they calculated the Pinsker constant for the risk
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(1.4). It should be noted that in all the cited papers the estimation problemswere studied in the
case of complete observations. In practice, usually for the models (1.3), the observations are
accessible only at the discrete time moments (1.2). A natural question arises about properties
of estimators based on discrete observations. In such setting estimation problems for models
of the form (1.3) were considered firstly for estimating the unknown diffusion coefficient
b(·) on a fixed time interval, when the observation frequency goes to zero, (see, for example,
Florens-Zmirou 1993; Jacod 2000 and the references therein). Later, in Gobet et al. (2004)
kernel estimates for the drift and diffusion coefficientswere studied for the reflected processes
(1.3) with the values in the interval [0, 1]. Minimax optimal convergence rates are found as
the sample size goes to infinity. As to the ergodic case, it should be noted that firstly sequential
procedures were proposed in Hoffmann (1999) for nonparametric drift estimation problems
of the process (1.3) in an integral metric. Some upper and lower asymptotic bounds were
found for the Lp - risks. Later, in the paper Comte et al. (2009) a non-asymptotic oracle
inequality was obtained for a special empiric quadratic risk defined as a function of the
observations at the discrete time moments. In the asymptotic setting, when the observation
frequency goes to zero and the length of the observation time interval tends to infinity, the
constructed estimators reach the minimax optimal convergence rates. Unfortunately, in all
these papers, the efficiency property is not studied for estimation procedures on incomplete
observations.

1.3 Key ideas

Our approach is based on the sequential analysis methods developed in the papers Galtchouk
and Pergamenshchikov (2001, 2005, 2006) for nonparametric estimation problems. This
approach makes possible to replace the random denominator by a conditional constant in a
sequential Nadaraya–Watson estimator. Let us recall that in the case of complete observa-
tions the sequential estimator efficiencywas proved bymaking use of a uniform concentration
inequality (see Galtchouk and Pergamenshchikov 2007), besides an indicator kernel estima-
tor. As it turns out later in Galtchouk and Pergamenshchikov (2011), the efficient kernel
estimate in the above given sense provides constructing a selection model adaptive proce-
dure that appears efficient in the quadratic metric. Therefore, in order to realize this program
(i.e. from efficient pointwise estimators to an efficient L2 - estimator) in the case of discrete
time observations, one needs to use suitable concentration inequalities. Such concentration
inequalities are obtained in Galtchouk and Pergamenshchikov (2013) through the uniform
geometric ergodicity method for the process (1.3) developed in Galtchouk and Pergamen-
shchikov (2014)which provides uniformly over functions S(·) andb(·)non asymptotic uppers
bounds for the convergence rate in the ergodic theorem. Using this tool we can show that the
corresponding weighted least square estimator for S in (1.3) setting on the regularity param-
eters is efficient for the risk (1.4) in the Pinsker sense (Pinsker 1981). Finally, using sharp
oracle inequalities, we can estimate from above the risk of the model selection procedure
with the risk of effective estimation and obtain the efficiency property in the adaptive sense,
i.e. without using regularity properties of the function S.

1.4 Organization of the paper

The paper is organized as follows. In Sect. 2 we represent the truncated sequential point wise
method and we announce main conditions. In Sect. 3 through the above sequential estimators
we pass to a nonparametric regression model. In Sect. 4 we construct the model selection
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procedure. The main results are collected in Sect. 5. In Sect. 6 we study main properties of
the basic regression model needed to obtain oracle inequalities. In Sect. 7 we find a sharp
upper bound for the asymptotic risks, i.e. we calculate the Pinsker constant. In Sect. 8 we
prove all main results. In Conclusion we summarize all main contributions of this paper. In
“Appendix” we postpone all necessary technical results.

2 Truncated sequential estimationmethod

First of all we describe the sequential method for the model (1.3). Note that in the complete
observations case the kernel estimation has the following form

ŜT (z) =
∫ T
0

Q
(

yt −z
h

)
dyt

∫ T
0

Q
(

yt −z
h

)
dt
, (2.1)

where Q is a kernel, i.e. a function such that Q(x) = 0 for |x | > 1, and h, h > 0, is a
bandwidth. As we see in this case the estimator is non linear function of the observations
(yt )0≤t≤T and, therefore, it cannot be studied in non asymptotic setting, i.e. for a fixed finite
T . By these reasons Galtchouk and Pergamenshchikov (2004) proposed some sequential
version for this estimator in which the main idea is to transform the random denominator
into a non random constant H > 0, i.e.

ŜτH
(z) =

∫ τH
0

Q
(

yt −z
h

)
dyt

H
, (2.2)

where the observations duration is defined by the following stopping time

τH (z) = inf

{
t ≥ 0 :

∫ t

0
Q

(
yu − z

h

)
du ≥ H

}
. (2.3)

It is clear, that to apply this method the stopping time (2.3) must be finite almost surely. To
do this, one needs to assume some conditions under which the process (1.3) returns to any
vicinity of the point z ∈ [x0, x1] infinite times. A natural condition which provides such
properties is the ergodicity. Moreover, in order to develop minimax estimation methods, we
need a uniform ergodicity property with respect to S over some functional class. To do this
we use the functional class introduced in Galtchouk and Pergamenshchikov (2015), i.e. for
some fixed L ≥ 1, M > 0 and x∗ > |x0| + |x1| we set

�L,M =
{

S ∈ C1(R) : sup
|x |≤x∗

(|S(x)| + |Ṡ(x)|) ≤ M,

−L ≤ inf
|x |≥x∗

Ṡ(x) ≤ sup
|x |≥x∗

Ṡ(x) ≤ −1/L

}
. (2.4)

Here and in the sequel we denote by ḟ and f̈ the corresponding derivatives. Note, that (see,
for example, Galtchouk 1978) for any S from �L,M the Eq. (1.3) with a lipschitz diffusion
function b has a unique strong solution and, moreover, it is ergodic with the ergodic density
defined as

qϑ(x) =
(∫

R

b−2(z) eS̃(z)dz

)−1

b−2(x) eS̃(x), (2.5)
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where S̃(x) = 2
∫ x
0

b−2(v)S(v)dv and ϑ = (S, b) (see, for example, Gihman and Skorohod
1968, Ch.4, 18, Th2). On the basis of this density in Galtchouk and Pergamenshchikov
(2006) for the estimation problems of the functions S from the class (2.4) it was proposed the
truncated sequential procedure, in which the stopping time (2.3) is replaced by the τH ∧ T .
Obviously, that to obtain an asymptotic efficient estimation one needs to use all observations
on the time interval [0, T ], i.e. asymptotically τH ≈ T as T → ∞. Moreover, as it is
shown in Galtchouk and Pergamenshchikov (2011) to obtain the efficiency with respect to
the quadratic risk (1.4) one needs to choose the kernel Q as the indicator function, i.e.

Q(y) = 1{|y|≤1}. (2.6)

Using the uniform geometric ergodicity property developed in Galtchouk and Pergamen-
shchikov (2014) one can show that asymptotically, as H → ∞ and h → 0,

τH (z) ≈ H

hqϑ(z)
∫ 1
−1

Q(u)du
= H

2hqϑ(z)
, (2.7)

i.e. to obtain the asymptotic coincidence of the rule (2.3) with T one needs to choose the
threshold H as

H ≈ 2T hqϑ(z). (2.8)

It is clear, that this is impossible, because the ergodic density qϑ is unknown. Therefore,
firstly on the basis of observations (yu)0≤u≤T0

with T0 < T we need to estimate the density
qϑ and then we use this estimator in (2.8) to choose the threshold H and, finally, we estimate
the function S(z) on the basis of the observations (yu)T0≤u≤T . In the case of complete
observations, this program was realized in Galtchouk and Pergamenshchikov (2011). In the
discrete data case, using the method developed in Galtchouk and Pergamenshchikov (2015)
we transform the sequential procedure from Galtchouk and Pergamenshchikov (2011) by the
following way. First, to estimate the ergodic density we will use the first N0 observations
defined as

N0 = [N γ (T )] and 5/6 < γ < 1, (2.9)

where [x] is the integer part of x . Later, in Remark 4.1 we will explain this choice.
To estimate the density qϑ we will use the following kernel estimator

q̂(z) = 1

2 N0 h0

N0∑
j=1

χ j (z, h0), (2.10)

where h0 = h0(T ) = T −1/2
0 , T0 = δN0 and

χ j (z, h) = Q

(
yt j−1

− z

h

)
.

We recall, that Q is the indicator defined in (2.6). Furthermore, note that to study the stopping
time we need to divide the threshold H in (2.7) by the estimator of the density (2.10) which
generally speaking may be very small. To avoid this situation we modify the estimator (2.10)
as

q̃(z) =
⎧⎨
⎩
(υT )

1/2, if q̂(z) < (υT )
1/2;

q̂(z), if (υT )
1/2 ≤ q̂(z) ≤ (υT )

−1/2;
(υT )

−1/2, if q̂(z) > (υT )
−1/2,

(2.11)
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where υT is a positive function of T going to zero as T → ∞.
Then to estimate the function S(z) we use the observations (yt j

)N0+1≤ j≤N . To use all this
observations in the sequential procedure we will choose the threshold H such that the obser-
vations duration in the sequential procedure will be asymptotically less than N − N0, i.e.
τ < N − N0 and, moreover, τ/(N − N0)→ 1 as T → ∞. To do this we set

H(z) = h(N − N0)(2q̃(z)− υT ) and h = T −1/2. (2.12)

Note, that this threshold is FtN0
- measurable, where Ft = σ {yt , 0 ≤ u ≤ t}. Therefore, we

can use it to define the following stopping time

τ(z) = inf

⎧⎨
⎩l ≥ N0 + 1 :

l∑
j=N0+1

χ̃ j (z, h) ≥ H(z)

⎫⎬
⎭ , (2.13)

where χ̃ j (z, h) = χ j (z, h)1{ j<N } + H(z)1{ j≥N }. Note, that this stopping time τ(z) ≤ N a.s.
Now we need to define the correction coefficient 0 < κ(z) ≤ 1 as

τ(z)−1∑
j=N0+1

χ̃ j (z, h)+ κ(z)χ̃τ(z)(z, h) = H(z). (2.14)

Finally, we define the sequential estimator for S(z) as

S∗(z) = 1

δH(z)

⎛
⎝

τ(z)∑
j=N0+1

√
κ̃ j (z)χ̃ j (z, h) (yt j

− yt j−1
)

⎞
⎠ 1�(z), (2.15)

where �(z) = {τ(z) < N } and κ̃ j (z) = 1{ j<τ(z)} + √
κ(z)1{ j=τ(z)}. Using here the model

(1.3) we can represent this estimator on �(z) as

S∗(z) = S(z)+ g1(z)+ g2(z)+
b(z)√
δH(z)

ξ(z), (2.16)

where

g1(z) = 1

δH(z)

τ(z)∑
j=N0+1

√
κ̃ j (z)χ̃ j (z, h)

∫ t j

t j−1

S(yu) du − S(z),

g2(z) = 1

δH(z)

τ(z)∑
j=N0+1

√
κ̃ j (z)χ̃ j (z, h)

∫ t j

t j−1

(b(ys)− b(z))dWs

and

ξ(z) = 1√
δH(z)

τ(z)∑
j=N0+1

√
κ̃ j (z)χ̃ j (z, h) (Wt j

− Wt j−1
). (2.17)

To construct themodel selection procedurewe need to estimate the diffusion coefficient b2(z)
for x0 ≤ z ≤ x1. For this we will use the following truncated sequential procedure. First, we
define the corresponding stopping time as

t0(z) = inf

⎧⎨
⎩ j ≥ 1 :

j∑
l=1

χl(z, h0) ≥ H0

⎫⎬
⎭ ∧ N0, (2.18)
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where H0 = h0N0/ ln(T + 1). Then we set

b̂(z) =
∑t0(z)

j=1 χ j (z, h0)(yt j
− yt j−1

)2

δ H0
1�0(z), (2.19)

where �0(z) = {t0 < N0}. By the similar reasons as in (2.12) we choose the threshold H0 so
that the stopping time (2.18) will be less that N asymptotically as T → ∞. If b(z) is known,
we set b̂(z) = b2(z).
Note that we consider the efficient estimation problem only for the drift function S, i.e. the
diffusion coefficient b is considered as a nuisance parameter for which we assume that it is
two time continuously differentiable such that

0 < bmin ≤ inf
x∈R

|b(x)| ≤ sup
x∈R

max
(|b(x)|, |ḃ(x)|, |b̈(x)|) ≤ bmax , (2.20)

where bmin and bmax are some fixed constants. Denoting by B the class of such functions,
we set

� = �L,M × B = {
(S, b) : S ∈ �L,M and b ∈ B} . (2.21)

Note, that the functions from �L,M are uniformly bounded on [x0, x1], i.e.
s∗ = sup

x0≤x≤x1

sup
S∈�L,M

S2(x) <∞. (2.22)

Moreover, it should be noted also, that

0 < q∗ = inf
|x |≤x∗

inf
ϑ∈�

qϑ(x) ≤ sup
x∈R

sup
ϑ∈�

qϑ(x) = q∗ < +∞. (2.23)

To use the concentration inequalities fromGaltchouk and Pergamenshchikov (2013) we need
the following conditions.

A1) The frequency δ in the observations (1.2) has the following form

δ = δT = 1

(T + 1)lT
, (2.24)

where the function lT is such that,

lim
T →∞

lT

ln T
= +∞. (2.25)

For example, one can take lT = (ln T )1+a for some a > 0.
A2) Assume, that

lim
T →∞

(
υT + ln T

T (υT )
2 + ln T

lT (υT )
5

)
= 0. (2.26)

For example, one can take υT = ln−a(T + 1) and lT ≥ ln1+6a T , for some a > 0.

Remark 2.1 It should be noted the choice of the bandwidth h in (2.12) is due to the following
reasons. According to the method developed in Galtchouk and Pergamenshchikov (2011) to
provide an efficient sequential estimation one needs to choose the bandwidth h as small as
possible, but to use the concentration inequalities from Galtchouk and Pergamenshchikov
(2013) the bandwidth must be greater than T −1/2. Therefore, there is only one way h =
T −1/2.
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Remark 2.2 It should be noted that the conditions A1)–A2) provide an efficient point wise
estimation developed in Galtchouk and Pergamenshchikov (2015) for N (T ) ≈ T 2lT as
T → ∞. In this paper, similarly to the complete observations case considered in Galtchouk
and Pergamenshchikov (2011), to construct model selection procedures on the observations
(1.2) we will use efficient point wise sequential estimators (2.15).

3 Regressionmodel

To obtain an efficient estimator of the function S on the interval [x0, x1], similarly to
Galtchouk and Pergamenshchikov (2011), we will use the point wise sequential estimators
(2.15) at the points (zk)0≤k≤n defined as

zk = x0 + kx̌
n
, x̌ = x1 − x0, (3.1)

where n = n(T ) is an odd integer-valued function of T such that

x̌
n

≥ 2h and lim
T →∞

n(T )√
T

= 1. (3.2)

For example, we can take, n(T ) = 2[√T x̌/4] − 1.
To develop model selection methods we shall pass to a regression model by the same way

as in Galtchouk and Pergamenshchikov (2011), i.e we set

G∗ = ∩n
k=1 �(zk) and Yk = S∗(zk) 1G∗ , (3.3)

where the set �(z) and the estimators S∗(z) are defined in (2.12) and (2.15). Using the form
(2.16) we obtain on the set G∗ the following regression model

Yk = S(zk)+ gk + σkξk, σk = b(zk)/
√
δHk, (3.4)

where gk = g1(zk)+ g2(zk), ξk = ξ(zk) and Hk = H(zk) is defined in (2.12).
First note that, Proposition 4.5 fromGaltchouk andPergamenshchikov (2015) directly implies
the following property.

Proposition 3.1 For any a > 0, under the conditions A1)–A2)

lim
T →∞

T a sup
ϑ∈�

Pϑ(G
c
∗) = 0. (3.5)

Concerning the random variables (ξk)1≤k≤n , we can show the following property.

Proposition 3.2 The random variables (ξk)1≤k≤n are N (0, 1) i.i.d. conditionally to G0 =
FtN0

, where Ft = σ {yu, 0 ≤ u ≤ t}.

Proof Note, that tτk is a stopping time for the filtration (Fu)0≤u≤T . Therefore, ξk can be
represented as

ξk =
∫ tτk

tN0

�k(u)dWu, �k(u) =
N∑

j=N0+1

ψ j,k 1{t j−1≤u<t j },
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where ψ j,k =
√

κ̃ j (zk)χ̃ j (zk, h)/
√
δHk . Note here, that

∫ tτk
tN0
�2

k (u)du = 1 and, moreover,

the first condition in (3.2) yields, that for k = l

Eϑ
(
ξkξl |G0

) = Eϑ

⎛
⎝
∫ tτk

tN0

�k(u)�l(u)du|G0
⎞
⎠ = 0.

Thus, the time-changed Brownian motion property (see, for example, Karatzas and Shreve
1998a, p. 174) implies this Proposition. ��

Now we set

g∗
T = T max

1≤k≤n
sup
ϑ∈�

Eϑ g
2
k1G∗ . (3.6)

Proposition 3.3 For any a > 0, under the conditions A1)–A2)

lim
T →∞

T −a g∗
T = 0. (3.7)

We estimate the parameter σ 2l as

σ̂l = b̂l/(δHl), (3.8)

where b̂l = b̂(zl) is defined in (2.19).Note that the coefficients (σl)1≤l≤n are randomvariables
such that

σ0,∗ ≤ min
1≤l≤n

σ 2l ≤ max
1≤l≤n

σ 2l ≤ σ1,∗, (3.9)

where

σ0,∗ = υT bmin

δNh
and σ1,∗ = bmax

υT δ(N − N0)h
.

Now, we need to study the properties of the estimator (3.8). To this end we set

� ∗
T = n max

1≤l≤n
Eϑ |̂σl − σ 2l |. (3.10)

Proposition 3.4 If the conditions A1)–A2) hold, then for any a > 0,

lim
T →∞

T γ−1/2−a � ∗
T = 0. (3.11)

Propositions 3.3 - 3.4 are shown in “Appendix A.2”.

Remark 3.1 It should be noted that the obtained regression model (3.4) differs from the
models considered before in the papers Galtchouk and Pergamenshchikov (2009a, b, 2011).
More precisely, in Galtchouk and Pergamenshchikov (2009a, b) it is studied the model (3.4)
with the unknown variances σk , but without drift coefficients, i.e. gk = 0, in Galtchouk
and Pergamenshchikov (2011) the coefficients σl are known, but the there are non zero drift
coefficients gl . In this paper we need to study the more general regression model (3.4) in
which the variances are unknown and there are non zero drift coefficients gl , i.e. we can’t
use the methods of those papers.
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4 Model selection

First we choose a basis (φ j ) j≥1 in L2[x0, x1] such that, for any 1 ≤ i, j ≤ n,

(φi , φ j )n = x̌
n

n∑
l=1

φi (zl)φ j (zl) = 1{i= j}. (4.1)

One can take the trigonometric basis defined as φ1(x) ≡ 1/
√
x̌ and, for j ≥ 2,

φ j (x) =
√
2

x̌

{
cos(2π [ j/2] l0(x)) for even j;
sin(2π [ j/2]l0(x)) for odd j,

(4.2)

where l0(x) = (x − x0)/x̌. Note that if n is odd, then this basis is orthonormal for the
empirical inner product, i.e. satisfies the property (4.1). In the sequel, we will denote by ‖ ·‖n
the norm corresponding to the scalar product (4.1). To estimate S we use the discrete Fourier
expansion on the sieve (3.1), i.e.

S(zk) =
n∑

j=1

θ j,nφ j (zk), 1 ≤ k ≤ n, (4.3)

where

θ j,n = (S, φ j )n = x̌
n

n∑
l=1

S(zl)φ j (zl).

Moreover, using the regression model (3.4) we estimate these coefficients as

θ̂ j,n = (Y , φ j )n = x̌
n

n∑
l=1

Ylφ j (zl). (4.4)

By the model (3.4), we obtain on the set G∗

θ̂ j,n = θ j,n + ζ j,n, ζ j,n = g j,n +
√
x̌
n
ξ j,n, (4.5)

where

ξ j,n =
√
x̌
n

n∑
l=1

σlξlφ j (zl), g j,n = x̌
n

n∑
l=1

glφ j (zl).

According to the model selection approach proposed in Galtchouk and Pergamenshchikov
(2011), we estimate the values S(zk) by the weighted least squares estimators

Ŝλ(zk) =
n∑

j=1

λ( j)θ̂ j,nφ j (zk), 1 ≤ k ≤ n, (4.6)

where the weight vector λ = (λ(1), . . . , λ(n))′ belongs to some finite set� from [0, 1]n and
λ′ denotes the transpose of λ. We denote by ν the cardinal number of the set�, ν = card(�),
which is a function of T , i.e. ν = νT . Moreover, we need the following norm of the set �

�∗ = max
λ∈�

n∑
j=1

λ( j), (4.7)

which can be a function of T , i.e. �∗ = �∗(T ).
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We need the following condition.
A3) For any a > 0,

lim
T →∞

νT

T a
= 0 and lim

T →∞
�∗(T )
T 1/3+a

= 0. (4.8)

Remark 4.1 Note that, the property (3.11) and the condition for γ in (2.9) imply that under
the condition A3) the term �

∗
T�∗ → 0 as T → ∞. This is one of the basic properties used

in the proof of Theorem 5.1.

To estimate the function S on the interval [x0, x1], we use the step-function approximation,
i.e.,

Ŝλ(x) =
n∑

l=1

Ŝλ(zl)1{zl−1<x≤zl }, x ∈ [x0, x1]. (4.9)

Now one needs to choose a cost function in order to define an optimal weight λ ∈ �. A best
candidate for the cost function should be the empirical squared error given by the relation

Errn(λ) = ‖Ŝλ − S‖2n → min .

In our case, the empirical squared error is equal to

Errn(λ) =
n∑

j=1

λ2( j)θ̂2j,n − 2
n∑

j=1

λ( j)θ̂ j,n θ j,n +
n∑

j=1

θ2j,n . (4.10)

Since coefficients θ j,n are unknown, we need to replace the term θ̂ j,n θ j,n by some estimator
which we choose as

θ̃ j,n = θ̂2j,n − x̌
n
σ̂ j,n and σ̂ j,n = x̌

n

n∑
l=1

σ̂lφ
2
j (zl), (4.11)

where σ̂l is the estimator for σ 2l defined in (3.8). Note that if the diffusion is known, then we
take in (4.11) σ̂ j,n = σ j,n and

σ j,n = x̌
n

n∑
l=1

σ 2l φ
2
j (zl). (4.12)

It is clear that the inequalities (3.9) imply

σ0,∗ ≤ min
1≤l≤n

σl,n ≤ max
1≤l≤n

σl,n ≤ σ1,∗. (4.13)

Now, for using the estimator (4.11) instead of θ j,n θ̂ j,n one needs to add to the cost function
a suitable penalty term that we take as

P̂n(λ) = x̌
n

n∑
j=1

λ2( j )̂σ j,n (4.14)

if the diffusion is unknown and as

Pn(λ) = x̌
n

n∑
j=1

λ2( j) σ j,n (4.15)
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when the diffusion is known. Finally, we use the following cost function

Jn(λ) =
n∑

j=1

λ2( j)θ̂2j,n − 2
n∑

j=1

λ( j)θ̃ j,n + ρ P̂n(λ), (4.16)

where the positive coefficient 0 < ρ < 1 will be specified later.
We define the model selection procedure as

λ̂ = argmin
λ∈� Jn(λ) and Ŝ∗ = Ŝ̂λ. (4.17)

Remark 4.2 It should be emphasized that if in the model (1.3) the diffusion coefficient b(·)
in known, then we use the penalty term (4.15).

To obtain the efficient properties for this procedure we will use the special weight coeffi-
cients introduced in Galtchouk and Pergamenshchikov (2009a, b). To this end we consider a
2−dimensional numerical grid of the form

A = {1, . . . ,k∗} × {l1, . . . , lm∗ }, (4.18)

where li = iε and m∗ = [1/ε2]. The both parameters k∗ ≥ 1 and 0 < ε ≤ 1 are some
functions of T , i.e. k∗ = k∗

T and ε = εT , such that, for any a > 0,

lim
T →∞

(
εT + 1

T aεT
+ 1

k∗
T

+ k∗
T

ln T

)
= 0. (4.19)

One can take, for example, εT = 1/ ln(T + 1) and k∗ = k + √
ln(T + 1) for some fixed

k ≥ 1. Now, for α = (k, l) ∈ A, we define the vector λα = (λα( j)) j≥1 as

λα( j) = 1{1≤ j≤ j0} +
(
1 − ( j/ωα)

k
)
1{ j0< j≤ωα}, (4.20)

where j0 = j0(α) = [
ωα/ ln(T + 1)

]
, ωα = ω̌k (lT )

1/(2k+1) and

ω̌k = x̌
(
(k + 1)(2k + 1)

π2kk

)1/(2k+1)

.

We set

� = (
λα

)
α∈A . (4.21)

Note that, in this case, the cardinal ν of the set � is the function of T , i.e. ν = νT = k∗m∗
and the conditions (4.19) imply that, limT →∞ T −aνT = 0 for any a > 0.
Moreover, from (4.20) we can obtain that, for any α ∈ A,

n∑
j=1

λα( j) ≤ ωα ≤ ω̌k

(
T

εT

)1/3

.

Therefore, limT →∞ T −1/3−a �∗ = 0, for any a > 0, and the condition A3) holds.

Remark 4.3 Note that, in Galtchouk and Pergamenshchikov (2019) the weight vectors (4.20)
are defined on the basis of number of the points n ≈ √

T and the oracle inequality is shown
under the condition which is slightly different from (4.8). Unfortunately, it turns out, that
such weight vectors do not provide the efficient estimation. By this reason we replaced in
(4.20) n by T and we modified the condition A3).
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5 Main results

Oracle inequalities. First we study non asymptotic properties for the procedure (4.17).

Theorem 5.1 Assume that the conditions A1)–A3) hold. Then, for any T ≥ 1, 0 < ρ ≤ 1/8
and ϑ ∈ �, the estimation procedure Ŝ∗ defined in (4.17) satisfies the inequality

Rϑ(Ŝ∗) ≤ (1 + ρ)2(1 + 4ρ)

1 − 6ρ
min
λ∈�

Rϑ(Ŝλ)+
Uϑ,T
ρ T

, (5.1)

where the remainder term Uϑ,T is such that, for any a > 0,

lim
T →∞

T −a sup
ϑ∈�

Uϑ,T = 0. (5.2)

Theorem 5.2 Assume that the conditions A1)–A2) hold. Then, the model selection procedure
(4.17) with the weights (4.21) satisfies the oracle inequality (5.1) with the remainder term
satisfying the property (5.2), for any a > 0.

Remark 5.1 Note, that similarly to Galtchouk and Pergamenshchikov (2011), we will use the
inequality (5.1) to provide the efficiency property in the adaptive setting, i.e. without using
the regularity of the unknown function S. More precisely, through this inequality we can
estimate from above the risk for the model selection procedure by the risk of the efficient
estimator constructed on the basis of the regularity parameters of S and, as a consequence
we obtain the adaptive efficiency property for Ŝ∗.

Adaptive efficiency property. To study minimax properties for the procedure (4.17) we use
the functional Sobolev ball defined as

W 0
k,r =

⎧⎨
⎩ f ∈ Ck

0([x0, x1]) :
k∑

j=0

‖ f ( j)‖2 ≤ r

⎫⎬
⎭ , (5.3)

where r > 0 and the integer k ≥ 1 are some parameters, Ck
0([x0, x1]) is the space of k

times differentiable functions f : R → R such that f (i)(x) = 0 for 0 ≤ i ≤ k − 1 and
x /∈ [x0, x1]. Moreover, let S0 be a fixed continuously differentiable function from �L,M.
We set

Wk,r = S0 + W 0
k,r and �k,r = Wk,r × B. (5.4)

Note that one can represent the class W 0
k,r as an ellipse inL2[x0, x1]with trigonometric basis

(4.2), i.e.

W 0
k,r =

⎧⎨
⎩ f ∈ Ck

0([x0, x1]) :
∞∑
j=0

a jθ
2
j ≤ r

⎫⎬
⎭ , (5.5)

where θ j = ( f , φ j ) = ∫ x1
x0

f (x)φ j (x)d x and a j = ∑k
i=0

(
2π[ j/2]/x̌)2i .

To study the minimal value for the quadratic risks we set

l∗ = (2k + 1)r1−ιk kιk

(π(k + 1)(2k + 1))ιk
and Jϑ =

∫ x1

x0

b2(x)

qϑ(x)
d x, (5.6)

where ιk = 2k/(2k + 1). It is well known that, for any S ∈ �k,r , the optimal rate of
convergence of estimators isT −ιk (see, for example,Galtchouk andPergamenshchikov2004).
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Nowwedenote by�T the set of all possible estimators of S which aremeasurablewith respect
to the σ -field σ {yt , 0 ≤ t ≤ T }, i.e. based on the observations (yt )0≤t≤T .

Theorem 5.3 For any integer k ≥ 1 and r > 0, the quadratic riskRϑ(Ŝ)with the normalizing

coefficient υ(ϑ) = J
−ιk
ϑ admits the following lower bound

lim inf
T →∞

T ιk inf
Ŝ∈�T

sup
ϑ∈�k,r

υ(ϑ)Rϑ(Ŝ) ≥ l∗.

Assume now, that the penalty parameter ρ in (4.16) is a function of T , i.e. ρ = ρT such that,
for any a > 0,

lim
T →∞

ρT = 0 and lim
T →∞

T aρT = ∞. (5.7)

We can take, for example, ρT = (6 + ln(T + 1))−1.

Theorem 5.4 Assume that the conditions A1)–A2) hold. Then, for any integer k ≥ 2 and
r > 0, the quadratic risk for the model selection procedure Ŝ∗ defined in (4.17) with the
parameter ρ of the form (5.7) through the trigonometric basis (4.2) and the weight family
(4.21) satisfies the following upper bound

lim sup
T →∞

T ιk sup
ϑ∈�k,r

υ(ϑ)Rϑ(Ŝ∗) ≤ l∗. (5.8)

Theorems 5.3– 5.4 imply immediately the efficiency property.

Theorem 5.5 Under the conditions of Theorem5.4 the model selection procedure Ŝ∗ is asymp-
totically efficient, i.e.

lim
T →∞

inf Ŝ∈�T
sup

ϑ∈�k,r
υ(ϑ)Rϑ(Ŝ)

sup
ϑ∈�k,r

υ(ϑ)Rϑ(Ŝ∗)
= 1.

Remark 5.2 It should be noted that from Theorems 5.3– 5.4 it follows that the coefficient
J
ιk
ϑ l∗ is the well-known Pinsker constant, which is calculated for the first time for the model

(1.3). In the particular case, for the model (1.3) with the diffusion coefficient b(·) ≡ 1 the
Pinsker constant was calculated in Galtchouk and Pergamenshchikov (2011). Note also that
the parameter l∗ is the well-known Pinsker constant for the “signal plus white noise” model
obtained in Pinsker (1981). Therefore, the Pinsker constant for the model (1.3) is obtained
by multiplying the constant from Pinsker (1981) by the Pinsker variance (5.6) in the power
ιk .

Big data analysis.Now we apply the developed methods to the model (1.1). We assume that
the functions (ψ j )1≤ j≤q are orthonormal in L2[x0, x1], i.e. (ψi , ψ j ) = ∫ x1

x0
ψi (t)ψ j (t)dt =

1{i= j}. We use the estimators (4.9) to estimate the parameters β = (β j )1≤ j≤q as β̂λ =
(β̂λ, j )1≤ j≤q and β̂λ, j = (ψ j , (Ŝλ−ψ0)). Moreover, to estimate these parameters we use also
the model selection procedure (4.17) setting β̂∗, j = (ψ j , (Ŝ∗ −ψ0)) and β̂∗ = (β̂∗, j )1≤ j≤q .
Note that |β̂λ − β|2q = ∑q

j=1(β̂λ, j − β j )
2 = ‖Ŝλ − S‖2 and |β̂∗ − β|2q = ‖Ŝ∗ − S‖2.

Therefore, Theorem 5.1 implies the following oracle inequality.

123



Statistical Inference for Stochastic Processes (2022) 25:127–158 141

Theorem 5.6 Assume that the conditions A1)–A3) hold. Then, for any T ≥ 1, 0 < ρ ≤ 1/8
and ϑ ∈ �,

Eϑ |β̂∗ − β|2q ≤ (1 + ρ)2(1 + 4ρ)

1 − 6ρ
min
λ∈�

Eϑ |β̂λ − β|2q + Uϑ,T
ρ T

, (5.9)

where the term Uϑ,T satisfies the property (5.2).

Theorem 5.5 imply the efficiency property for the estimator β̂∗ based on the model selection
procedure (4.17) constructed through the trigonometric basis (4.2) with the weight coeffi-
cients (4.21).

Theorem 5.7 Assume that the conditions of Theorem 5.4 hold. Then the estimate β̂∗ is asymp-
totically efficient, i.e.

lim
T →∞

inf β̂T ∈�T
sup

ϑ∈�k,r
υ(ϑ)Eϑ |β̂T − β|2q

sup
ϑ∈�k,r

υ(ϑ)Eϑ |β̂∗ − β|2q
= 1, (5.10)

where �T is the set of all possible estimators for the vector β = (β j )1≤ j≤q .

Remark 5.3 Note, that in the estimators β̂∗, j it is not used the parameter dimension q . More-
over, it can be equal to +∞. In this case it is impossible to use neither LASSO method nor
Danzig selector. It should be emphasized also that the efficiency property (5.10) is shown
without using any sparse conditions for the parameters β = (β j )1≤ j≤q usually assumed for
such problems (see, for example, Fan et al. 2014).

6 Properties of themodel (4.5)

To prove the oracle inequalitiy (5.1) we need to modify the analytical tool developed in
Galtchouk and Pergamenshchikov (2011). To this end we need to study the following func-
tions

�(λ) =
n∑

j=1

λ( j) ξ j,n and B(λ) = x̌√
n

n∑
j=1

λ( j) ξ̃ j,n, (6.1)

where λ ∈ R
n , the variables ξ j,n are defined in (4.5) and ξ̃ j,n = ξ2j,n − Eξ2j,n .

Proposition 6.1 For any n ≥ 1 and any λ = (λ1, . . . , λn) ∈ R
n,

Eϑ �
2(λ) ≤ σ1,∗|λ|2. (6.2)

Proof From Proposition 3.2, (4.1), (4.5) and (3.9) we can obtain directly that

Eϑ �
2(λ) = x̌2

n2 Eϑ

n∑
l=1

σ 2l

⎛
⎝

n∑
j=1

λ( j)φ j (zl)

⎞
⎠

2

≤ σ1,∗
x̌
n

n∑
j=1

λ2( j)
x̌
n

n∑
l=1

φ2k (zl).

Hence Proposition 6.1. ��
Proposition 6.2 For any n ≥ 1 and any λ = (λ1, . . . , λn) ∈ [0, 1]n,

Eϑ
(
B2(λ)|GN0

) ≤ 6σ1,∗x̌ Pn(λ). (6.3)
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Proof First we represent the variables ξ̃ j,n as

ξ̃ j,n = x̌
n

n∑
l=1

(
σ 2l φ

2
j (zl)ηl + 21{l≥2}ξl u j,l

)
, ηl = ξ2l − 1,

where u j,l = σlφ j (zl)
∑l−1

r=1 σrφ j (zr )ξr . Using this in (6.1), we get

B(λ) = x̌2

n3/2

n∑
l=1

(
ηlγ1,l + 2ξlγ2,l

)
,

where γ1,l = σ 2l

∑n
j=1 λ( j)φ2j (zl) and γ2,l = ∑n

j=1 λ( j)u j,l1{l≥2}. Now Proposition 3.2
implies, that

E
(
B2(λ)|GN0

) = x̌4

n3

n∑
l=1

(
2γ 21,l + 4E

(
γ 22,l |GN0

))
:= M1,1 + M1,2.

Due to the Buniakovski-Cauchy-Schwartz inequality

γ 21,l = σ 4l

⎛
⎝

n∑
j=1

λ( j)φ2j (zl)

⎞
⎠

2

≤ σ 4l

⎛
⎝

n∑
j=1

λ2( j)φ2j (zl)

⎞
⎠

⎛
⎝

n∑
j=1

φ2j (zl)

⎞
⎠

≤ σ1,∗
n

x̌
σ 2l

n∑
j=1

λ2( j)φ2j (zl).

Therefore,

M1,1 ≤ 2σ1,∗
x̌3

n2

n∑
j=1

λ2( j)
n∑

l=1

σ 2l φ
2
j (zl) = 2σ1,∗x̌ Pn(λ).

Moreover, using the property (4.1), we get

E
(
γ 22,l |GN0

)
= σ 2l

l−1∑
r=1

σ 2r

⎛
⎝

n∑
j=1

λ( j)φ j (zl)φ j (zr )

⎞
⎠

2

≤ σ1,∗σ 2l
n∑

r=1

n∑
j,k=1

λ( j)λ(k)φ j (zl)φk(zl)φ j (zr )φk(zr )

= σ1,∗
n

x̌
σ 2l

n∑
j=1

λ2( j)φ2j (zl).

Therefore, the term M1,2 can be estimated as

M1,2 ≤ 4σ1,∗
x̌3

n2

n∑
l=1

σ 2l

n∑
j=1

λ2( j)φ2j (zl) = 4σ1,∗x̌ Pn(λ).

These imply the upper bound (6.3). Hence Proposition 6.2. ��
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7 Sharp upper bound

To obtain the upper bound (5.8), first we assume that the parameters k, r and the function Jϑ
are known. In this case, we use the estimator (4.9) with the weight λ̃ from the family (4.21)
defined as

S̃ = S̃̃λ and λ̃ = λα̃, (7.1)

where α̃ = (k, l̃), l̃ = l̃T = [r(ϑ)/ε] ε, r(ϑ) = r/Jϑ and ε = εT = 1/ ln(T + 1). Now we
need to study asymptotic properties of the vector λ̃. To this end we set

ϒ̃T (ϑ) =
n∑

j=1

(1 − λ̃( j))2θ2j,n + Jϑ
x̌n2

n∑
j=1

λ̃2( j). (7.2)

Proposition 7.1 For any k ≥ 2 and r > 0,

lim sup
T →∞

T ιk sup
ϑ∈�k,r

υ(ϑ)ϒ̃T (ϑ) ≤ l∗. (7.3)

Proof First of all, note that

0 < inf
ϑ∈�k,r

Jϑ ≤ sup
ϑ∈�k,r

Jϑ <∞. (7.4)

This implies directly that

lim
T →∞

sup
ϑ∈�k,r

∣∣∣∣
l̃T

r(ϑ)
− 1

∣∣∣∣ = 0, (7.5)

where r(ϑ) = r/Jϑ . Moreover, note that

T ιkυ(ϑ)ϒ̃T (ϑ) ≤ T ιk υ(ϑ)ST + (Jϑ)
1−ιk

T 1−ιk x̌

n∑
j=1

λ̃2( j), (7.6)

where ST = ∑n
j=1 (1 − λ̃( j))2 θ2j,n . We decompose ST as

ST =
[ω̃]∑

j= j0+1

(1 − λ̃( j))2 θ2j,n +
n∑

j=[ω̃]+1

θ2j,n := S1,T + S2,T ,

where ω̃ = ωα̃ = ω̌k

(
T l̃T

)1/(2k+1)
. Lemmas A.5 and A.6 yield

S1,T ≤ (1 + ε̃)
[ω̃]∑

j= j0

(1 − λ̃( j))2 θ2j + 2r(1 + ε̃−1)
ω̃

n2k
,

and
S2,T ≤ (1 + ε̃)

∑
j>ω̃

θ2j + (1 + ε̃−1)
r

n2 ω̃2(k−1)
.

Therefore,

ST ≤ (1 + ε̃)S∗
T + 2r(1 + ε̃−1) γT , (7.7)
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where

S∗
T =

∑
j≥1

(1 − λ̃( j))2 θ2j =
∑
j≤ω̃
(1 − λ̃( j))2 θ2j +

∑
j>ω̃

θ2j := S∗
1,T + S∗

2,T .

and γT = ω̃n−2k + n−2ω̃−2(k−1). Note, that

T ιkυ(ϑ)S∗
1,T = υ(ϑ)

ω̌2k
k (̃lT )

ιk

[ω̃]∑
j= j0

j2k θ2j ≤ υ(ϑ)

ω̌2k
k (̃lT )

ιk
� j0

[ω̃]∑
j= j0

a j θ
2
j ,

where �n = sup j≥n j2k/a j . It is clear that limn→∞ �n = x̌2k/π2k . Therefore, from (7.5)
we obtain that

lim sup
n→∞

sup
ϑ∈�k,r

T ιkυ(ϑ)S∗
1,T∑[ω̃]

j= j0
a j θ

2
j

≤ x̌2k

π2k ω̌2k
k r ιk

=
(

k

(2k + 1)(k + 1)rπ

)ιk
.

Further note, that for any 0 < ε̃ < 1 and for sufficiently large T ,

S∗
2,T =

∑
j>ω̃

θ2j ≤ (1 + ε̃) x̌2k

π2k ω̃2k

∑
j>ω̃

a j θ
2
j = (1 + ε̃)x̌2k

π2k (T l̃T )
ιk ω̌2k

k

∑
j>ω̃

a j θ
2
j .

Therefore, in view of (7.5) we get that

lim sup
n→∞

sup
ϑ∈�k,r

T ιkυ(ϑ)S∗
2,T∑

j>ω̃ a j θ
2
j

≤ x̌2k

π2kω̌2k
k r ιk

=
(

k

(2k + 1)(k + 1)rπ

)ιk
.

Note now, that in (7.7) for k ≥ 2 we have limT →∞ supS∈Wk,r
T ιkγT = 0, i.e.

lim sup
T →∞

sup
ϑ∈�k,r

T ιk υ(ϑ)ST ≤ r1−ιk
(

k

(2k + 1)(k + 1)π

)ιk
. (7.8)

Moreover, we can check directly that

lim sup
T →∞

sup
ϑ∈�k,r

J
1−ιk
ϑ

T 1−ιk x̌

n∑
j=1

λ̃2( j) ≤ u∗
k , (7.9)

where

u∗
k = ω̌kr1−ιk2k2

x̌(2k + 1)(k + 1)
= 2kr1−ιk

(
k

(2k + 1)(k + 1)π

)ιk
.

Using now (7.8) and (7.9) in (7.6)we obtain the limit equality (7.3) and, hence Proposition 7.1.
��

Now, we can study the estimator S̃. For this we need to use the mean variance

sn = x̌
n∑

l=1

σ 2l , (7.10)

where the variances (σl)1≤l≤n are defined in (3.4).

Theorem 7.2 For any k ≥ 2 and r > 0, the estimator S̃ from (7.1) satisfies the inequality

lim sup
T →∞

T ιk sup
ϑ∈�k,r

υ(ϑ)Eϑ‖S̃ − S‖2n ≤ l∗. (7.11)
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Proof First note that, in view of Proposition 3.1, to prove this Theorem it suffices to show
that

lim sup
T →∞

T ιk sup
ϑ∈�k,r

υ(ϑ)EϑχG∗‖S̃ − S‖2n ≤ l∗. (7.12)

Indeed, note that due to (4.3)–(4.6) on the set G∗ we obtain that

‖S̃ − S‖2n =
n∑

j=1

(̃
λ2( j)(θ j,n + ζ j,n)

2 − 2̃λ( j)(θ j,n + ζ j,n)θ j,n + θ2j,n
)

=
n∑

j=1

(
(̃λ( j)− 1)2θ2j,n + 2̃λ( j)(̃λ( j)− 1)ζ j,nθ j,n + λ̃2( j)ζ 2j,n

)
, (7.13)

where λ̃ is defined in (7.1). Taking into account the definition ζ j,n in (4.5) and using the
inequality

2xy ≤ εx2 + ε−1y2, (7.14)

we get that on the set G∗

‖S̃ − S‖2n ≤ (1 + ε)
⎛
⎝

n∑
j=1

(1 − λ̃( j))2θ2j,n + x̌
n

B1

⎞
⎠ +

(
1 + 2

ε

)
B2

+ 2

√
x̌
n

n∑
j=1

λ̃( j)(̃λ( j)− 1)θ j,nξ j,n, (7.15)

where B1 = ∑n
j=1 λ̃

2( j)ξ2j,n and B2 = ∑n
j=1 λ̃

2( j)g2j,n . Since E ξ j,n = 0, we get

Eϑ‖S̃ − S‖2n χG∗ ≤ (1 + ε)
⎛
⎝

n∑
j=1

(1 − λ̃( j))2θ2j,n + Eϑ B1

⎞
⎠

+
(
1 + 2

ε

)
Eϑ B2 χG∗ − 2

√
x̌
n
Eϑ B3χGc

∗
, (7.16)

where B3 = ∑n
j=1 λ̃( j)(̃λ( j)− 1)ξ j,nθ j,n . Note that

x̌Eϑ
(
ξ2j,n |GN0

)
= sn

n
+ x̌

n

n∑
l=1

σ 2l φ j (zl) (7.17)

where sn is defined in (7.10) andφ j (zl) = x̌φ2j (zl)−1.Moreover, setting now sn = sn−Jϑ/x̌,
we can represent the term Eϑ B1 as

Eϑ B1 = 1

n2Eϑ

n∑
j=1

λ̃2( j)

(
sn + x̌

n∑
l=1

σ 2l φ j (xl)

)

= Jϑ
x̌n2

n∑
j=1

λ̃2( j)+ B11

n2 + x̌B12

n2 , (7.18)
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where B11 = ∑n
j=1 λ̃

2( j)Eϑ sn and B12 = Eϑ
∑n

j=1 λ̃
2( j)

∑n
l=1 σ

2
l φ j (xl). Now from

(7.16) and (7.18) it follows that

Eϑ‖S̃ − S‖2n χG∗ ≤ (1 + ε)
(
ϒ̃T + B11

n2 + x̌B12

n2

)

+
(
1 + 2

ε

)
Eϑ B2 χG∗ − 2Eϑ B3χGc

∗
. (7.19)

The bound (7.9) and Proposition A.3 yield

lim sup
T →∞

T ιk sup
ϑ∈�k,r

1

n2 | B11| = 0.

As to the term B12, due to Lemma A.7, one has

x̌
n2 |B12| ≤ x̌

n2Eϑ

n∑
l=1

σ 2l

∣∣∣∣∣∣
n∑

j=1

λ̃2( j)φ j (xl)

∣∣∣∣∣∣
≤ 2k+1Eϑ

sn

n2 . (7.20)

Therefore, in view of Proposition A.3, we obtain that

lim sup
T →∞

T ιk sup
ϑ∈�k,r

|B12|
n2 = 0.

Moreover, taking into account that B2 ≤ ∑n
j=1 g

2
j,n = ‖g‖2n , we obtain that

Eϑ 1G∗ B2 ≤ Eϑ 1G∗‖g‖2n = x̌
n

n∑
k=1

Eϑ 1G∗g
2
k ≤ x̌

g∗
T

T
,

where g∗
T is given by (3.6). Therefore, in view of Proposition 3.3

lim
T →∞

T ιk sup
ϑ∈�k,r

Eϑ 1G∗ B2 = 0. (7.21)

Now through Proposition 6.1 we estimate the last term in (7.16), i.e.

Eϑ B2
3 ≤ σ1,∗

x̌
n

n∑
j=1

θ2j,n = σ1,∗x̌
n

‖S‖2n .

Therefore,

Eϑ 1Gc
∗
|B3| ≤

√
σ1,∗x̌

n
‖S‖n Pϑ

(
Gc

∗
)

and by Proposition 3.1, we get limT →∞ T ιk sup
ϑ∈�k,r

Eϑ 1Gc
∗
|B3| = 0. Therefore, using

Proposition 7.1 in (7.19) we obtain Theorem 7.2. ��
Note that Lemma A.4 implies the following upper bound.

Theorem 7.3 The quadratic risk for the estimating procedure S̃ from (7.1) has the following
asymptotic upper bound

lim sup
T →∞

T ιk sup
ϑ∈�k,r

υ(ϑ)R(S̃, S) ≤ l∗. (7.22)
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Remark 7.1 It should be noted that the inequality (7.22) through Theorem 5.3 means that the
estimator S̃ is efficient. Unfortunately, we can’t calculate this estimator, since it depends on
unknown parameters k, r and Jϑ . But, this estimator belongs to the family (Ŝλ)λ∈� with the
weight vectors defined in (4.21). Therefore, through the oracle inequality we can estimate
the risk of the model selection procedure with the risk of the estimator (7.1) and, therefore,
using the property (7.22) we can provide the efficiency property for the procedure (4.17).

8 Proofs

8.1 Proof of Theorem 5.1

First of all, note that on the set G∗ we can represent the empirical squared error Errn(λ) in
the form

Errn(λ) = Jn(λ)+ 2
n∑

j=1

λ( j)θ̌ j,n + ‖S‖2n − ρ P̂n(λ) (8.1)

with θ̌ j,n = θ̃ j,n − θ j,n θ̂ j,n . From (4.5) and (4.11) one obtains

θ̌ j,n = θ j,nζ j,n + x̌
n
(̃ξ j,n − σ̃ j,n)+ 2

√
x̌
n
ξ j,ng j,n + g2j,n,

where ξ̃ j,n = ξ2j,n − σ j,n and σ̃ j,n = σ̂ j,n − σ j,n . Setting now

M(λ) =
n∑

j=1

λ( j) θ j,n ζ j,n, D(λ) =
n∑

j=1

λ( j) σ̃ j,n

and Pn(λ) = P̂n(λ)− Pn(λ) = x̌
n

n∑
j=1

λ2( j )̃σ j,n, (8.2)

we obtain from (8.1), that

Errn(λ) = Jn(λ)+ 2M(λ)+ 2M1(λ)−
2x̌
n
D(λ)

+ ‖S‖2n − ρ Pn(λ)− ρPn(λ), (8.3)

where M1(λ) = n−1/2 B(λ)+ (λ), B(λ) is defined in (6.1) and

 (λ) =
n∑

j=1

λ( j) g2j,n + 2

√
x̌
n

n∑
j=1

λ( j) ξ j,ng j,n :=  1(λ)+ 2(λ). (8.4)

In view of Proposition 6.2, for any λ ∈ [0, 1]n ,

Eϑ
(
B2(λ)|GN0

) ≤ 6σ∗x̌ Pn(λ). (8.5)

To estimate the first term in (8.4) note that

sup
λ∈[0,1]n

 1(λ) ≤
n∑

j=1

g2j,n = ‖g‖2n . (8.6)
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Moreover, using the inequality (7.14), we get that, for any 0 < ε < 1,

| 2(λ)| ≤ ε x̌
n

n∑
j=1

λ2( j) ξ2j,n + ‖g‖2n
ε

= εPn(λ)+ ε
|B(λ2)|√

n
+ ‖g‖2n

ε
,

where the vector λ2 = (λ2( j))1≤ j≤n . Thus, for any λ ∈ [0, 1]n ,

| (λ)| ≤ εPn(λ)+ ε
|B(λ2)|√

n
+ 2ε−1‖g‖2n .

This implies

2|M1(λ)| ≤ 2
|B(λ)|√

n
+ 2

|B(λ2)|√
n

+ 2εPn(λ)+ 4ε−1‖g‖2n . (8.7)

Since Pn(λ
2) ≤ Pn(λ), we get that, for any 0 < ε < 1 and λ ∈ �,

2
|B(λ)|√

n
+ 2

|B(λ2)|√
n

≤ εPn(λ) + 2

ε n

(
B2(λ)

Pn(λ)
+ B2(λ2)

Pn(λ
2)

)
. (8.8)

Note that the inequalities (3.9) imply that

P0,n(λ) ≤ Pn(λ) ≤ P1,n(λ), (8.9)

where

P0,n(λ) = σ0,∗x̌|λ|2
n

and P1,n(λ) = σ1,∗x̌|λ|2
n

.

From the inequalities (8.8) and (8.9) it follows

2
|B(λ)|√

n
+ 2

|B(λ2)|√
n

≤ εPn(λ) + 2

ε σ0,∗x̌
B∗(λ), (8.10)

where B∗(λ) = (
B2(λ)/|λ|2 + B2(λ2)/|λ2|2). Choosing ε = ρ/3 in (8.7), we get

2|M1(λ)| ≤ ρPn(λ)+
6

ρ
ϒn(λ), ϒn(λ) = B∗(λ)

σ0,∗x̌
+ 2‖g‖2n . (8.11)

Now we study D∗ = maxλ∈� |D(λ− λ0)|. One can check directly that

Eϑ D
∗ ≤ 2

∑
λ∈�

Eϑ |D(λ)| ≤ 2ν �∗
n

� ∗
T , (8.12)

where � ∗
T is defined in (3.10). Similarly, denoting P∗ = supλ∈� |Pn(λ)|, we get

Eϑ P∗ ≤
∑
λ∈�

Eϑ |Pn(λ)| ≤
∑
λ∈�

x̌
n

n∑
j=1

λ2( j)Eϑ |̂σ j,n − σ j,n|

≤
∑
λ∈�

x̌
n2 |λ|2� ∗

T ≤ x̌
n2�∗ν� ∗

T . (8.13)

From (8.3) we obtain that, for some fixed λ0 ∈ �,
Errn (̂λ)− Errn(λ0)

= Jn (̂λ)− Jn(λ0)+ 2 M(μ̂)− 2x̌
n
D(μ̂)
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+ 2(M1(̂λ)− M1(λ0))− ρ(Pn (̂λ)− Pn(λ0))− ρ(Pn (̂λ)− Pn(λ0)),

where μ̂ = λ̂− λ0. By the definition of λ̂ in (4.17) we obtain on the set G∗

Errn (̂λ) ≤ Errn(λ0) + 2 M(μ̂)+ 6

ρ
ϒn (̂λ)

+ 2x̌
n
D∗ + 2ρPn(λ0)− ρ(Pn (̂λ)− Pn(λ0)). (8.14)

To study the term ϒn(λ) note, that the bounds (8.5) and (8.9) imply

Eϑ 1G∗B
∗(λ) ≤ Eϑ

(
B2(λ)

|λ|2 + B2(λ2)

|λ2|2
)

≤ 6σ1,∗x̌ Eϑ
(

Pn(λ)

|λ|2 + Pn(λ
2)

|λ2|2
)

≤ 12
σ 21,∗x̌

2

n
.

Moreover, as to the norm ‖g‖2n note that gl gk = 0 for l = k, i.e.

Eϑ 1G∗‖g‖2n = x̌2

n2Eϑ

n∑
j=1

(
n∑

l=1

glφ j (zl)

)2

= x̌
n
Eϑ

n∑
l=1

g2
l ≤ x̌

g∗
T

T
,

where g∗
T is given by (3.6). Therefore,

Eϑ1G∗ϒn ≤ 2x̌

(
6σ 21,∗
nσ0,∗

+ g∗
T

T

)
. (8.15)

Let us study now the term M in (8.3). For any λ ∈ �, we represent it as
M(μ) = Z(μ)+ V (μ) and μ = λ− λ0, (8.16)

where

Z(μ) =
√
x̌
n

n∑
j=1

μ( j) θ j,nξ j,n and V (μ) =
n∑

j=1

μ( j) θ j,ng j,n .

We begin with the weighted discrete Fourier transformation, i.e. we set

Sμ =
n∑

j=1

μ( j) θ j,nφ j . (8.17)

Due to the definition of ξ j,n in (4.5), we can estimate the term Z(μ) as

Eϑ1G∗ Z2(μ) ≤ σ1,∗x̌
n

‖Sμ‖2n . (8.18)

Moreover, using the inequality (7.14) with ε = ρ, we obtain

2V (μ) = 2
n∑

j=1

μ( j) θ j,ng j,n ≤ ρ ‖Sμ‖2n + ‖g‖2n
ρ
. (8.19)

Therefore, on the set G∗

2M(μ) ≤ 2ρ‖Sμ‖2n + Z∗

nρ
+ ‖g‖2n

ρ
, Z∗ = sup

μ∈�−λ0

nZ2(μ)

‖Sμ‖2n
. (8.20)
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It is clear, that the upper bound (8.18) yields

Eϑ 1G∗ Z∗ ≤
∑

μ∈�−λ0

nEϑ 1G∗ Z2(μ)

‖Sμ‖2n
≤ νσ1,∗x̌. (8.21)

To estimate the norm ‖Sμ‖2n note that in view of (4.5) on the set G∗

‖Sμ‖2n − ‖Ŝμ‖2n =
n∑

j=1

μ2( j)(θ2j,n − θ̂2j,n) ≤ − 2
n∑

j=1

μ2( j) θ j,n ζ j,n

= −2Z1(μ)− 2V1(μ), (8.22)

where

Z1(μ) =
√
x̌
n

n∑
j=1

μ2( j)θ j,nξ j,n and V1(μ) =
n∑

j=1

μ2( j) θ j,ng j,n .

Taking into account that |μ( j)| ≤ 1, similarly to the inequality (8.18), we find

Eϑ 1G∗ Z2
1(μ) ≤ σ1,∗x̌

n
‖Sμ‖2n .

Moreover, similarly to (8.21) we estimate Z∗
1 = sup

μ∈�−λ0 nZ2
1(μ)/‖Sμ‖2n as

Eϑ Z∗
1 1G∗ ≤ νσ1,∗x̌. (8.23)

Furthermore, similarly to (8.19) we estimate the second term in (8.22) as

2|V1(μ)| ≤ ρ‖Sμ‖2n + ‖g‖2n
ρ
.

Therefore, on the set G∗

‖Sμ‖2n ≤ ‖Ŝμ‖2n + 2ρ‖Sμ‖2n + Z∗
1

nρ
+ ‖g‖2n

ρ
,

i.e.

‖Sμ‖2n ≤ 1

1 − 2ρ
‖Ŝμ‖2n + 1

(1 − 2ρ)ρ

(
Z∗
1

n
+ ‖g‖2n

)
. (8.24)

Using this inequality in (8.20) and putting Z∗
2 = Z∗ + Z∗

1 yield on the set G∗

2M(μ̂) ≤ 2ρ

1 − 2ρ
‖Ŝμ̂‖2n + 1

ρ(1 − 2ρ)

(
Z∗
2

n
+ ‖g‖2n

)

≤ 4ρ(Errn (̂λ)+ Errn(λ0))

1 − 2ρ
+ 1

ρ(1 − 2ρ)

(
Z∗
2

n
+ ‖g‖2n

)
.

Using this bound in (8.14), we obtain that

Errn (̂λ) ≤ 1 + 2ρ

1 − 6ρ
Errn(λ0)+

2ρ(1 − 2ρ)

1 − 6ρ
Pn(λ0)+

1

ρ(1 − 6ρ)

(
Z∗
2

n
+ ‖g‖2n

)

+ 1 − 2ρ

1 − 6ρ

(
6

ρ
ϒn (̂λ)+

4x̌
n
D∗ − ρ(Pn (̂λ)− Pn(λ0))

)
.
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Using here, that 1 − 6ρ > 1/4 for ρ < 1/8 we obtain that for some ľ > 0

EϑErrn (̂λ)1G∗ ≤ 1 + 2ρ

1 − 6ρ
EϑErrn(λ0)1G∗ + 2ρ(1 − 2ρ)

1 − 6ρ
Eϑ1G∗ Pn(λ0)

+ ľ
ρ

(
σ1,∗(ν + σ ∗)

n
+ g∗

T

T
+ ν�∗� ∗

T

n2

)
,

where σ ∗ = σ1,∗/σ0,∗. From Proposition A.1 with ε = ρ it follows

EϑErrn (̂λ)1G∗ ≤ 1 + 4ρ

1 − 6ρ
EϑErrn(λ0)1G∗ + ľ

ρT
Uϑ,T ,

where

Uϑ,T = Tσ1,∗(ν + σ ∗)
n

+ g∗
T + T ν�∗� ∗

T

n2 + T ‖S‖n
√
σ1,∗

n

√
Pϑ(Gc∗).

Replacing here EϑErrn (̂λ)1G∗ and EϑErrn(λ0)1G∗ by Eϑ‖Ŝ∗ − S‖2n − ‖S‖2nPϑ(Gc∗) and
Eϑ‖Ŝλ0 − S‖2n − ‖S‖2nPϑ(Gc∗), respectively, and using Lemma A.4 with ε̃ = ρ, we obtain
the inequality (5.1). Moreover, Propositions 3.1 and 3.3, the condition (2.9), Proposition 3.4
and the condition A3) imply the property (5.2). Hence Theorem 5.1. ��

8.2 Proof of Theorem 5.3

First, we introduce the auxiliary class �0
k,r = {

ϑ = (S, b0) : S ∈ Wk,r , b0 ≡ 1
}
. It is

clear that �0
k,r ⊂ �k,r and sup

ϑ∈�k,r
υ(ϑ)R(S̃, S) ≥ sup

ϑ∈�0
k,r
υ(ϑ)R(S̃, S). Using here

Theorem 5.2 from Galtchouk and Pergamenshchikov (2011) we obtain Theorem 5.3. ��

8.3 Proof of Theorem 5.4

Taking into account that for sufficiently large T the estimator (7.1) belongs to the family
(Ŝλ)λ∈� indexed by the set (4.21), we obtain that

lim sup
T →∞

T ιkEϑ‖Ŝ∗ − S‖2 ≤ lim sup
T →∞

T ιkEϑ‖ Ŝ̃λ − S‖2.

So, Theorem 7.2 implies immediately Theorem 5.4. ��

Conclusion

In the conclusion we emphasize that in this paper we develop an adaptive sequential model
selection method for the drift estimation problem of stochastic differential equations with
unknown diffusion coefficients observed at the discrete fixed time moments. It should be
noted that in this case we can’t use model selection methods developed for such problems
(see Remark 3.1 for details). To study the proposed estimation procedures, we find the
constructive sufficient conditions A1)–A3) on the observations frequency and the model
selection procedures under which we obtain the sharp non asymptotic oracle inequality
(5.1). Then, through this inequality using the weighted least squares estimators providing the
efficient estimation we show in Theorem 5.5, that the constructed model selection procedure
is efficient in adaptive setting, i.e. when the drift regularity is unknown. To this end, for the
first time, the sharp upper bound for quadratic risk (5.8) (i.e. the celebrate Pinsker constant)
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is calculated in explicit form for the the model (1.3) (see, Remark 5.2 for details). Moreover,
on the basis of the developedmodel selection procedures we provide in Theorems 5.6 and 5.7
the non asymptotic optimal (in sharp oracle inequalities sense) and asymptotically efficient
estimationmethods for the high dimension diffusionmodels (1.1)without using the parameter
dimension or any sparse conditions.
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A Appendix

A.1 Property of the penalty term

Proposition A.1 For any 0 < ε < 1/2,

Eϑ 1G∗ Pn(λ0) ≤ 1

1 − 2ε
EϑErrn(λ0)1G∗ + x̌g∗

T

ε(1 − 2ε)T

+ 2x̌σ1,∗
nε

+
2‖S‖n

√
x̌σ1,∗√

n

√
Pϑ

(
Gc∗

)
,

where the term g∗
T is given in (3.6).

Proof Note that on the set G∗

Errn(λ) =
n∑

j=1

(λ( j)θ̂ j,n − θ j,n)
2 =

n∑
j=1

λ2( j)ζ 2j,n

− 2
n∑

j=1

(1 − λ( j))λ( j)θ j,nζ j,n +
n∑

j=1

(1 − λ( j))2θ2j,n .

Taking into account here that

ζ 2j,n = g2
j,n + x̌

n
ξ2j,n + 2

√
x̌
n

g j,nξ j,n,

we obtain

Errn(λ) ≥ x̌
n

n∑
j=1

λ2( j)ξ2j,n + 2

√
x̌
n

I1 − 2

√
x̌
n

I2,

where I1 = ∑n
j=1 λ

2( j)g j,nξ j,n and I2 = ∑n
j=1(1 − λ( j))λ( j)θ j,nξ j,n . Moreover, note

that, for any 0 < ε < 1,

2

√
x̌
n

I1 ≤ 1

ε
‖g‖2n + εx̌

n

n∑
j=1

λ2( j)ξ2j,n .
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Therefore

Errn(λ0) ≥ (1 − ε)x̌
n

n∑
j=1

λ2( j)ξ2j,n − 2
√
x̌√

n
I2 − 1

ε
‖g‖2n

and

Eϑ1G∗Errn(λ0) ≥ (1 − ε)x̌
n

Eϑ1G∗

n∑
j=1

λ2( j)ξ2j,n − 2
√
x̌√

n
Eϑ1G∗ I2 − 1

ε
Eϑ1G∗ ‖g‖2n .

Taking into account here the definition of B(·) in (6.1) and that Eϑ I2 = 0 we can rewrite the
last inequality as

Eϑ1G∗Errn(λ0) ≥ (1 − ε)Eϑ1G∗ Pn(λ)+
(1 − ε)√

n
Eϑ1G∗B(λ

2)

+ 2
√
x̌√

n
Eϑ1(G∗)c I2 − 1

ε
Eϑ1G∗ ‖g‖2n .

Now Propositions 6.1– 6.2 imply that

Eϑ1G∗Errn(λ0) ≥ (1 − 2ε)Eϑ1G∗ Pn(λ)−
2x̌σ1,∗

nε

−
2‖S‖n

√
x̌σ1,∗√

n

√
Pϑ (Gc) − 1

ε
Eϑ1G∗ ‖g‖2n .

Hence Proposition A.1. ��

A.2 Asymptotic analysis tools

Proposition A.2 Assume that the conditionsA1)–A2) hold. Then, for any x0 < x1 and a > 0,

lim
T →∞

T a max
x0≤x≤x1

sup
ϑ∈�

Pϑ(|̃qT (x)− qϑ(x)| > υT ) = 0.

The proof is the same as for Lemma A.3 in Galtchouk and Pergamenshchikov (2015), so it
is omitted.

Proof of Proposition 3.3 First, note that, to show the limit (3.7) it suffices to check that, for
any a > 0,

lim
T →∞

T 1−a sup
x0≤z≤x1

sup
ϑ∈�

(
Eϑ g

2
1(z)1�(z) + Eϑ g

2
2(z)1�(z)

) = 0. (A.1)

Indeed, using the definition of g1(z) in (2.16) we represent it on the set �(z) as g1(z) =
g1,1(z)+ g1,2(z), where

g1,1(z) = 1

δH(z)
(1 − √

κ(z))
√

κ(z)χτ(z)(z, h)
∫ tτ(z)

tτ(z)−1

S(yu) du

and

g1,2(z) = 1

δH(z)

τ(z)∑
j=N0+1

κ̃ j (z) χ j (z, h)
∫ t j

t j−1

S(yu) du − S(z).
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To estimate the term g1,2(z) note that

g21,2(z) ≤ �τ(z)(z)

δH2(z)
, �τ(z)(z) = χτ(z)(z, h)

∫ tτ(z)

tτ(z)−1

S2(yu) du.

Moreover, note also here, that for some constant C > 0

max
N0< j≤N

max
t j−1≤u≤t j

sup
ϑ∈�

Eϑ
(

S2(yu)|Ft j−1

)
≤ C(1 + y2t j−1

).

From the definition (2.13) it follows that {τ(z) = j} ∈ Ft j−1
, i.e.

Eϑ
(
� j (z)|Ft j−1

)
≤ δC(1 + y2t j−1

)χ j (z, h) ≤ δC .

Therefore, for some C > 0

Eϑ
(
�τ(z)(z)|FtN0

)
=

N∑
j=N0+1

Eϑ
(
1{τ(z)= j}Eϑ

(
� j (z)|Ft j−1

)
|FtN0

)
≤ δC

and

Eϑ
(
g21,2(z)|FtN0

)
≤ C

H2(z)
.

Using the definition (2.12), the conditionsA1)–A2), and Propositions 4.1–4.2 fromGaltchouk
and Pergamenshchikov (2015) we obtain the property (3.7). Hence Proposition 3.3. ��
Proof of Proposition 3.4 Note that

Eϑ |̂σl − σ 2l | ≤ 1

υT δ(N − N0)h
Eϑ |̂bl − b2(zl)|.

Taking into account the definition of N0 in (2.9) we obtain through Proposition 3.1 from
Galtchouk and Pergamenshchikov (2019) the limit equality (3.11). Hence Proposition 3.4. ��
Now, we study the heteroscedastic property in the model (3.4). To this end we study asymp-
totic properties of the average variance sn defined in (7.10).

Proposition A.3 Assume that the condition A1) holds. Then

lim
T →∞

sup
ϑ∈�k,r

Eϑ

∣∣∣∣sn − Jϑ
x̌

∣∣∣∣ = 0. (A.2)

Proof Using the definition of σl in (3.4) and taking into account the form of h given in (2.13),
we can represent the term sn as

sn = 1

x̌

n∑
l=1

b̃ϑ(zl)(zl − zl−1)+ R1(ϑ) + R2(ϑ), (A.3)

where b̃ϑ(x) = b2(x)/qϑ(x),

R1(ϑ) = 1

x̌

(
n2

δ (N − N0)
− 1

) n∑
l=1

b̃ϑ(zl) (zl − zl−1)
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and

R2(ϑ) =
n∑

l=1

nb2(xl)

δ h (N − N0)

(
1

2q̃T (zl)− υT
− 1

2qϑ(zl)

)
(zl − zl−1).

First of all note, that the function b̃ϑ(·) and its derivative are uniformly bounded, i.e.
sup

ϑ∈�k,r
maxx0≤z≤x1

(̃
bϑ(z)+ |̃b′

ϑ
(z)|) <∞. Therefore,

lim
T →∞

sup
ϑ∈�k,r

∣∣∣∣∣
n∑

l=1

b̃ϑ(zl)(zl − zl−1)− Jϑ

∣∣∣∣∣ = 0.

As the second term (A.3), note that, in view of the condition (3.2),

lim
T →∞

n2

δ (N − N0)
= 1.

Therefore, limT →∞ sup
ϑ∈�k,r

|R1(ϑ)| = 0. Moreover, taking into account that 2q̃T (zl) −
υT > υ

1/2
T , we obtain, for sufficiently large T , that for some C > 0

|R2(ϑ)| ≤ C

(
n∑

l=1

υ
−1/2
T

(|̃qT (zl)− qϑ(zl)|
)
(zl − zl−1)+ √

υT

)
.

Note here, that for any 1 ≤ l ≤ n and for sufficiently large T ,

υ
−1/2
T Eϑ |̃qT (zl)− qϑ(zl)| ≤ 2υ−1

T Pϑ(|̃qT (zl)− qϑ(zl)| > υT )+ √
υT

and, therefore, Proposition A.2 implies limT →∞ sup
ϑ∈�k,r

|R2(ϑ)| = 0. ��

Lemma A.4 Let f be an absolutely continuous [x0, x1] → R function with ‖ ḟ ‖ < ∞ and
g be [x0, x1] → R a step-wise function g(z) = ∑n

j=1 c j χ(z j−1,z j ](z), where c j are some
constants and the sequence (z j )0≤ j≤n is given in (3.1). Then, for any ε̃ > 0, the function
 = f − g satisfies the following inequalities

1

ε̃

‖ ḟ ‖2
n2 x̌2 − ‖ ‖2

1 + ε̃ ≤ ‖ ‖2n ≤ (1 + ε̃)‖ ‖2 +
(
1 + 1

ε̃

) ‖ ḟ ‖2
n2 x̌2.

The proof is given in Lemma A.2 from Konev and Pergamenshchikov (2015).

A.3 Properties of the trigonometric basis

Lemma A.5 For any 1 ≤ j ≤ n and any ε̃ > 0, the discrete trigonometric Fourier coefficients
(θ j,n)1≤ j≤n introduced in (4.3) for S ∈ Wk,r are bounded as

θ2j,n ≤ (1 + ε̃) θ2j + (1 + ε̃−1)
řk

n2k
, řk = 2r(π2 + 1)x̌2k

π2k
, (A.4)

where the coefficients θ j are defined in (5.5).

Proof First we represent the function S in L[x0, x1] as

S(x) =
n∑

l=1

θl φl(x)+ n(x) and  n(x) =
∑
l>n

θl φl(x). (A.5)
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Since θ j,n = (S, φ j )n = θ j + ( n, φ j )n , we get, that for any 0 < ε̃ < 1,

θ2j,n ≤ (1 + ε̃)θ2j + (1 + ε̃−1)‖ n‖2n .
Moreover, through Lemma A.4 and the definition (5.5) we deduce

‖ n‖2n ≤ 2
∑
l>n

θ2l + 2
‖ ̇n‖2x̌2

n2 ≤ 2r

an+1
+ 2‖ ̇n‖2x̌2

n2 .

Taking into account here that 2[l/2] ≥ l − 1 for l ≥ 2, we get

‖ n‖2n ≤ 2r x̌2k

π2kn2k
+ 2

‖ ̇n‖2x̌2
n2 .

Similarly, for any n ≥ 1,

‖ ̇n‖2 = (2π)2

x̌2
∑
l>n

θ2l [l/2]2 = x̌2(k−1)

π2(k−1)

∑
l>n

alθ
2
l

(2[l/2])2(k−1)

≤ x̌2(k−1)

π2(k−1)

∑
l>n

alθ
2
l

(l − 1)2(k−1)
≤ r x̌2(k−1)

π2(k−1)n2(k−1)
. (A.6)

Hence Lemma A.5. ��

Lemma A.6 For any n ≥ 2, 1 ≤ m < n and r > 0, the coefficients (θ j,n)1≤ j≤n of functions
S from the class Wk,r satisfy, for any ε̃ > 0, the following inequality

n∑
j=m+1

θ2j,n ≤ (1 + ε̃)
∑

j≥m+1

θ2j + (1 + ε̃−1)
ř1

n2m2(k−1)
, (A.7)

where ř1 = r x̌2k/π2(k−1).

Proof First we note that

n∑
j=m+1

θ2j,n = min
x1,...,xm

‖S −
m∑

j=1

x jφ j‖2n ≤ ‖ m‖2n,

where the function m(·) is defined in (A.5). By applying Lemma A.4 with f =  m, g = 0,
and taking into account the inequality (A.6), we obtain the bound (A.7). Hence Lemma A.6

��

Lemma A.7 For any k ≥ 1,

sup
n≥ 2

n−k sup
x∈[x0,x1]

∣∣∣∣∣
n∑

l=2

lkφl(x)

∣∣∣∣∣ ≤ 2k, (A.8)

where φl(x) = x̌φ2l (x)− 1.

Proof of this result is given in Lemma A.2 from Galtchouk and Pergamenshchikov (2009a).
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